
doi : 10.25007/ajnu.v7n4a286

168 Academic Journal of Nawroz University (AJNU)

A Parallel Heuristic Method for Optimizing a Real Life Problem
(Agricultural Land Investment Problem)

Sagvan Ali Saleh
College of Agriculture, University of Duhok, Duhok, Kurdistan region, Iraq

ABSTRACT

This paper proposed a parallel method for solving the Agricultural Land Investment Problem (ALIP), the problem

that has an important impact on the agriculture issues. The author is first represent mathematically the problem by

introducing a mathematical programming model. Then, a parallel method is proposed for optimizing the problem.

The proposed method based on principles of parallel computing and neighborhood search methods. Neighborhood

search techniques explore a series of solutions spaces with the aim of finding the best one. This is exploited in

parallel computing, where several search processes are performed simultaneously. The parallel computing is

designed using Message Passing Interface (MPI) which allows to build a flexible parallel program that can be

executed in multicore and/or distributed environment. The method is competitive since it is able to solve a real life

problem and yield high quality results in a fast solution runtime.

KEYWORDS : parallel processing, neighborhood search, agriculture.

1. INTRODUCTION
This paper addressed an issue of agricultural problems,
namely the Agricultural Land Investment Problem
(abbreviated to ALIP). The problem faced by an
investor, who needs to invest a large agricultural land.
There are various variants of plants that can be
cultivated with a limited finance and duration. Each
plant has a cost to be raised. On the other hand, each of
them has a profit. These profits varies according to
plants. Some plants have great profits but they cost a lot
until they can bear fruit and vice versa. The objective of
the problem is to maximize the profit of investment of
Agriculture. As it is clear that, the ALIP is NP-hard. In
order to simplify the treating of the problem, the ALIP
can be simulated as a well-known combinatorial
optimization problem that is the knapsack problem
(abbreviated to KP). In fact, there are a wide variety of
practical situations that can be simulated as the KP in
various domains, including, computer sciences (Kellerer
et al., 2014). Given a set 𝐼 on 𝑛 plants and financed with
a limited capacity 𝑐, where each plant 𝑖 is characterized
by a profit 𝑃𝑖 and a cost 𝑤𝑖, the objective of the problem

is to select a subset of plants so that the sum of the
selected plants’ profits is maximized without exceeding
the limited financed capacity 𝑐. The mathematical
programming model of the ALIP can be stated as
follows :
𝑀𝑎𝑥 ∶ 𝑓(𝑥) = ∑ 𝑝𝑖 𝑥𝑖

𝑛
𝑖=1 …………... (1)

𝑠. 𝑡. ∑ 𝑤𝑖 𝑥𝑖 ≤ 𝑐𝑛
𝑖=1 …………… (2)

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ 𝐼 = {1, … , 𝑛} ..………….. (3)
The decision variable 𝑥𝑖 , ∀ 𝑖 ∈ 𝐼, is equal to 1 (𝑖. 𝑒. 𝑥𝑖 =

1) if a plant 𝑖 is selected and cultivated in the land
(included in the solution), otherwise 𝑥𝑖 = 0 (out of the
solution). In this integer linear programming, there are
three equations. The first equation (1) is the objective
function where the goal is to maximize the value of the
total profit of plants cultivated in the land under two
constraint. The first constraint (equation 2) is the
capacity constraint, ensuring that the costs’ sum of the
selected plants does not exceed the limited finance.
Meanwhile, the second constraint (equation 3) is
imposed on plants that are to be selected or not in the
solution (it is not allowed to select a fractional plant)
(Martello & Paolo, 1990). In order to avoid trivial cases,
it is assumed that: all input data 𝑐, 𝑤𝑖 , 𝑝𝑖 , ∀ 𝑖 ∈ 𝐼, are
positive integers, and ∑ 𝑤𝑖 > 𝑐𝑖∈𝐼 (Hifi & Otmani, 2012).
The rest of the paper is organized as follows. Section
two reviews some related works. Section three discusses
the principle of the proposed approach for optimizing
the ALIP. In section four, the performance of the
proposed approach is evaluates on a number of
instances, and analyzes the obtained results. Finally,

Academic Journal of Nawroz University
(AJNU) Volume 7, No 4 (2018).
Regular research paper : Published 21 December 2018

Corresponding author’s e-mail : sagvan.saleh@uod.ac

Copyright ©2017 Sagvan Ali Saleh.

This is an open access article distributed under the Creative
Commons Attribution License.

doi : 10.25007/ajnu.v7n4a286

Academic Journal of Nawroz University (AJNU) 169

section five summarizes the contribution of the paper.
2. Related Works
The ALIP is a real life problem that can be simulated as
the KP, as mention in the previous section (i.e. Section
1). Accordingly, the solution procedures for the
problems belonging to the knapsack family are also
suitable for the ALIP (for more details, see Kellerer et al.,
2014). However, the solution procedures, available in
the literature, are either exact or approximate methods.
Horowitz and Sahni (Horowitz & Sahni, 1974) proposed
a branch and bound algorithm, which is based on a
depth first enumeration. The upper bounds is derived
from the principles of continuous relaxation of the
currently induced sub-problem. On the other hand, in
order to solve large-sized instances, Balas and Zemel
(Balas & Zemel, 1980) proposed a method focused on
the enumeration on the most interesting ones. This
subset of items, known as the core of the problem, is
then solved either by approximate techniques or by
using exact solution procedure such as branch-and-
bound methods. Yamada et al. (Yamada et al., 2002),
proposed exact and approximate algorithms for solving
a variation of the knapsack problem that is disjunctively
constrained knapsack problem. The heuristic solution
procedure is used in order to generate approximate
feasible solutions. Then, these solutions are improved
using local search method. The exact solution method is
based on the principles of implicit enumeration search
which starts its search from the initial solution obtained
from the approximate part. Hifi et al. (Hifi et al., 2014)
proposed a parallel method based on the principles of
large neighborhood search method for solving the
disjunctively constrained knapsack problem. The
method is designed using message passing interface. In
this paper, we proposed an approximate solution
procedure based on principles of parallel computing
and neighborhood search methods. The neighborhood
search techniques are exploited in parallel computing,
where several search processes are performed
simultaneously.
3. Parallel heuristic based on neighborhood search
In this section, we discuss the principle of the proposed
parallel heuristic method which is based on the
principles of neighborhood search for optimizing the
ALIP problem. Neighborhood search is a wide class of
improvement techniques that can be used for
developing effective algorithms to approximate large-
size instances of various combinatorial optimization
problems (Aarts & Lenstra, 2003). On the other hand,
parallel computing have already been proved as an
effective solution procedure in which several
calculations can be performed simultaneously. The idea
is that huge data can be divided into smallest parts,
which are then processed and treated concurrently
(Pacheco, 2011). In this paper, the neighborhood search

techniques are exploited in parallel computing.
Accordingly, a parallel heuristic method is presented
for solving the ALIP problem. On the one hand,
neighborhood search techniques explore a series of
solutions spaces with the aim of finding the better. On
the other hand, several search processes are performed
simultaneously and this dramatically accelerates the
computing processes and yields high quality solutions
within acceptable solution running time.
3.1 Parallel computation and MPI
It has become more interesting than before to design
algorithms that can be implemented effectively in a
multiprocessor/multicore environment. Such that, we
have numbers of processing units which cooperate for
solving a specific problem. That is, the parallel
computing. This will lead to a high progress in the
solution procedures of the considered problem
(Pacheco, 2011). In this work, we use Message Passing
Interface (noted as MPI) to design a parallel heuristic
method that can be executed in multicore and/or
distributed environment. MPI addresses primarily the
message-passing parallel programming model, in which
data is moved from the address space of one processor
to that of another processor through cooperative
operations on each processor. The main advantage of
MPI is the ease of use. In addition, it enables us to build
an efficient, and flexible message passing model of
parallel programming (Wittwer, 2006).
3.2 Parallel Computation Environment
The proposed parallel computation model provides a
multiprocessor environment. In such environment,
there are multiprocessors on a single multicore personal
computer machine. This is a cheap computing power
that has been exploited in our parallel programming
model. In fact, the tackled problem is divided into sub-
problems, then each one of them is treated by one core
of the multicore personal computer. In other words, we
have multi-processing environment, where each process
is associated with a unique core. All processes are
arranged and ordered within a virtual topology known
as Communicator. The virtual topology means that,
there may be no relation between the physical
structures of the process topology. In contrast, it
describes a virtual mapping ordering of the processes.
The mapping of processes in the MPI communicator is
dependent upon the algorithm implementation and the
problem to be solved. The communicator composed of a
set of processes, where each one of them has a unique
integer rank. Rank value start at zero to 𝑁 − 1, where 𝑁
is the total number of processes in the communicator.
The whole processes in the communicator may
communicate with each other using their ranks either
by collective or point to point communications
operations. A sender process may send a message to
other process by providing the receiver ranks and a

doi : 10.25007/ajnu.v7n4a286

170 Academic Journal of Nawroz University (AJNU)

unique tag to identify the message. The receiver process
can then post a receive for a message by providing the
sender rank and the same tag to identify the message
(for some cases it can simply ignore the tags).
Accordingly, the receiver process handles the data
correctly (Pacheco, 2011).
3.3 Parallel heuristic Implementation
The solution method proposed for optimizing the ALIP
problem focus on the computation of high quality
solutions with the acceptable computational effort.
Thus, the proposed method is an approximative
methods, due to the nature of the problem which is NP-
hard problem. Algorithm 1 describes the main steps of
the proposed parallel heuristic method. The principle is
that, several neighborhood search processes are
performed concurrently by the help of MPI parallel
programming model. Each core in the used computer is
associated with one process, where a random
neighborhood search is considered as an efficient search
process. In other words, each core perform a
neighborhood search process according to its
parameters, then the best results obtained from the
whole processes are recorded. Herein, an adaptive
neighborhood search method is considered, which
consists of two main stages: the first stage yields a
starting feasible solution by using a greedy procedure.
The second stage tries to improve the quality of the
starting feasible solution by using local search and a
diversification strategy. The diversification strategy is
used in order to escape from a series of local optimum
solution and explore diversify search spaces as shown
in algorithm 1.
Algorithm 1: Parallel Heuristic method for the ALIP
Require: 𝑆𝐴𝐿𝐼𝑃, a starting solution of 𝑃𝐴𝐿𝐼𝑃
Ensure: 𝑆𝐴𝐿𝐼𝑃

∗ , the best local optimum solution of 𝑃𝐴𝐿𝐼𝑃
1. Initialize 𝑆𝐴𝐿𝐼𝑃, the starting solution, using a greedy
procedure.
2. Initialize n processors and make the processor;
3. On each processor 𝑖 (𝑖 = 0, 1, … , 𝑛 − 1), apply a
random neighborhood search:
3.1 While the iteration limit is not achieved do
3.1.1 Use the starting solution as the initial solution
3.1.2 Apply a destroying strategy to yields a reduced
sub-problem.
3.1.3 Apply a local search procedure to improve the
reduced sub-problem.
3.1.4 Update the best solution at hand
3.2: End While
4. Update 𝑆𝐴𝐿𝐼𝑃

∗ the best local solution obtained from all
processes

5. Return 𝑆𝐴𝐿𝐼𝑃
∗ .

Algorithm 1 describes the principles of the proposed
parallel method for optimizing the ALIP. Step 1, a
starting solution is initialize using a simple greedy
procedure, in which items are selected randomly to be
included in the solution. In this work, we use n equals
to 4. That is mean that, we use only four cores in the
multicore computer. Step 2: n processors are initialize,
where the neighborhood search process will be applied.
Step 3: apply a diversification neighborhood search
strategy, which includes two steps: a degrading strategy
(Step 3.1.2) and a re-optimizing strategy (Step 3.1.3).
The degrading strategy destroy the solution at hand by
removing some elements randomly and produced a
reduced sub-problem. The re-optimizing strategy tries
to enhance the reduced sub-problem by applying a local
search procedure. Step 4 update the best solution
achieved by all processes. Finally, the best solution
obtained so far is returned.
4. Computational Results
This section investigates the effectiveness of the
proposed parallel heuristic neighborhood search
method (abbreviated to PHNS) on instances generated
by the author. The instances consists of 200 variants of
plants, and a limited finance 𝑐 = 1200$. The results
obtained by the proposed PHNS are compared to those
results obtained by the sequential version of the
proposed method. The proposed PHNS was coded in
C++ and MPI library and tested on core i5 2.5 GHz.
There are two parameters should be taken into account
with respect to neighborhood search: the percentage of
the removed elements regarding the reduced problem
(noted as ∝) and the stopping criteria. Both of them are

important in developing an efficient algorithm. For the
first step in the computational results, we tune our
algorithm as following: we initialize four processes
in four different cores in the used personal
computer. Each process handle a variant of ∝. The
first process handle ∝= 10, the second ∝= 20, the
third ∝= 30, and the fourth process handle ∝= 40.
In the other hand, for all processes the stopping
criteria has been fixed to 2000 iteration. In other
words, neighborhood search method iterates 2000
times before it gives its better solution. Table 1
displays the variation of the average solutions
values and the solution time achieved by PHNS
over the treated instances.

doi : 10.25007/ajnu.v7n4a286

Academic Journal of Nawroz University (AJNU) 171

Table (1) : The effect of the variable ∝ on the solution quality and time

No. of
trials

α=10 α=20 α=30 α=40

 t (s) Av. Val t (s) Av. Val t (s) Av. Val t (s) Av. Val

1st 0.109 9318 0.124 8322 0.126 7854 0.158 7798

2nd 0.106 8022 0.094 8920 0.124 8208 0.156 7772

3rd 0.124 9044 0.124 8796 0.14 8354 0.14 8020

4th 0.11 8522 0.095 9244 0.126 7828 0.126 7684

5th 0.109 8654 0.094 8516 0.156 8154 0.171 7676

Av. Tot 0.1116 8712 0.1062 8759.6 0.1344 8079.6 0.1502 7790

Table 1 illustrates the effectiveness of the proposed
parallel heuristic on the tested instances. The first
column (No. of trials) shows the number of trials, where
we did 5 trials. Column 2 (𝛼 = 10) illustrates the
average time and the average solutions obtained with
different trails. As it is clear from the table, the best
solution achieved is when 𝛼 = 20. So, we tune our
algorithm with this value for the next step regarding
our computational results. For the next step in the
computational results, we use the same number of
processes, (i.e. four processes in four different cores).
We tune all processes with 𝛼 = 20. At the same time, we
extend the stopping criteria to 400000 iteration. This
extension in the number of iteration, normally,
improves the solution quality at the expense of required
runtime, as shown in Table 2.

Table (2) : Performance of PHNS with compare with a
sequential algorithm

No. of
trials

Seq. Algo. PHNS: α=20

 t (s) Value t (s) Value

1st 5.184 9192 1.435 9316

2nd 5.22 9240 1.513 9200

3rd 5.193 9170 1.466 9352

4th 5.166 9260 1.482 9242

5th 5.122 9428 1.45 9278

Av.
Val.

5.177 9258 1.469 9277.6

Table 2 illustrates the performance of the PHNS.
Column 1 (No. of trials) shows the number of trails.
Column 2 (Seq. Algo.) shows the solutions obtained and
the time required for a sequential form of the
neighborhood search algorithm. Column 3 (PHNS:
α=20) illustrates the solutions and time required for
PHNS. One can observe that, the sequential algorithm
required about 5.177 s in order to yields its solutions
values while, the parallel version, yields its solutions
values within average runtime equals to 1.469 s. That’s
mean, the parallel algorithm is faster than the sequential

one, about
5.177

1.469
= 3.52 times faster than the sequential

one. At the same time, the performance of the parallel
algorithm and the sequential one are nearly the same.
That is because, the both used the same neighborhood
search techniques. For the third and last step in the
computational results, we compare the PHNS, with the
greedy algorithm that produce the initial solution, as
illustrated in Table 3.

Table (3) : Performance of PHNS with compare with a
greedy algorithm

Greedy
algorithm PHNS: α=20

 t (s) Val. t (s) Val.

Av.
Val. 0.031 3322 1.469 9277.6

As shown in Table 3, the average solution value
obtained by PHNS is better than the initial solution
obtained by the greedy algorithm. Indeed, PHNS is able
to realize an average value about 9277.6 in 1.469 second,
whereas Greedy algorithm realizes 3322 in 0.031. In
spite of PHNS required more solution time than the
greedy algorithm, but the solution quality is better.
5. Conclusion:
In this paper, a parallel heuristic method was proposed
for approximately solving a real life problem arises in
agriculture, agricultural land investment problem. The
problem was first modeled as a combinatorial
optimization problem, the knapsack problem. In
addition, a mathematical programming model was
introduced to represent it. Then, a parallel heuristic
method is proposed. The proposed method based on
the principles of parallel computing and neighborhood
search techniques. The neighborhood method is based
upon destroying and re-optimizing strategies.
Destroying strategy involves remove α% of items from
the solution at hand, whereas re-optimizing strategy
involves re-optimize the reduced problem. This is
exploited in parallel computing, where several search

doi : 10.25007/ajnu.v7n4a286

172 Academic Journal of Nawroz University (AJNU)

processes are performed simultaneously. The Message
Passing Interface was used to build the parallel
program in a multicore environment. The work realized
here highlighted the effectiveness of integrating
neighborhood search techniques in parallel processing.
Computational results showed that, the proposed
method performed better than a greedy algorithm and a
sequential version of neighborhood search. The
proposed method yields high quality solutions in short
solution time.
References:
1. Aarts , E., & Lenstra, J. (2003), Local search in
combinatorial optimization. New Jersey: Princeton
University Press.
2. Balas, E., & Zemel, E. (1980), An algorithm for large
zero-one knapsack problems. Operations Research 28,
1130-1154.
3. Hifi, M., & Otmani, N. (2012), An algorithm for the
disjunctively constrained knapsack problem.
International Journal of Operational Research , 13(1): 22-
43.
4. Hifi, M., Negre, S., Saadi, T., Saleh, S., & Wu, L. (2014),
A Parallel Large Neighborhood Search-Based Heuristic
for the Disjunctively Constrained Knapsack Problem.
IEEE International Parallel & Distributed Processing
Symposium Workshops. Phoenix, AZ, USA: IEEE.
5. Horowitz , E., & Sahni, S. (1974), Computing
partitions with applications to the knapsack problem.
Journal of the ACM (JACM), 21 (2): 277–292.
6. Kellerer, H., Pferschy, U., & Pisinger, D. (2014),
Knapsack Problems. New Yourk: Springer-Verlag Berlin
Heidelberg.
7. Martello , S., & Paolo, T. (1990), Knapsack problems.
New York: Wiley .
8. Pacheco, P. (2011), An Introduction to Parallel
Programming. USA: Morgan Kaufmann Publishers.
9. Wittwer, T. (2006), An Introduction to Parallel
Programming. The Netherlands: VSSD.
10. Yamada, T., Kataoka, S., & Watanabe., K. (2002),
Heuristic and exact algorithms for the disjunctively
constrained knapsack problem. Information Processing
Society of Japan Journal, 43: 2864-2870.

