
doi : 10.25007/ajnu.v9n1a532

Academic Journal of Nawroz University (AJNU) 47

Evaluation of Open Source Web Application
Vulnerability Scanners

1 Hilmi S. Abdullah

1 IT Department, Amedi Technical Institute, Duhok Polytechnic University, Kurdistan Region - Iraq

ABSTRACT

Nowadays, web applications are essential part of our lives. Web applications are used by people for information

gathering, communication, e-commerce and variety of other activities. Since they contain valuable and sensitive

information, the attacks against them have increased in order to find vulnerabilities and steal information. For this

reason, it is essential to check web application vulnerabilities to ensure that it is secure. However, checking the

vulnerabilities manually is a tedious and time-consuming job. Therefore, there is an exigent need for web application

vulnerability scanners. In this study, we evaluate two open source web application vulnerability scanners Paros and

OWASP Zed Attack Proxy (OWASP ZAP) by testing them against two vulnerable web applications buggy web

application (bWAPP) and Damn Vulnerable Web Application (DVWA).

Keywords: Web Application Security, Open Web Application Security Project (OWASP), Vulnerability Scanner,

Penetration Testing.

1. Introduction

1 In recent years, web application hacking has increased

dramatically. This is because the importance of the web

applications in our daily lives. Ensuring the security of

web applications and finding their vulnerabilities is

crucial as the majority of information and services on

the internet are provided through web applications,

such as e-commerce, social networking and e-

governance [1, 2]. There are several vulnerabilities

which can result in data breach and shutdown of the

web applications. Open Web Application Security

Project (OWASP) lists the top 10 web applications

security risks and vulnerabilities [3]. However, finding

the vulnerabilities manually is costly, time-consuming

and difficult. Therefore, there is a need for vulnerability

Academic Journal of Nawroz University
(AJNU) Volume 9, No 1 (2020).
Regular research paper : Published 17 Feb 2020
Corresponding author’s e-mail : hilmi.salih@gmail.com
Copyright ©2018 Hilmi S. Abdullah.
This is an open access article distributed under the Creative
Commons Attribution License.

scanners [4].

Web applications vulnerability scanners perform the

checking process automatically. They generally have

three components; first, the web crawler for gathering

website data; second, the attacker component which

sends random and invalid input to the web application;

and the last component is the analyzer which analyzes

the returned data, detects the vulnerabilities and

generates the report. There are various available

scanners both commercial and free [4, 5]. In this study

we test and evaluate two open source web application

vulnerability scanners OWASP Zed Attack

Proxy(OWSAP ZAP) and Paros.

Section II provides the basic concepts of web

application vulnerabilities according to OWASP top 10

list as well as penetration testing methods in addition to

an overview of how web application vulnerability

scanners work. Section III explains the experiment

environment including tested scanners and web

applications in addition to the methodology. Section IV

doi : 10.25007/ajnu.v9n1a532

48 Academic Journal of Nawroz University (AJNU)

presents the results, analysis and assessment of the

tested scanners. Finally, we provide the conclusion in

section V.

2. Background

2.1 Web Application Vulnerabilities

There are variety of vulnerabilities that threatens web

applications. OWASP lists the top 10 application

security risks, following is the list for 2017 [3].

• Injection: Injection happens when untrusted data is

included in a query or a command to trick the

interpreter and get unauthorized access to data [3].

• Broken Authentication: Attackers might steal

identities of other users and compromise

passwords when authentication and session

management isn't perfect [3].

• Sensitive Data Exposure: Attackers might get access

to sensitive data such as financial data if they are

not fully protected [3].

• XML External Entities (XXE): These attacks will

result in denial of service or revealing confidential

data by uploading malicious XML files which are

parsed by poorly configured XML parsers [3].

• Broken Access Control: This vulnerability occurs

when authenticated users’ permissions are not

restricted properly, which enables the attackers to

access sensitive data and change other users’ data

and permissions [3].

• Security Misconfiguration: This security breach

happens when the default configurations are

insecure. Continuous upgrade of servers,

frameworks and applications is necessary [3].

• Cross-Site Scripting (XSS): The XSS vulnerability

enables the attackers to inject and run scripts on the

victim's browser [3].

• Insecure Deserialization: This vulnerability occurs

when the web application doesn't secure the

deserialization process properly which can be used

to perform injection and other attacks [3].

• Using Components with Known Vulnerabilities: Using

vulnerable components such as frameworks and

libraries might enable different attacks that lead to

data loss or server takeover [3].

• Insufficient Logging and Monitoring: Logging of the

events and persistent monitoring to discover any

suspicious events is necessary [3].

2.2 Testing Methods

Penetration testing of the web applications is necessary

prior to their launching and during their operation. The

test can be performed either automatically or manually

[6].

• Automated Testing: Is a technique of using software

tools to scan web application pages to discover

vulnerabilities and generate reports at the end of

the test. There are several tools used for automated

testing such as OWASP ZAP, Burp Suite, Paros,

W3af, etc. [5]

• Manual Testing: Sometimes automated testing is not

enough to assess the vulnerabilities of the web

application and there is a need for human

intervention to perform the attacks as in social

engineering. [5]

2.3 Web Application Vulnerability Scanners

Generally, web application vulnerability scanners

contain crawler, attacker and analyzer components [7].

Firstly, the crawler component is responsible for

finding the reachable pages of the scanned web

application as well as identifying its entry points such

as HTML forms input and the parameters of GET or

POST, etc.

Secondly, the attacker component is responsible for

analyzing the data obtained by the crawler, then

generates values for each vulnerability type and sends

form data to the web server to obtain the response.

Finally, the analyzer component interprets and

doi : 10.25007/ajnu.v9n1a532

Academic Journal of Nawroz University (AJNU) 49

analyzes the response from the web server. Then it

determines if a specific attack was successful. Next, it

generates the report of the scan [7, 8]. Fig. 1 [8] shows

the main stages of penetration testing.

Fig. 1. Main stages of penetration testing

3. EXPERIMENT ENVIRONMENT

To perform the experiment we used the operating

system Kali Linux, web application vulnerability

scanners and vulnerable web applications.

3.1 Vulnerable Web Applications

There are several available vulnerable web applications

developed intentionally for the purpose of learning and

testing. For this experiment, the following two

vulnerable web applications have been selected which

are available online and can be downloaded for free.

• DVWA: Damn Vulnerable Web Application

(DVWA) is a web application used by security

professionals and web developers for testing and

teaching purposes. It is GNU General Public

License version 3; version 1.10 is used for this

experiment. DVWA is PHP/MySQL web

application and contains many vulnerabilities. It

has four different security levels; the lowest level

has been selected for this experiment [4].

• bWAPP: buggy Web Application (bWAPP) is a free

and open source vulnerable web application

designed for testing and teaching purposes. It is

written in PHP and uses MySQL database; version

2.2 is used for this experiment. It has three different

security levels low, medium and high. For this

experiment, the lowest one is used [9].

3.2 Operating System

To perform the test, Kali Linux is used as a virtual

machine in Oracle VirtualBox. Kali Linux is an open

source operating system based on Debian which is used

for penetration testing and digital forensics. For this

experiment version 3.28.0 is used. It contains several

built-in penetration tools such as OWASP ZAP, Paros,

etc. [10, 11].

Fig. 2. Kali Linux

3.3 Open Source Web Application Vulnerability

Scanners

There are various open source tools used for web

application penetration testing. For this experiment

OWASP ZAP and Paros are used, both are built-in Kali

Linux as shown in Fig. 2.

• OWASP ZAP: Is an open source web application

penetration testing tool. It is used by web

developers and security professionals to scan and

find the vulnerabilities of web applications. For this

experiment version 2.7.0 is used [12, 13].

• Paros: Is a web application vulnerability scanner

doi : 10.25007/ajnu.v9n1a532

50 Academic Journal of Nawroz University (AJNU)

which is open source and cross-platform. Paros

Version 3.2.13 is used for this experiment [14, 15].

Table I lists the general characteristics of the tested

open source scanners.

Table 1: General characteristics of the tested scanners

 OWASP ZAP Paros

License ASF2 GPL

Version 2.7.0 3.2.13

Scanning

Method Automated Automated

Status Up to date Outdated

Operating

System Cross-Platform Cross-Platform

3.4 Methodology

We ran an automated scan for both scanners OWASP

ZAP and Paros against the vulnerable web applications

DVWA and bWAPP which were installed on the local

host. For both scanners the default configuration were

selected. Later on, when the scanning process finished, a

report was generated about the detected vulnerabilities

in the tested vulnerable web applications.

4. Result and discussion

To evaluate OWASP ZAP and Paros, we compared the

number and types of the detected vulnerabilities by

each scanner. In addition, their features and ease of use

is assessed.

At the end of the scanning process we analyzed the

reports generated by the tested scanners against the

tested vulnerable web applications. Both scanners

categorize the vulnerabilities per risk levels high,

medium and low. Table II presents the summary of the

detected vulnerabilities in the tested vulnerable web

applications.

Table 2: Detected vulnerabilities summary

Tool

Risk Level

ZAP

(DVWA)

PAROS

(DVWA)

ZAP

(BWAPP)

PAROS

(BWAPP)

High 7 2 7 2

Medium 2 3 6 5

Low 4 0 8 3

Obviously there are several high risk (critical)

vulnerabilities detected in the tested web applications

by both scanners. The majority of these vulnerabilities

were Injection and Cross Site Scripting (XSS) which are

in the OWASP top 10 list for 2017.

OWASP ZAP was able to detect the following critical

vulnerabilities:

• SQL Injection

• Cross Site Scripting (Reflected)

• Cross Site Scripting (Persistent)

• Remote OS Command Injection

• Path Traversal

• External Redirect

• Remote File Inclusion

On the other side, Paros was able to detect the

following critical vulnerabilities only:

• SQL Injection

• SQL Injection Fingerprinting

Overall, the performance of OWASP ZAP was better

than Paros as can be seen in Fig. 3 which makes a

comparison between the tested scanners based on the

number of detected vulnerabilities.

doi : 10.25007/ajnu.v9n1a532

Academic Journal of Nawroz University (AJNU) 51

Fig. 3. Comparison of the detected vulnerabilities

Finally, considering the features of both scanners for

the assessment, OWASP ZAP has more features

compared to Paros as well as it is more user-friendly

and it is regularly updated unlike Paros which is

outdated. Furthermore, OWASP ZAP detected various

types of critical vulnerabilities while Paros was able to

detect only SQL injection.

5. CONCLUSION

Web applications are used by people on everyday life

for various services like e-governance, shopping and

communication. However, the importance of web

applications attracts the attackers for different

purposes. Therefore, there is an increasing need to

secure these web applications by penetration testing

using vulnerability scanners. In this study we tested

two open source scanners and compared their

performance and features. Obviously, OWASP ZAP

performed better, as it detected more vulnerabilities

than Paros with a more diverse range of vulnerabilities.

In addition, OWASP ZAP has more features and is

regularly updated which makes it superior to Paros.

6. References

1. Al-Khurafi, O. & Al-Ahmad. M. (2015). Survey of Web

Application Vulnerability Attacks. 4th International

Conference on Advanced Computer Science Applications

and Technologies (ACSAT), Kuala Lumpur, 2015 (pp.

154-158).

2. Farah T., Shojol M., Hassan M. & Alam D. (2016).

Assessment of vulnerabilities of web applications of

Bangladesh: A case study of XSS & CSRF. Sixth

International Conference on Digital Information and

Communication Technology and its Applications

(DICTAP), Konya, 2016, (pp. 74-78).

3. OWASP. (2018).The Open Web Application Security

Project. Retrieved from https://www.owasp.org/

4. Makino Y. & Klyuev V. (2015). Evaluation of web

vulnerability scanners. Intelligent Data Acquisition and

Advanced Computing Systems:Technology and

Applications (IDAACS), IEEE 8th

InternationalConference vol. 1. IEEE, 2015, (pp. 399–402).

5. Nagpure S. & Kurkure S. (2017). Vulnerability

Assessment and Penetration Testing of Web Application.

International Conference on Computing,

Communication, Control and Automation (ICCUBEA),

Pune, 2017, (pp. 1-6).

6. Srinivasan S. & Sangwan R. (2017). Web App Security: A

Comparison and Categorization of Testing Frameworks.

IEEE Software, vol. 34, no. 1, IEEE, 2017, (pp. 99-102).

7. Suteva N., Zlatkovski D. & Mileva A. (2013). Evaluation

and testing of several free/open source web

vulnerability scanners, 10th Conference for Informatics

and Information Technology, Bitola, Macedonia, 2013.

8. Jiménez R. (2016). Pentesting on web applications using

ethical - hacking. IEEE 36th Central American and

Panama Convention (CONCAPAN XXXVI), San Jose,

2016, (pp. 1-6).

9. BWAPP. (2018). A buggy Web Application. Retrieved

from http://itsecgames.com/

10. Gaddam R. & Nandhini M. (2017). An analysis of various

snort based techniques to detect and prevent intrusions

in networks proposal with code refactoring snort tool in

Kali Linux environment. International Conference on

Inventive Communication and Computational

Technologies (ICICCT), Coimbatore, 2017 (pp. 10-15).

11. Denis M., Zena C. & Hayajneh T. (2016). Penetration

testing: Concepts, attack methods, and defense strategies.

IEEE Long Island Systems, Applications and Technology

Conference (LISAT), Farmingdale, NY, 2016 (pp. 1-6).

0

5

10

15

20

25

DVWA BWAPP

N
o

. o
f

V
u

ln
e

ra
b

ili
ti

e
s

Vulnerable Web Applications

OWASP ZAP

PAROS

doi : 10.25007/ajnu.v9n1a532

52 Academic Journal of Nawroz University (AJNU)

12. Daud N.,Bakar K. & Hasan M. (2014) .A case study on

web application vulnerability scanning tools. Science and

Information Conference, London, 2014 (pp. 595-600).

13. OWASP ZAP. (2018). Zed Attack Proxy Project - OWASP.

Retrieved from

https://www.owasp.org/index.php/OWASP_Zed_Atta

ck_Proxy_Project

14. Engebretson P. (2013). The Basics of Hacking and

Penetration Testing. Waltham, MA: Syngress.

15. Goel J., Asghar M., Kumar V. & Pandey S. (2016).

Ensemble based approach to increase vulnerability

assessment and penetration testing accuracy.

International Conference on Innovation and Challenges

in Cyber Security (ICICCS-INBUSH), Noida, 2016 (pp.

330-335).

