
doi : 10.25007/ajnu.v9n1a550

Academic Journal of Nawroz University (AJNU) 113

Design And Implementation Distributed System Using Java-
RMI Middleware

1Amira B. Sallow

1 Department of Computer Science, College of Computer & I.T, Nawroz University, Iraq

ABSTRACT

Networks of computers are everywhere. The Internet is one, as are the many networks of which it is composed.

Mobile phone networks, corporate networks, factory networks, campus networks, home networks, in-car networks,

both separately and in combination, all share the essential characteristics that make them relevant subjects for study

under the heading distributed systems. Most organizations use a wide variety of applications for the smooth

functioning of their businesses that includes homogenous as well as heterogeneous systems. Heterogeneous systems

run on different platforms, use different technologies or sometimes even run on a different network architecture

altogether. The essential role of Middleware is to provide a simple environment to manage complex, heterogeneous

and distributed infrastructures.

The main goal of this paper is to use Java-RMI middleware to build a distributed system for scheduling the threads.

The system comprises two separate programs, a server, and a client. A typical server program creates some remote

objects, makes references to these objects accessible, and waits for clients to invoke methods on these objects. A

typical client program obtains a remote reference to one or more remote objects on a server and then invokes

methods on them.

 Keywords: Distributed system, Java-RMI, Middleware, Heterogeneous systems.

1. Introduction

1 The evolution of Internet-based computing from local

area networks (LANs), after transitioning from

unconnected computers to networks, is the hallmark of

all business models today. The technological backbone

of this evolution is the middleware. First connecting,

then communicating, and finally seamlessly integrating

the distributed systems to external sites, customers,

suppliers, and trading partners across the world is the

real challenge for the business world. It doesn’t stop

there. Also required is the talking between client and

server over heterogeneous networks, systems

architectures, databases, and other operating

environments. All this is facilitated by the middleware

Academic Journal of Nawroz University
(AJNU) Volume 9, No 1 (2020).
Regular research paper : Published 19 Feb 2020
Corresponding author’s e-mail : amira.bibo@nawroz.edu.krd
Copyright ©2018 Amira B. Sallow.
This is an open access article distributed under the Creative
Commons Attribution License.

technologies that offer undercover functions to

seamlessly integrate various applications with

information instantly to make it accessible across

diverse architectures, protocols, and networks.

Automation of back-end and front-end operations of

the business is also affected by the middleware. [1]

the rest of this article is organized as follows. Section 2,

related works. Section 3, mentions middleware. Section

4, explains positioning middleware in detail, Section 5

explains categories of middleware. Section 6 explains

RMI and Java. Section 7 illustrates distributed RMI

system design. Section 8 presents the conclusion.

2. Related Works

Weonjoon, Hyoungyuk and Park in [2] in 2001

presented object models and service models such

without lots of considerations about data transmissions

between as an I/O object, a control object, a

broadcasting service and an event service for a

doi : 10.25007/ajnu.v9n1a550

114 Academic Journal of Nawroz University (AJNU)

distributed control system (DCS), and three types of

distributed control systems based on CORBA, DCOM,

and Tspace, are designed and implemented using the

suggested object models and service models.

Yves, Frederic and Luc [3] in 2004 reported the

development of the Concerto platform, which is

dedicated to supporting the deployment of resource-

aware parallel Java components on heterogeneous

distributed platforms, such as pools of workstations in

labs or offices. Their work aimed at proposing a basic

model of a parallel Java component, together with

mechanisms and tools for managing the deployment of

such a component on a distributed platform. The

Concerto platform was designed in order to allow the

deployment of parallel components on a distributed

platform.

Christopher et al. [4] in 2013 the use of Java RMI on

mobile devices for peer-to-peer computing is presented.

Detailed design and implementation of the artifact for

peer-to-peer network using Java 2 platform

programming language were carried out and java

distributed programs have been developed with the

same semantics and syntax used for non-distributed

programs through mapping of java classes and objects

to work in a distributed (multiple JVM) computing

environment.

Andre et al. [5] in 2018 presented Java Ca&La (JCL), a

distributed-shared-memory and task-oriented

lightweight middleware for the Java community that

separates business logic from distribution issues during

the development process and incorporates several

requirements that were presented separately in the

GPDC middleware literature over the last few decades.

JCL allows building distributed or parallel applications

with only a few portable API calls, thus reducing the

integration problems. Finally, it also runs on different

platforms, including small single-board computers.

3. Middleware

The term middleware applies to a software layer that

provides a programming abstraction as well as masking

the heterogeneity of the underlying networks,

hardware, operating systems and programming

languages. The Common Object Request Broker

Architecture (CORBA), And Java Remote Method

Invocation (RMI) are middleware examples. Most

middleware is implemented over the Internet protocols,

which themselves mask the differences of the

underlying networks, but all middleware deals with the

differences in operating systems and hardware [6].

Middleware binds discrete applications, such as Web-

based applications and older mainframe-based systems,

to allow companies to hook up with the latest systems

and developments that drive new applications without

making their investments in legacy systems

unyielding.[1]

4. Positioning Middleware

Many distributed applications make direct use of the

programming interface offered by network operating

systems. For example, communication is often

expressed through operations on sockets, which allow

processes on different machines to pass each other

messages. Also, applications often make use of

interfaces to the local file system. The problem with this

approach is that distribution is hardly transparent. A

solution is to place an additional layer of software

between applications and the network operating

system, offering a higher level of abstraction. Such a

layer is accordingly called middleware. It sits in the

middle between applications and the network

operating system as shown in Figure (1). [6].

In addition to solving the problems of heterogeneity,

middleware provides a uniform computational model

for use by the programmers of servers and distributed

applications. Possible models include remote object

doi : 10.25007/ajnu.v9n1a550

Academic Journal of Nawroz University (AJNU) 115

invocation, remote event notification, remote SQL

access, and distributed transaction processing. For

example, CORBA provides remote object invocation,

which allows an object in a program running on one

computer to invoke a method of an object in a program

running on another computer. Its implementation hides

the fact that messages are passed over a network to

send the invocation request and its reply [6].

Figure 1. The general structure of a distributed system as

middleware [6].

5. Categories of Middleware

There are a small number of different kinds of

middleware that have been developed. These vary in

terms of the programming abstractions they provide

and the kinds of heterogeneity they provide beyond

network and hardware [7].

5.1 Distributed Tuples

A distributed relational database offers the abstraction

of distributed tuples, and are the most widely deployed

kind of middleware today. Its Structured Query

Language (SQL) allows programmers to manipulate

sets of these tuples (a database) in an English-like

language yet with intuitive semantics and rigorous

mathematical foundations based on set theory and

predicate calculus.

Distributed relational databases also offer the

abstraction of a transaction. Distributed relational

database products typically offer heterogeneity across

programming languages, but most do not offer much if

any, heterogeneity across vendor implementations.

Transaction Processing Monitors (TPMs) are commonly

used for end-to-end resource management of client

queries, especially server-side process management and

managing multi-database transactions [7].

Linda is a framework offering a distributed tuple

abstraction called Tuple Space (TS). Linda’s API

provides associative access to TS, but without any

relational semantics. Linda offers spatial decoupling by

allowing depositing and withdrawing processes to be

unaware of each other’s identities. It offers temporal

decoupling by allowing them to have non-overlapping

lifetimes [7].

Jini is a Java framework for intelligent devices,

especially in the home. Jini is built on top of

JavaSpaces, which is very closely related to Linda’s TS

[8].

5.2 Remote Procedure Call

Remote procedure call middleware extends the

procedure call interface familiar to virtually all

programmers to offer the abstraction of being able to

invoke a procedure whose body is across a network.

RPC systems are usually synchronous, and thus offer

no potential for parallelism without using multiple

threads, and they typically have limited exception

handling facilities [7][9].

5.3 Message-Oriented Middleware

Message-Oriented Middleware (MOM) provides the

abstraction of a message queue that can be accessed

across a network. It is a generalization of the well-

known operating system that construct the mailbox. It

is very flexible in how it can be configured with the

topology of programs that deposit and withdraw

messages from a given queue. Many MOM products

offer queues with persistence, replication, or real-time

performance. MOM offers the same kind of spatial and

doi : 10.25007/ajnu.v9n1a550

116 Academic Journal of Nawroz University (AJNU)

temporal decoupling that Linda does [7].

5.4 Distributed Object Middleware

Distributed object middleware provides the abstraction

of an object that is remote yet whose methods can be

invoked just like those of an object in the same address

space as the caller. Distributed objects make all the

software engineering benefits of object-oriented

techniques: encapsulation, inheritance, and

polymorphism [10].

The Common Object Request Broker Architecture

(CORBA) is a standard for distributed object

computing. It is part of the Object Management

Architecture (OMA), developed by the Object

Management Group (OMG), and is the broadest

distributed object middleware available in terms of

scope. CORBA offers heterogeneity across

programming language and vendor implementations.

CORBA (and the OMA) is considered by most experts

to be the most advanced kind of middleware

commercially available and the most faithful to classical

object-oriented programming principles. Its standards

are publicly available and well defined. DCOM is a

distributed object technology from Microsoft that

evolved from its Object Linking and Embedding (OLE)

and Component Object Model (COM). DCOM provides

heterogeneity across language but not across the

operating system or tool vendor. COM+ is the next-

generation DCOM that greatly simplifies the

programming of DCOM. Java has a facility called

Remote Method Invocation (RMI) that is similar to the

distributed object abstraction of CORBA and DCOM.

RMI provides heterogeneity across the operating

system and Java vendor [10][11].

6. RMI and Java

The main components of RMI can be considered as

follows:

• The programming model, where objects that can

be accessed remotely are identified via a remote

interface,

• The implementation model, which provides the

transport mechanisms whereby one Java platform

can talk to another to request access to its objects,

and

• The development tools (e.g., rmic or its dynamic

counterpart), which take server objects and

generate the proxies required to facilitate the

communication.

The key to developing RMI-based systems is defining

the interfaces to remote objects. RMI requires that all

objects that are to provide a remote interface must

indicate so by extending the pre-defined interface

Remote. Each method defined in an interface extending

Remote must declare that it "throws RemoteException".

Thus, one of the key design decisions of RMI is that

distribution is not completely transparent to the

programmer. The location of the remote objects may be

transparent, but the fact that remote access may occur is

not transparent [12].

7. Distributed RMI System design

Java-RMI is a Java-specific middleware that allows

client Java programs to invoke server Java objects as if

they were local. The Java Remote Method Invocation is

a java API to perform the object-oriented equivalent of

remote procedure calls. RMI applications often

comprise two separate programs, a server, and a client.

A typical server program creates some remote objects,

makes references to these objects accessible, and waits

for clients to invoke methods on these objects. A typical

client program obtains a remote reference to one or

more remote objects on a server and then invokes

methods on them. RMI provides the mechanism by

which the server and the client communicate and pass

information back and forth. Such an application is

sometimes referred to as a distributed object

doi : 10.25007/ajnu.v9n1a550

Academic Journal of Nawroz University (AJNU) 117

application figure (2). An RMI system must be

composed of the following parts:

• An interface definition of the remote services;

• The implementations of the remote services;

• Stub and skeleton files;

• A server to host the remote services;

• An RMI Naming service

• A client program that uses remote services.

Marshalls Invocation

and sends data over

the skeleton

Demarshalls data and

Invokes method on

server

Invokes method that

Server implements

Stub

N e t w o r k

Skeleton

Client Server

figure 2: A basic RMI call with a stub and skeleton

The RMI Distributed system was designed through

several design steps Figure (3) summarize RMI system

design steps, and they are:

Create Interface class

(Define methods prototypes to be invoked remotely)

Create the Remote Object (Server) as an Interface

Implementation class

Create Stub and skeleton using RMI compiler

Create Scheduling Server that Define all Server

methods as throwing a RemoteException

RMI Naming using Naming.rebind method

Create Client Class that fetch the reference to the

remote object using the lookup() method

Start

End

figure 3: RMI design steps.

Step One: Create Interface class

This interface will define the methods that will be

available in a class for implementation. The interface is

Scheduler.java, It contains only methods for scheduling

the threads. The method throws a

java.rmi.RemoteException (this exception is a

superclass of all RMI Exception that can be thrown) as

in Figure (4).

figure 4: Scheduler Interface java class.

Step Two: Create Remote Object (Server) that

implements Scheduler interface:

The implementation is found in SchedulerRemote.java

class. This class must extend

import java.rmi.*;

public interface Scheduler extends Remote
{
public int[] Schedule(int[] x,int[] y)throws RemoteException;
}

doi : 10.25007/ajnu.v9n1a550

118 Academic Journal of Nawroz University (AJNU)

java.rmi.UnicastRemoteObject and implement the

schedule interface that has been created in step one as

in Figure (5).

figure 5: SchedulerRemote.java interface

implementation java class.

Step Three: Create Stub and skeleton files

After writing and compiling the servers, there is a need

to generate stubs and skeletons. It simply needs to

invoke the RMI compiler (rmic). Here, for example, we

use rmic instruction to generate stubs and skeletons for

the Distributed system figure (6):

rmic SchedulerRemote: This instruction will generate

two files:

• SchedulerRemote_Skel.Class

• SchedulerRemote_Stub.Class

Figure 6: Stub and skeleton files

rmic works by generating Java source code for the stubs

and skeletons and then compiling those Java files. The

keep flag simply tells rmic to save the source code to

java files, rmic takes a class file and creates a pair of

companion files, a stub, and a skeleton, in the same

package as the .class file. There’s an interesting subtlety

here rmic requires the actual implementation's class

files. It seems, at first glance, that the compiled interface

files might suffice. However, the designers of RMI

decided that the stubs and skeletons should satisfy the

following two requirements:

• There should be a unique stub/skeleton pair per

server, so we can do things such as register the

server in the naming service.

• The stubs and skeletons should implement all the

remote interfaces that the server does so that

casting when you retrieve objects from the naming

service is a local operation.

Step Four: Create a server

The server class is "SchedulerServer.java". It is

responsible for two things:

a) Installs a RMISecurityManager.

b) Creates an instance of " SchedulerRemote"

class, and give it the name

"SchedulerRemoteInstance".

Here "SchedulerRemoteInstance" object takes care of

registering the object with the RMI Registry after this

server run, the object will be available to the remote

client this done using the Naming.rebind() method.

figure 7: SchedulerServer java class.

Step Five: RMI Naming service

In RMI, the default naming service that ships with Sun

import java.rmi.server.*;
import java.math.*;

public class SchedulerRemote extends UnicastRemoteObject
implements Scheduler
{
SchedulerRemote()throws RemoteException
{ super(); }

public int[] Schedule(int[] x,int[] y)
{ ……
……}
}

if (System.getSecurityManager() == null)

System.setSecurityManager(new RMISecurityManager());

try {

Scheduler s=new SchedulerRemote();

// export server MyServer to RMI Registry at port NNNN

//Naming.rebind(“//Hostname:NNNN/MyServer”,server);

Naming.rebind("rmi://localhost:5000/MyServer",s);

}

catch(Exception e)

{System.out.println(e);}

doi : 10.25007/ajnu.v9n1a550

Academic Journal of Nawroz University (AJNU) 119

Microsystem's version of the JDK is called the RMI

registry as shown in figure (8). Messages are sent to the

registry via static methods that are defined in the

java.rmi.Naming class.

figure 8: RMI registry architecture diagram

Servers are bound into the registry using a string. More

generally, names are formatted according to the

following pattern of these three pieces of information,

host-name and port-number describe the registry while

human-readable-name is server-specific.

//host-name: port-number/human-readable-name

That is, host-name and port-number are used to find a

running instance of the RMI registry (which should be

listening on port-number of host-name). Human-

readable-name, on the other hand, is the name used

internally, by the registry, to identify the server being

registered. Both host-name and port-number have

default values. host-name defaults to "localhost" and

port-number defaults to 1099.

Step six: Create a Client Class

The client is " SchedulerClient.java". The client first

installs a new RMISecurityManager, then uses the static

method Naming.lookup() to get the reference to the

remote object. Note that the client is using the schedule

interface to hold the reference and make method calls

creating an interface which must be done before trying

to build the client, or a "class is not found" occur.

8. Conclusion

In this paper, a Java-RMI middleware has used to build

a distributed system that comprises two separate

programs, a server, and a client. A typical server

program creates some remote objects, makes references

to these objects accessible, and waits for clients to

invoke methods on these objects. A typical client

program obtains a remote reference to one or more

remote objects on a server and then invokes methods

on them. The following conclusions can be marked

• Building the system with an RMI middleware

minimizing the complexity of distributed

programming.

• Building the system with an RMI middleware

introduced A high degree of transparency.

• RMI middleware is easy to develop and use.

9. References

1. Qiyang Chen, James Yao, and Rubin Xing, 2006,”

Middleware Components for E-commerce Infrastructure:

An Analytical Review”, Department of Management and

Information Systems Montclair State University, Upper

Montclair, NJ, USA.

2. Weonjoon Kang, Hyoungyuk Kim and Hong Seong Park,

"Design and performance analysis of middleware-based

distributed control systems", ETFA 2001. 8th

International Conference on Emerging Technologies and

Factory Automation.

3. Y. Maheo, F. Guidec and L. Courtrai, "Middleware

support for the deployment of resource-aware parallel

Java components on heterogeneous distributed

platforms", Proceedings. 30th Euromicro Conference,

2004., 2004.

4. Christopher I. Eke et al.,” Use of Java RMI on Mobile

Devices for Peer to Peer Computing”, Department of

Computer Science, Federal University, Lafia, Nigeria,

iiste, vol. 3, no. 5, 2013.

5. [6]A. Almeida et al., "A general-purpose distributed

computing Java middleware", Concurrency and

Computation: Practice and Experience, vol. 31, no. 7, p.

e4967, 2018.

6. Andrew S.Tanenbaum, Maarten Van Steen, 2002,

Local Connection

Printer
ServerClient

Registry

N
e
tw

o
rk

Network

N
e
tw

o
rk

doi : 10.25007/ajnu.v9n1a550

120 Academic Journal of Nawroz University (AJNU)

“Distributed Systems principles and diagram”, First

Edition, Netherlands, Pearson Education, Inc., publishing

as Addison-Wesley.

7. David E. Bakken, 2001, " Middleware", School of

Electrical Engineering and Computer Science,

Washington State University, Pullman, USA.

8. Bill McCarty , Luke Cassady-Dorion, 1999, “Java

Distributed Objects” Sams, USA.

9. Richard E. Schantz , Douglas C.

Schmidt,2001,”Middleware for Distributed Systems

Evolving the Common Structure for Network-centric

Applications”, Electrical Engineering & Computer

Science Dept, Cambridge University, USA.

10. Richard E. Schantz , Douglas C.

Schmidt,2003,”Middleware for Distributed Systems” ,

Electrical Engineering & Computer Science Dept,

Cambridge University, USA.

11. Johann Schlichter,2002,"Distributed Applications",

Institut für Informatik TU München, Munich, Germany.

12. D. Abdullah and A. Sallow, "EOE-DRTSA: End-to-End

Distributed Real-time System Scheduling Algorithm",

IJCSI International Journal of Computer Science Issues, vol.

10, no. 2, pp. 407-413, 2013.

