
40 Academic Journal of Nawroz University (AJNU)

Original article | doi: 10.25007/ajnu.v6n3a76

Partial Image Encryption using RC4 Stream
Cipher Approach and Embedded in an

Image

Renas R. Asaad, Saman M. Abdulrahman and Ahmad A. Hani

Department of Computer Science and I.T, College of Computer Science, Nawroz University,
Duhok, Kurdistan Region – F.R. Iraq

ABSTRACT

Cryptography is a science concerned with securing data transmission. By applying cryptographic operations to data,
readable information is converted into unreadable data. Currently, security is of great importance. Data transferred over
the internet must have some form of encryption. Different forms of multimedia contents are moved over the internet.
This paper focuses on image encryption. It tries to amend the multiple selective region image cryptography techniques
using a RC4 stream cipher. This approach is derived from the standard RC4 algorithm. The proposed method can highly
improve security for images transferred over the internet.

KEY WORDS: RC4 Cryptography, Stream Cipher, Image Cryptography, Partial Image Encryption, Symmetric Cipher.

1. INTRODUCTION

This paper is concerned with an encryption software that
encrypts parts of an image and embeds them into other
images for extra security. Bitmap extension images are
used in the process since they are large in size and it is easy
to hide data in them. The main advantage of this method
is that an attacker must first find the hidden image data
inside the transferred image and then decrypt it (Dawson
and Nielsen, 1996).
In this article, the following encryption techniques are used.
1. RC4
2. Alternating step generator
3. Shrinking generator.

2. METHODOLOGY OF RC4 ALGORITHM

Usually, image encryption begins with taking an image
and applying encryption algorithms to it, producing the
encrypted image. However, regarding selective image

encryption, first parts or regions of the selected image are
chosen so that the encryption algorithm is applied to it,
i.e., the algorithm only works on parts of input and not the
whole image. Afterward, the selected parts are encrypted
while the rest of the image is retained.

Regarding decryption, the encrypted image is taken and
the decryption algorithm is applied which results in the
original image (Fluhrer et al., 2001).

2.1. Encryption Keys

Encrypting data usually involve taking characters of data
and comparing them against the encryption key. Keys are
responsible for determining which characters of data are
encoded into which characters. Modern encryption methods
rely on complex and large keys for higher security. Encryption
keys fall into two categories, private and public keys.

2.2. Private Key Encryption

Private or symmetrical key encryption technology is where
both the sender and receiver have the same key, which is used

 to encrypt and decrypt all messages. Hence, it is difficult to

Academic Journal of Nawroz University (AJNU)
Volume 6, No 3(2017), 6 pages
Received 01 May 2017; Accepted 01 July 2017
Regular research paper: Published 18 July 2017
Corresponding author’s e-mail: renas.rekany@nawroz.edu.krd
Copyright ©2017 Renas R. Asaad, Saman M. Abdulrahman,
Ahmad A. Hani. This is an open-access article distributed under
the Creative Commons Attribution License.

establish the communication for the first time because the key
must be transmitted safely for other messages to be secure.
Thus, public keys are used (Fluhrer et al., 2001).

2.3. Public Key Encryption

Public or asymmetrical key encryption also known as
a Diffie-Hellman algorithm involves using two keys to

mailto:renas.rekany@nawroz.edu.krd

Academic Journal of Nawroz University (AJNU) 41

Original article | doi: 10.25007/ajnu.v6n3a76

encrypt and decrypt the data, a public and a private key.
The sender encrypts the messages using the public key,
which are then decrypted on the receiver’s end using the
receivers private key. This is a one-way communication.
The same principal can be used by the receiver to return
messages to the original sender. Digital certificates are
used in case the sender does not have a public key, which
are responsible for verifying the identity of the sender.
Fig. 1 shows public key - encrypted communication
between two units, User X and User Y (Fluhrer et al., 2001;
Knudsen and Eschen, 1998).

2.4. Stream Cipher Structure

Stream ciphers are design to encrypt one bit or units
larger than a byte at a time. However, they are used to
encipher one byte of data at a time. Fig. 2 is a representative
diagram of stream cipher structure. In the structure, a key
if used as input to a pseudorandom bit generator, which
results in a stream of 8-bits that are apparently random.
The resulted pseudorandom stream is produced by an
algorithm which is unpredictable without the key input.
The resultant key stream is combined with the plaintext
one byte at a time using the Exclusive-OR operation. For
example, if the next byte generated by the generator is
01101100 and the next plaintext byte is 11001100, then the
resulting ciphertext byte is:

11001100 plaintext
01101100 key stream



10100000 cipher text
Decryption requires the use of the same pseudorandom

sequence:
10100000 cipher text
01101100 key stream



11001100 plaintext
There are imperative design considerations which must

be taken to design a stream cipher:
1. Since the pseudorandom bit stream generator relies on

a function that produces a finite stream of numbers, it
ultimately repeats the bit stream. Thus, the generator
must have a set of results. The larger the repeat period,
the harder it is for cryptanalysis.

2. The generator should produce bitstreams that resemble
a true random stream. There should be an approximate
equal number of repetitions of bits and bits reams,
i.e., the number of 0’s and 1’s should be approximately
equal in a stream. The more randomized a keystream,
the more difficult it is for cryptanalysis.

3. The key input to the pseudorandom stream generator
should be long enough to protect against brute
force attacks. Since the generator solely relies on the
key input to produce a stream of bits. Key size is
recommended at 128 bit currently.

Fig 1: Methodology of RC4 algorithm.

Fig 2: Stream cipher diagram.

Fig 3: RC4 stream generator.

A stream cipher with a well-designed pseudorandom

number generator can be as secure as a block cipher
with a similar key length. Moreover, stream ciphers are
usually faster and much shorter regarding code compared
to block ciphers. The RC4 algorithm can be as short as a
few lines of code. Table 1 shows the comparison of the
execution time of RC4 against three popular symmetric

42 Academic Journal of Nawroz University (AJNU)

Original article | doi: 10.25007/ajnu.v6n3a76

Fig 6: Encryption RC$.

Fig 4: Shrinking generator.

Fig 7: Cropping partial image.

Fig 5: Alternating step generator.

block ciphers. The disadvantage of stream ciphers is
that if two plaintexts are encrypted with the same key,
then cryptanalysis is often easy. However, it is possible
to reuse keys in block ciphers. In a stream cipher, if two
ciphertexts enciphered with the same key are XORed
together, then the result is a XOR of the original plaintexts.
Hence, if the ciphertexts were originally text information
such as strings, numbers, credit card information, or other
known property streams, then cryptanalysis can be easily
successful. Stream ciphers are better suited for application
that encipher a stream of data over a communication
channel or a web/browser link. However, block ciphers
can more appropriate with applications that encrypt
a block of data; these can be e-mail, file transfer, and
database applications. That being said, both ciphers can
be virtually used in any type of application (Knudsen
and Eschen, 1998).

3. THE RC4 ALGORITHM

In 1987, Ron Rivest design RC4 for RSA security. RC4
is a stream cipher with byte-oriented operations and a
flexible key size. The algorithm is mainly based on random
permutation. Studies show that the algorithm has an
overwhelming period of probably >10100. An output byte
requires eight to sixteen machine operations. RSA held
the RC4 algorithm as a trade secret until September 1994,
when the algorithm was anonymously published on the
internet on Cypherpunks anonymous remailers list. RC4
is quite simple and straightforward to explain. A key of
variable length of 1 to 256 bytes can be used to initialize a
256-byte state vector S, with elements S[0], S[1],…, S[255].
S always contains a permutation of all 8-bit numbers from
0 to 255. A byte k is produced from S by selecting one of
the 255 entries in a systematic fashion. When each K value
is generated, the entries in S are permutated once again
(Kumar, 1997; Mantin and Shamir, 2001).

3.1. Steps of RC4 Stream Cipher

The RC4 algorithm steps of encryption:
1. Provide the data to be encrypted and select the

encryption key.

TABLE 1
Speed comparisons of symmetric ciphers on a Pentium II

Cipher Key length Speed (Mbps)
DES 56 9
3DES 168 3
RC2 Variable 0.9
RC4 Variable 45

Academic Journal of Nawroz University (AJNU) 43

Original article | doi: 10.25007/ajnu.v6n3a76

2. Generate two string arrays.
3. Array one should be instantiated with numbers 0-255.
4. The second array should be instantiated with the

encryption key.
5. Array one should be randomized using the key array.
6. Randomize array one with regards to itself to produce

the final key stream.
7. The final key stream is XORed with the data to produce

the ciphered text.
Summarization of RC4 algorithm features:

1. Symmetric stream cipher
2. Various key size
3. Quickly in software
4. For secure communications can be used as in the

encryption of traffic to secure websites using the SSL
protocol.

3.2. Initialization of S

First, S is initialized with values from 0 to 255 in
ascending order, S[0], S[1],…, S[255]. Furthermore, vector
T is created temporarily. The vector K (key vector) should
also be 256 bytes, if so K is transferred to T else if key
length equals keylen of bytes, then K is transferred to T
and repeated as required to fill vector T. The operation
described can be summarized as blow:

//Initialization
for m = 0 to 255 do
S[m] = m;

t[m] = k[m mod keylen];
Next, S is produced from the initial permutation of T.

This operation starts with S[0] through to S[255], and for
each S[m], swapping S[m] with another byte in S according
to a scheme dictated by T[m]:

//Initial Permutation of S
n = 0;

for m = 0 to 255 do
n = (n + S[m] + r[m]) mod 256;
Swap (S[m], S[n]);
Permutation is the only operation effecting S since S is

only swapped. S retains all its values 0-255 out of order.

3.3. Stream Generation

After producing the S vector for the first time, the input
key is no longer used. The stream generation afterward
relies on going through S[0] to s[255], swapping each S[i]
with another byte of S dictated by the current configuration
scheme of S. The process restarts at S[0] after reaching the
end of S s[255] (Mister and Tavares, 1998).

//Stream Generation
m, n = 0;
while (true)
m = (m + 1) mod 256;
n = (n + S[m]) mod 256;
Swap (S[m], S[n]);
t = (S[m] + S[n]) mod 256;
k = S[t];

The Fig. 3 is showing the encryption process involves
XORing the value of K with the next byte of plaintext. While
the decryption involves XORing the value of K with the
next byte of ciphertext.

3.4. Strength of RC4

There has been great research on the weaknesses of RC4
and how it can be attacked [e.g., [KNUD98], [MIST98],
[FLUH00], and [MANT01]). [FLUH01] reported a tangible
weakness in it’s report. It is demonstrated in the paper
that the WEP 802.11 security protocol in vulnerable to a
particular attack approach. However, the issue is not in
the RC4 algorithm itself but in the method in which keys
are produces to be used as input for the algorithm. This
approach has not been successful against other applications
that use the RC4 algorithm, and thus the weakness in the
WEP protocol can be rectified by modifying the method
used to generate keys for input. This issue indicated that
the difficulty relies in designing systems that include
cryptographic algorithms and protocols that make efficient
use of these algorithms (Mister and Tavares, 1998; Rescorla,
2001).

Fig. 4 explain the process of random byte streams that
are used by the shrinking generator and the alternating
step generator, which are most suitable for hardware
implementation. An LFSR R1 controller is used to govern
the second LFSR R2 controller output. The steps below are
repeated to produce a desired key length:
1. R1 and R2 are clocked.
2. R2 output bit is used to form part of the key if R1 output

bit is 1.
3. R2 output bit is discarded and clocked again if the R1

output bit is 0.
Finally, the key stream and the plain text stream are

XORed to produce the final cipher text. As shown in Fig. 5.
Alternative step generator process:
1. Register 1 is clocked.
2. When R1 output is 1, then R2 is clocked, and R3’s

previous bit is repeated.
3. When R1 output is 0, then R3 is clocked, and R2’s

previous bit is repeated.
Then, key length equals the plain text stream length,

and the key is XORed with the plain text to produce the
ciphered text (Rescorla, 2001; Pieprzyk and Pieprzyk, 2003).

The result is final cipher text: Values are provided to
the edit boxes initial state and key in a “1,1,0,0,1” format.
Hence, LFSR 1, LFSR 2, and LFSR 3 key and function should
have equal parameter length. Primarily, user input is taken
in the form of a CString object for each polynomial and
key. If the shrinking generator is enabled, then the third
LFSR input is disabled using tahir1.Setreadonly (TRUE);
as follows:

if(SG.GetCheck()==TRUE)
{
ASG=FALSE;
ASG1.SetCheck(BST_UNCHECKED);
tahir1.SetReadOnly(TRUE);

44 Academic Journal of Nawroz University (AJNU)

Original article | doi: 10.25007/ajnu.v6n3a76

tahir2.SetReadOnly(TRUE);
}
else
{
ASG=TRUE;
ASG1.SetCheck(BST_CHECKED);
tahir1.SetReadOnly(FALSE);
tahir2.SetReadOnly(FALSE);
}
if(ASG==TRUE)
EncryptAsg();
else
EncryptSg();
UpdateData(FALSE)

3.5. Encryption and Decryption
Regarding encryption, first the header in extracted and

stored in the file. Afterward, the remaining portion of the
string is transferred to the encryption or decryption function.
The encryption returns the cipher text from the provided
input and stores it in the file attached to the 70 bytes
previously stored (Asaad, Renas R., Saman M.
Abdulrahman, and Ahmed A. Hani,2017). As shown in
Fig. 6.
3.6. Image Embedding

To secure the data inside an image, the enciphered data
are embedded in a bitmap image. There should not be
any distortion of data if the image size is efficiently large.
The image header is saved first in the encryption process
because if the header is interrupted, then the image will be
invisible (Allam, 2005; Glover and Grant, 2004).

UpdateData(true);
CString ct=””,tahir=””;
char *temp2;
char *temp1;
char *temp3;
int control=800;
int fsize=0;
CFile myfile;
if(m_pt==”” && FileNamex!=””)
{
CFile mfile;
mfile.Open(FileNamex,CFile:: modeRead);
int fs=mfile.GetLength();
temp3=new char[fs];
mfile.Read(temp3,fs);
mfile.Close();
for(int d=0;d<fs;d++)
m_pt+=temp3[d];
}
if(m_pt!=”” && m_k !=””)
{
int ctl,f=0,s=0;
if(FileName!=””)
{
myfile.Open(FileName,CFile:: modeRead);
fsize=myfile.GetLength();
temp1=new char[fsize];

myfile.Read(temp1,fsize);
myfile.Close();
}
else
AfxMessageBox(“NO IMAGE “);
ct=Encrypt(m_pt,m_k);
ctl=ct.GetLength();
temp2=new char[fsize+ctl];
for(int i =0;i<401;i++)
{
temp2[i]=temp1[i];
}
tahir.Format(“%d”,ctl);
temp2[401]=tahir.GetLength();
f=(fsize-1000)/ctl;
for(int a=0;a<tahir.GetLength();a++)
temp2[a+402]=tahir[a];
for(int k=0;k<ctl&&control<fsize;k++)
{
for(s=0;s<f;s++)
{
control++;
temp2[control]=temp1[control];
}
control++;
temp2[control]=ct[k];
}
for(int p=control;p<fsize;p++)
temp2[p]=temp1[p];
SaveName=myfile.GetFileName();
SaveName=”Embeded.bmp”+SaveName;
myfile.Open(SaveName,CFile:: modeCreate| CFile::
modeWrite);
myfile.Write(temp2,fsize);
myfile.Close();
AfxMessageBox(“Embeding Completed”);
}
else {
AfxMessageBox(“Enter Plain text or File Name and Key”);
}
“Retrieving the Data back “
UpdateData(true);
CString ct=””,tahir=””,strz=””,str;
int ctl;
CFile myfile;
myfile.Open(FileName,CFile:: modeRead);
int fsize=myfile.GetLength();
int control=800,f=0;
char *temp1=new char[fsize+1];
char *temp2=new char[fsize+1];
myfile.Read(temp1,fsize);
myfile.Close();
int t,r, q,s=0;
t=temp1[401];
for(q=0;q<t;q++)
tahir+=temp1[402+q];
r=8-t;
for(int z=0;z<r;z++)

Academic Journal of Nawroz University (AJNU) 45

Original article | doi: 10.25007/ajnu.v6n3a76

strz+=’0’;
str=strz+tahir;
ctl=atoi(str.GetBuffer(str.GetLength()));
tahir.Format(“%d”,ctl);
ctl=atoi(tahir.GetBuffer(tahir.GetLength()));
f=(fsize-1000)/ctl;
for(int k=0;k<ctl&& control<fsize;k++)
{
for(s=0;s<f;s++)
{
control++;
}
control++;
temp2[k]=temp1[control];
}
for(int a=0;a<ctl;a++)
ct+=temp2[a];
m_pt=Encrypt(ct,m_k);
UpdateData(FALSE);
AfxMessageBox(“ Retrieval Completed “);

4. RESULT AND CONCLUSION

In conclusion, this paper deals with the idea of partial
image encryption. Based on the RC4 algorithm, an
enhanced algorithm is introduced to further secure the
algorithm against attacks. The enhanced algorithm is
faster and more attack proves when compared to the
standard RC4 algorithm when applied to selective image
encryption.

This is achieved after detailed analysis of the enhanced
RC4 algorithm. The analysis result confirms that the
speed and security of the enhanced algorithm are greater
than DES, Triple DES, and RC2 algorithms. As the time
required to crack an image encrypted using this algorithm
is significantly greater by hardware, let alone software
attacks may not be able to break it. The Fig. 7 is the result
of the selecting partial image to encrypt it.

REFERENCES

Allam, M. (2005). Data Encryption Performance Based on Blowfish. In:
47th International Symposium ELMAR-2005 Focused on Multimedia

Systems and Applications. Zadar, Croatia, 08-10 June 2005. p131-134.
Dawson, E & Nielsen, L. (1996). Automated cryptanalysis of XOR plaintext

strings. Cryptologia, 20, 4.
Fluhrer, S., Mantin, I & Shamir, A. (2001). Weakness in the key scheduling

algorithm of RC4. In: Proceedings, Workshop in Selected Areas of
Cryptography.

Glover, P & Grant, M. (2004). Digital Communications. 2nd ed. Harlow:
Person Education.

Knudsen, L & Eschen, D.J. (1998). Analysis method for alleged RC4. In:
Proceedings, ASIACRYPT’ 98.

Kumar, I. (1997). Cryptology. Laguna Hills, CA: Aegean Park Press.
Mantin, I & Shamir, A. (2001). A practical attack on broadcast RC4. In:

Proceedings, Fast Software Encryption.
Mister, S & Tavares, S. (1998). Cryptanalysis of RC4-like ciphers. In:

Proceedings, Workshop in Selected Areas of Cryptography, SAC’ 98.
Pieprzyk, J & Pieprzyk, J. (2003). Fundamentals of Computer Security.

Cambridge, UK: Springer.
Rescorla, E. (2001). SSL and TLS: Designing and Building Secure Systems.

Reading, MA: Addison-Wesley.
Robshaw, M. (1995). Stream Ciphers. RSA Laboratories Technical Report

TR-701, July 1995.
Asaad, Renas R., Saman M. Abdulrahman, and Ahmed A. Hani.
"Advanced Encryption Standard Enhancement with Output Feedback
Block Mode Operation." Academic Journal of Nawroz University 6.3
(2017): 1-10

