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ABSTRACT 

A new optimization algorithm called Adam Meged with AMSgrad (AMAMSgrad) is modified and used for training a convolutional 

neural network type Wide Residual Neural Network, Wide ResNet (WRN), for image classification purpose. The modification 

includes the use of the second moment as in AMSgrad and the use of Adam updating rule but with ϵ = 10−1  and (2) as the power 

of the denominator. The main aim is to improve the performance of the AMAMSgrad optimizer by a proper selection of ϵ  and the 

power of the denominator. The implementation of AMAMSgrad and the two known methods (Adam and AMSgrad) on the Wide 

ResNet using CIFAR-10 dataset for image classification reveals that WRN performs better with AMAMSgrad optimizer compared 

to its performance with Adam and AMSgrad optimizers. The accuracies of training, validation and testing are improved with 

AMAMSgrad over Adam and AMSgrad. AMAMSgrad needs less number of epochs to reach maximum performance compared to 

Adam and AMSgrad. With AMAMSgrad, the training accuracies are (90.45%, 97.79%, 99.98%, 99.99%) respectively at epoch (60, 

120, 160, 200), while validation accuracy for the same epoch numbers are (84.89%, 91.53%, 95.05%, 95.23). For testing, the WRN with 

AMAMSgrad provided an overall accuracy of 94.8%. All these accuracies outrages those provided by WRN with Adam and 

AMSgrad. The classification metric measures indicate that the given architecture of WRN with the three optimizers performs 

significantly well and with high confidentiality, especially with AMAMSgrad optimizer. 
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1. Introduction 

Image classification involves detection or/and 

identification of an object or attributes in a digital 

image[1]. Image classification has become an important 

tool in many applications that are based on computer 

vision and artificial intelligence such as medical 

imaging, security[2-5], authentication[6-8] and military 

surveillance[9-11]. 

In recent years, the approach of deep convolutional 

neural networks (CNN) of sequential type has 

dominated the field of image  classification and 

becoming superior to the traditional approach of hand-

crafted features[12-14]. In contrast to hand-crafted features, 

deep CNNs could learn rich highly abstract image 

features from the training dataset of large scale images 

to  represent complex objects in an efficient way and can 

be faster. Many architectures of sequential CNN ranging 

from deep CNN to very deep CNN have already been 

developed and used for image classification [12, 15, 16]. 

Generally speaking, developing a CNN that performs 

well for image classification require a proper selection of 

CNN architecture, optimization algorithm, training 

parameters, training data etc. 

More recently, a new type of CNN which is known as 

computational graph CNN was introduced. CNNs of 

this type are shown to be fast and more accurate for 

image classification than the sequential type of CNN. 

Examples of computational graph CNN are GoogleNet 

(Inception-v1) which was introduced by[17] and the more 

sophisticated one is the Wide Residual Network, Wide 

ResNet (WRN) which was introduced by[ 18]. 

In addition, many optimization algorithms that are 

based on gradient decent have been developed in order 

to enhance the performance of CNN for image 

classification. The most common of these algorithms that 
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have been used widely for image classification are: 

Stochastic Gradient Descent with Momentum (SGD with 

Momentum)[19, 20], Adaptive Subgradient Method 

(AdaGrad)[21], Adaptive Moment Estimation (Adam)[22], 

Adaptive Method Setup Gradient (AMSgrad)[23]. 

The objective of this paper is to develop a new optimizer 

called Adam Merged with AMSgrad (AMAMSgrad) for 

learning a WRN for the purpose of image classification 

using CIFAR-10 dataset. The major aim is to improve the 

performance of the classification system. In doing so, 

three models of classifications are implemented. One 

model is implemented with the new optimizer 

(AMAMSgrad) and the other two models are 

implemented with Adam and AMSgrad optimizers. 

The remainder of this paper is organized as follows. In 

Section 2, a brief review of the related work is given. In 

Section 3, a description of the WRN architecture is given. 

In section 4, a detailed description of AMAMSgrad 

optimizer is presented. In section 5, training of Wide 

ResNet is given. In section 6, the results of applying three 

optimizers (AMAMSgrad, Adam and AMSgrad) on a 

Wide ResNet using CIFAR-10 dataset are presented and 

discussed. In section 7, the conclusions are given. 

2. RELATED WORKS 

In CNNs, Back-Propagation (BP) is used for training. The 

algorithm of BP performs two passes. In the first pass, 

errors are calculated from the output layers. In the 

second pass, these errors are used to calculate the 

gradient of the loss function then this gradient is 

propagated back to the optimizer which in turn uses it to 

update weights in such a way to minimize the loss 

function. Thus the main aim of the optimizer is to find 

the optimal minima of the gradient which indicates the 

convergence of the training process in CNNs and it has 

no tasks throughout the testing mode of CNNs. 

Therefore, the approach of optimization algorithms has 

brought the attraction of many researchers and much of 

research works have been accomplished to improve the 

performance of convolutional neural networks CNNs 

via a proper design of efficient optimizers. So far, many 

optimization algorithms have been developed and used 

successfully for implementing CNNs with various 

architectures. Examples of these optimization 

algorithms that have been used for image classification 

are: Stochastic Gradient Descent with Momentum (SGD 

with Momentum)[19,20], Adaptive Subgradient Method 

(AdaGrad)[21], Adaptive delta (Adadelta)[24], Root Mean 

Square Propagation Optimization (RMSProp)[25], 

Adaptive Moment Estimation (Adam)[22], Adaptive 

Method Setup Gradient (AMSgrad)[23], Adam with 

decoupled weight decay (AdamW)[26], Quasi-Hyperbolic 

Momentum (QHAdam)[27] and AdaptAhead[28]. 

However, the most commonly used of these algorithms 

are the SGD-Momentum, AdaGrad, RMSProp, Adam 

and AMSgrad, all of which are categorized as gradient 

descent methods. In 1986, Rumelhart and others[19] 

developed the SGD-Momentum algorithm which was 

well interpreted later by Qian in 1999[20]. The aim of SGD 

-Momentum was to dampen the high oscillations in the 

error function that occurs in the classical SGD in order to 

find the global minima in a faster time. It uses the 

gradient of the current iteration and the accumulated 

gradients of the previous iteration which acts as a 

momentum.  This optimizer, SGD-Momentum, was 

used successfully to train different deep and very deep 

CNNs for image classification such as AlexNet[12] and 

VGG-19[17]. 

In 2011, Duchi and others[21] introduced a per-parameter 

learning rate optimizer called AdaGrad to be used 

effectively with sparse data. In this optimizer, the step 

size for each parameter is scaled according to the history 

of gradients for that parameter, which is done by 
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dividing the current gradient by the sum of previous 

gradients. However, AdaGrad suffers two main 

drawbacks. The first drawback is the decay of learning 

rate as the accumulated gradient becomes large.  The 

second drawback is the need for a manually selected 

global learning rate. These two drawbacks were 

considered by[22] in modifying the Adadelta 

optimization algorithm. In Adadelta, the advantages of 

moment and AdaGrad by scaling the step size according 

to the last time historical gradient and using a 

component that acts as an accelerator (momentum). The 

problem of step size vanishing in AdaGrad was also 

considered by Tieleman and Hinton in 2012[25] in 

developing the RMSProp optimization algorithm. They 

tackled the problem of step size vanishing by using the 

decaying average of history gradients instead of the sum. 

For better tackling of the step size vanishing problem[22] 

introduced Adam optimizer by combining the 

advantages of AdaGrad method, which works well with 

sparse gradients, and RMSProp method, which works 

well in on-line and non-stationary settings. This method 

of optimization is based on computing the adaptive step 

for each parameter (weight) by using the estimations of 

first and second moments of gradient to adapt the 

learning rate for each weight of the neural network. The 

first moment uses decaying average of history gradients 

similar to AdaGrad, whereas the second moment 

emphasis uses the current gradient exactly like 

RMSProp. However, for some applications such as 

image classification and object recognition, it has been 

noticed by[29,30] that the adaptive learning rate optimizers 

such as Adam may fail to convergence and may not able 

to find the optimal minima. To overcome this problem, 

Reddi and others in 2018[23] modified AMSgrad 

algorithm from Adam algorithm by changing the rule of 

computing the second moment. The authors of 

AMSgrad pointed out that the reason of Adam failure is 

the improper use of the exponential moving average 

(second moment).  They observed that during the 

training, some mini-batches provide larger and more 

informative gradient than others. They attributed this 

variability in the mini-batches gradients to the use of the 

second moment of the current iteration for adapting the 

learning rate for each weight update. In order to 

minimize the influence of the variability in the mini-

batches gradients, they took the maximum of the 

previous and current second moments. By doing so, the 

authors of AMSgrad claimed that they achieved better 

performance by AMSgrad optimizer compared to Adam 

optimizer. 

Finally, the field of optimization algorithm requires 

continuous investigation and more research work in 

order to enhance the performance of CNNs for various 

applications of computer vision and artificial 

intelligence, in specific for image classification. 

In this paper, an attempt is made to modify a new 

optimization method from Adam and AMSgrad that is 

capable of improving the performance of CNNs for 

image classification. 

3. WIDE RESNET WRN ARCHITECTURE 

Basically, there are two types of CNN architectures 

which are sequential and computational graphs. The 

architecture that was introduced in chapter four is one 

type of the sequential architectures when the layers were 

stacked one above other. While in computational graphs 

each layer is a representative of mathematical 

operations, the advantages of these computational 

graphs are to compute more accurate gradient, it helps 

for parallel processing on GPUs much easier. The main 

difference between these two types is that in 

computational graphs the data from input may flow to 

be added to several next layers to preserve the resolution 
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i.e. gradient. The examples of some architectures of the 

computational graphs type are, GoogleNet (Inception-

v1)[17], ResNet[31], Deep Recursive ResNet[32] and wide 

ResNet[18]. 

However in ResNets, accuracy improvement even by a 

fraction of a percent requires doubling the number of 

layers. Therefore, training very deep residual networks 

will face the problem of diminishing feature reuse, 

which makes these networks very slow to train. In order 

to solve this problem[18] proposed a novel architecture 

called the Wide Residual Networks (WRNs). Oppose to 

the ordinary ResNet which is characterized as being thin 

and very deep, in WRNs the depth of the network is 

decreased while the width is increased. In other words, 

the number of layers in WRNs is decreased and the 

number of filters is increased. Zagoruyko and Komodak 

have proved that this architecture will make the training 

process faster and can solve the problem of diminishing 

feature reuse. In addition, they made the structure such 

that the Batch Normalization layer and ReLU activation 

function precede each convolution layer. The 

architecture of the Wide ResNet as proposed by 18] is 

shown in figure (1).  

 

Fig. 1. Various blocks of Wide ResNet[18]. 

In this work, the basic-wide block is used within this 

Wide ResNet, the bias of convolution and dropout layer 

were not used. The network of 16x8 is used that means 

this net is 16 layer deep and has the widen factor of 8. 

The total number of parameters using equations (3.2) is 

(10, 968, 570), the trainable parameters are (10, 961, 370) 

and non-trainable parameters are (7,200) which are the 

batch normalization parameters. The blocks of different 

wide ResNet can be seen in figure (1). The supper 

convergence is also used without any modifications. 

4. THE PROPOSED AMAMSGRAD OPTIMIZER 

Despite AMSgrad was proposed to overcome the 

problem of finding the global minima in Adam, some 

recent works such as[33] proved that even after the 

modification, the performance of AMSgrad did not 

outrage Adam. In addition, making the step size larger 

as an aim to avoid learning rate decaying as in Adam and 

AMSgrad may lead to the problem of bypassing the 

global minima. Moreover, most of the modifications that 

have been done to the previous methods of optimization 

were restricted to the way of using the history gradient 

and the current gradients in order to scale the step size 

so that to prevent the decay of the learning rate, while 

the form of the denominator in the mathematical 

formula for calculating ∆wt, in specific the effect of the 

term (ϵ) and the power of the denominator on the step 

size have been ignored. 

In this paper, an attempt is made to show graphically the 

impact of the denominator in each of Adam and 

AMSgrad on the process of updating the learning rate, 

in specific how the value of (ϵ) and the power of the 

denominator affect the weight change ∆wt. Then a new 

method of optimization  called Adam Merged with 

AMSgrad (AMAMSgrad) will be modified with the aim 

to scale the step size in such a way to prevent learning 

rate decaying, while at the same time preventing the 

bypass problem of the global minima. The modifications 

are based on: First, merging the AMSgrad optimizer 

with the equation of calculating  ∆wt of Adam optimizer. 

Second, changing the value of ϵ and the power of the 

denominator of the weight update formula of Adam. 

The value of  ϵ  is changed from 10-8 to 10-1 and the 

denominator of the weight update formula in Adam is 
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changed from (√v̂t + ϵ) to (√v̂t + ϵ)2, while the 

procedures of calculating the first and second moment 

are made as in AMSgrad. 

The pseudo code of AMAMSgrad is given in table (1) 

below: 

In order to describe how AMAMSgrad can perform 

better than AMSgrad and Adam, first the equations of 

weight update in both Adam and AMSgrad are 

reformulated to modulation functions without losing 

their mathematical meaning and second the effect of ϵ 

and the power of the denominator on the weight update 

are shown. The detailed descriptions are given in the 

following subsections. 

TABLE 1 

The pseudo Code of AMAMSgrad Optimizer with 

Criteria Definitions 

Pseudo Code Parameter definition 

1 Input: w, ϵ, 𝔶, β1, β2  w weight 

2 Initialize:mt = 0, vt = 0, t =
0, v̂t = 0  

𝔶 Learning rate 

3 𝐖𝐡𝐢𝐥𝐞 w not converged 𝐝𝐨 ϵ Small value = 10-8 

4 t = t + 1 t Iteration number 

5 gt  = ∇ft(wt) gt Gradient at iteration t 

6 mt = β1. mt−1 + (1 − β1). gt ∇ft Computational gradient 
function 

7 vt = β2. vt−1 + (1 − β2). gt
2 mt First moment 

8 v̂t = max (v̂t−1, vt) β1 Hyperparameter (Decay 
rate=0.9) 

9 ∆wt =  − 
𝔶

(√v̂t +  ϵ)2
. mt 

β2 
vt 

Hyperparameter (Decay 
rate=0.99) 
Second moment 

10 wt = wt−1 + ∆wt v̂t Biased corrected second 
moment 

  ∆wt Weight change 

11 𝐄𝐧𝐝 𝐰𝐡𝐢𝐥𝐞   

4.1 Weight Update Formula 

According to[22, 23] the two formulas for calculating ∆wt 

in Adam and AMSgrad are given below: 

For Adam   ∆wt =  − 
𝔶

√v̂t+ ϵ
. mt             (1) 

For AMSgrad         ∆wt =  − 
𝔶

√v̂t
. mt     (2) 

Where, ∆wt is the update in weight, 𝔶 is the learning rate, 

mt is the first moment, v̂t is the second moment and ϵ is 

a small value to avoid the division by zero. 

Equations (1 and 2) can be re-written as follow: 

For Adam          ∆wt =  −𝔶. M1. M2   (3) 

For AMSgrad         ∆wt =  −𝔶. M′1. M′2     (4) 

Where, (M1 and M′1) are the first modulation functions 

in the two optimizers such that: 

   M1 =  
1

√v̂t+ ϵ
                                      (5) 

   M′1 =  
1

√v̂t
                                       (6) 

The modulation functions  (M2 and M′2) are less 

influential than (M1 and M′1) on weight update and will 

be discarded from the description. 

The effect of ϵ and the power of the denominators on 

these modulation functions and how they affect the 

weight update will be described in the forthcoming 

subsections. 

4.2 The Effect of 𝛜  

According to equations (5 and 6), the two modulation 

functions differ by the term ϵ. In the original algorithm 

of Adam, ϵ was taken very small (10-8) in order to avoid 

the division by zero[22]. Figure (2) shows graphically the 

difference between M1 and M′1 for two values of  ϵ . 

Fig. 2. Modulation functions of Adam and AMSgrad at different ϵ 

In both parts of figure (2), the green color represents the 

modulation function of Adam and the red color 

represents the modulation function of AMSgrad. 
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According to the lower part of the figure it can be seen 

that adding a value of ϵ will shift the curve horizontally 

to the left and when ϵ =0 both Adam and AMSgrad 

coincide perfectly. 

In the upper part, when ϵ = 10−8, both modulation 

functions have the same effect, the green and red colors 

are almost coincide perfectly. 

In the lower part of figure (2), When ϵ = 10−1, the 

modulation function of AMSgrad is slightly higher than 

that of Adam at v̂t > 2.5 and becomes significantly 

higher than that of Adam at 0 < v̂t < 2.5. For the same v̂t 

, the value of M′1 for AMSgrad is larger than that of M1 

for Adam. This indicates that the changes on ∆wt that can 

be made by AMSgrad are higher than those made by 

Adam. Knowing that increasing ∆wt by large amount 

may lead to overpass the global minima, then it can be 

said that with AMSgrad optimizer there will be more 

chance to overpass the global minima than with Adam. 

In other words, increasing the value of ϵ will minimize 

the chance for the optimizer to overpass the global 

minima. 

In the upper part, when ϵ = 10−8, both modulation 

functions have the same effect, the green and red colors 

are almost coincide perfectly. 

4.3 The Effect of the Power of the Denominator 

To show the effect of changing the power of the 

denominator for both modulation functions of Adam 

and AMSgrad, Three cases are considered with constant 

ϵ = 10−1. These are, the modulation functions of Adam, 

AMSgrad and AMAMSgrad (suggested optimizer) 

which is the same as Adam but the power of the 

denominator is raised to (2) as shown in the equation (7). 

The differences between these three functions are shown 

graphically in figure (3).  

Modulation function for AMAMSgrad  

MM1 =  
1

(√v̂t+ ϵ)2  (7) 

Figure 3 shows the values of modulation function versus 

 v̂t for the three optimizers. 

 

Fig 3. Modulation Functions of Adam and AMSgrad and 

AMAMSgrad. 

In this figure, the modulation function of Adam and 

AMSgrad are shown in green and red color, while the 

modulation function of AMAMSgrad is shown in blue. 

The comparisons between the three modulation 

functions of Adam and AMSgrad and AMAMSgrad are 

shown below: 

In this figure, the modulation function of Adam and 

AMSgrad are shown in green and red color, while the 

modulation function of AMAMSgrad is shown in blue. 

The comparisons between the three modulation 

functions of Adam and AMSgrad and AMAMSgrad are 

shown below: 

i. At v̂t > 1 the modulation functions of Adam and 

AMSgrad have the same value which is greater than 

the value of the AMAMSgrad modulation function. 

The green and red curves for Adam and AMSgrad 

which are very close to each other at  v̂t > 1. 

Accordingly, it can be said that the changes on ∆wt 

that is made by the modulation function of 

AMAMSgrad is less than those made by the 

modulation functions of Adam and AMSgrad. 

Keeping in mind that increasing ∆wt may lead to 

overpass the global minima, then it can be said that 

with AMAMSgrad optimizer there will be less 

chance to overpass the global minima compared to 

Adam and AMSgrad. 
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ii. In term of speed, two scenarios exist. In the first, the 

small changes in ∆wt that are made by AMAMSgrad 

modulation function may slow down the process of 

training. In the second scenario, the small changes in 

∆wt (step size) that are made by AMAMSgrad will 

provide better chance to find the global minima in 

less number of epoch compared to Adam and 

AMSgrad. In practice, the impact of the second 

scenario was shown to have dominated the process 

of training with AMAMSgrad as it achieved the 

beset accuracy in less number of iterations compared 

to Adam and AMSgrad which were slower and 

achieved the best accuracy in more number of 

iterations. 

iii. At v̂t = 1, figure (3) shows that the modulation 

functions of Adam and AMAMSgrad will have the 

same value. This can be shown mathematically as 

follows: 

1

√v̂t+ ϵ
=

1

(√v̂t+ ϵ)^2
 only when √v̂t = 1 −  ϵ (8) 

This means when ϵ = 0  then the modulation 

functions of both Adam and AMAMSgrad will have 

the same value at v̂t = 1 and as  ϵ > 0 the value of 

Adam modulation function becomes higher than 

that of AMAMSgrad. In fact, the point at v̂t = 1 

represents the turning point, at which the curve of 

the modulation function of AMAMSgrad in blue 

color looks as a clockwise-rotation of the modulation 

functions of Adam and AMSgrad in red and green 

color. 

iv. At 0 <  v̂t < 1 the situation is reversed, the values of 

AMAMSgrad modulation function (blue color) is 

higher than those of Adam and AMSgrad.  This 

means, at 0 <  v̂t < 1 the changes in  ∆wt that are 

made by AMAMSgrad modulation function are 

higher than those made by the modulation functions 

of the Adam and AMSgrad. This will lead 

AMAMSgrad to help the process of training to 

continue without sticking in local minima. 

5. TRAINING THE WIDE RESNET (WRN) 

Training of the Wide ResNet is done using three models 

of image classification, one with AMAMSgrad optimizer 

and the other two with Adam and AMSgrad optimizers. 

The initial learning rate is set to (0.1) and it is scheduled 

for the rest of training as shown in table (2). 

TABLE 2 

 Learning rate schedules. 

Epochs Learning Rate 

1-60 0.1 

61-120 0.02  

121-160 0.004  

161-200 0.0008 

The value of ϵ for all models is taken as (0.1). All three 

models are trained on Google Colaboratory[34] on Tesla 

K80 GPU. The training time taken by each model for 

completing (200) epochs was around (11) hours. The 

mini-batch size is 128. The dataset CIFAR-10 is used, that 

contains 60000 images. This dataset is divided into two 

sets for training (50000 images) and for validation (10000 

images). In addition, the data augmentation of type 

online augmentation (augmentation on the fly) is used. 

The images are flipped horizontally and shift in width 

and height shift within the range (0.125 of the input 

image size). Online augmentation does not change the 

batch-size. Thus the total number of weight updates 

(Iterations) is 50000/128 * 200 that is equal to (78, 125) 

updates. The weights are initialized with He-Normal[35], 

and L2 regularization of (0.0005) is used[36]. 

6. RESULTS AND DISCUSSIONS 

The WRN is trained with CIFAR-10 dataset using three 

types of optimization, AMAMSgrad, Adam and 

AMSgrad. The evaluation metrics for the three models of 

classification are shown in the table (3). Also, graphs are 
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presented for the purpose of illustration. The detailed 

comparisons between the three models of classification 

are given in the following sections. 

6.1 Training Accuracy 

The results of training accuracy of the three models are 

given in figures (4 and 5) and table (3). According to 

these figures the following key points can be 

summarized and concluded: 

i. According to table (3), the training accuracy of all the 

three models of classification at epoch (200) is 99.99. 

This is mainly due to: First, the use of Wide ResNet 

architecture which is very sophisticated network. 

Second, it is due to the use of schedule learning rate. 

Third, data augmentation is used. 

ii. According to figures (4 and 5), the training accuracy 

of the model with AMAMSgrad optimizer starts to 

be higher than that of the other two models with 

Adam and MASgrad from epoch (5) and continues 

to be higher till the last epoch (200). Also, the two 

figures show that the accuracy curve of 

AMAMSgrad model is less oscillated compared to 

the models with Adam and AMSgrad. This indicates 

that the loss function values of AMAMSgrad are 

more stable than those of Adam and AMSgrad 

which can be attributed to step size of the 

modulation function of AMAMSgrad which is 

smaller than those of the modulation functions of 

Adam and AMSgrad as proven by figure (3).  

iii. A comparison between the three models at different 

epoch number is shown in table (3). According to 

this table, the training accuracy of the model with 

AMAMSgrad optimizer at epochs (60, 120 and 160) 

are (90.45%, 97.79 and 99.98) respectively while for 

models with Adam and AMSgrad at the same epoch 

numbers are (87.52, 96.86 and 99.95) and (87.774%, 

96.64 and 99.97) respectively. This result approves 

that AMAMSgrad achieves better accuracy than 

Adam and AMSgrad for the same epoch number, so 

it can be said that the model with AMAMSgrad 

reaches convergence faster than the other two 

models with Adam and AMSgrad. These 

comparisons can also be seen by inspecting figures 

(4 and 5). The accuracy of the model with 

AMAMSgrad starts to be higher than that of the 

other two models since epoch (5) till epoch (131). 

TABLE 3 

Training Evaluation Metrics for the three Models of 

classification 

Method Training 
Accuracy 

Training 
Loss 

Validation 
Accuracy 

Validation 
Loss 

Time Epoch 
No.  

Adam 

0.8752 0.9234 0.5774 2.8208 3.09 60 

0.9686 0.4176 0.8886 0.7118 6.18 120 

0.9995 0.1068 0.9428 0.3218 8.24 160 

0.9999 0.0820 0.9496 0.2706 10.3 200 

AMSgrad 

0.8774 0.9187 0.7895 1.2259 3.133 60 

0.9664 0.4249 0.9032 0.6519 6.266 120 

0.9997 0.1073 0.9480 0.3021 8.354 160 

0.9999 0.0831 0.9507 0.2640 10.443 200 

AMAMSgr
ad 

0.9045 0.7562 0.8489 0. 6764 3.133 60 

0.9779 0.3052 0.9153 0.5652 6.266 120 

0.9998 0.1169 0.9505 0.2599 8.354 160 

0.9999 0.0996 0.9523 0.2484 10.443 200 

 

 

Fig. 4. Training accuracy of 200 epochs.  
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Fig. 5. A Magnified version of Fig. 4.  

6.2 Training Loss 

Figure (6) shows the loss values of the three models of 

classification. According to table (3) and figure (6), the 

increase in the loss value of the model with 

AMAMSgrad is slower than those of the other two 

models with Adam and AMSgrad for epoch (9) to epoch 

(160). This indicates that AMAMSgrad is handling the 

learning rate more adaptively than Adam and AMSgrad. 

This means that, if the schedule rate is not used, then the 

possibility of convergence failure could be more for 

Adam and AMSgrad than AMAMSgrad. Figure (6) also 

shows that the loss values of models with Adam and 

AMSgrad start to decrease more than that of the models 

with AMAMSgrad after epoch (160). However, this 

decrement did not lead to any improvement on the 

validation accuracy. 

 

Fig. 6. Training loss of 200 epochs. 

6.3 Validation Accuracy 

The validation accuracy is an important metric that 

shows the level of performance for each model. 

i. Figures (7 and 8) show the validation accuracies of 

the three models versus the epoch number. 

According to these figures and table (3), the 

validation accuracy curve of the model with 

AMAMSgrad shows more smoothness (less 

oscillation) than that of the other two models with 

Adam and AMSgrad. The oscillation of Adam and 

AMSgrad curve are severe between epochs (1-120). 

ii. The validation accuracy of the model with 

AMAMSgrad at epoch number (61) is (92.89%) and 

continues to increase till 95.23% at epoch (200), while 

the accuracies of the models with Adam and 

AMSgrad are (91.02 and 91.9%) and continues to 

increase till (94.96 and 95.07%) at epoch (200), see 

table (3). That is, the validation accuracy is improved 

with the AMAMSgrad by 0.27 over Adam and by 

0.16% over AMSgrad. While the improvement in 

AMSgrad model over Adam is 0.11%. These results 

indicate the efficiency of AMAMSgrad over the 

other two optimizers. 
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iii. As far as the training speed is concerned, figures (7 

and 8) show how the validation accuracy is 

improved for each optimizer versus epoch numbers.  

According to these figures, AMAMSgrad can 

achieve around 95.00% of validation accuracy at 

epoch (134), while the same validation accuracy can 

be achieved by Adam and AMSgrad at epoch (162). 

This means that models with Adam and AMSgrad 

will require (20) more epochs of training in order to 

achieve the accuracy of AMAMSgrad model. But, 

this may cause high changes in the learning rate 

which may lead Adam and AMSgrad to stick in local 

minima. For example, at epoch number (160), 

AMAMSgrad optimizer has achieved (95.05%) of 

validation accuracy while AMSgrad has achieved 

this accuracy at epoch (200) and Adam did not reach 

this accuracy even at epoch (200). In term of time, the 

training time of (160) was (8.8) hours on GPU, while 

for (200) epoch was (11) hours. Thus, it can be 

concluded that AMAMSgrad has reduced the 

computations dramatically by saving (2.2) hours.  In 

addition, the results revealed that as going from 

epoch to epoch, AMAMSgrad optimizer shows 

more accuracy stability than Adam and AMSgrad.  

 

Fig. 7. Validation Accuracy of the AMAMSgrad and the MASgrad for 

200 epochs.  

 

Fig. 8. A Magnified version of Fig. 7. 

6.4 Validation Loss 

The results of validation loss are presented in figure (9 

and 10). It can be seen that the validation losses of 

models with Adam and AMSgrad are highly fluctuating 

from the beginning of training till epoch number (60) 

and these oscillations become smaller at later epochs but 

still much higher than the oscillations of the model with 

AMAMSgrad. Figure (10) shows that AMAMSgrad 

optimizer (Red color) has less loss than Adam and 

AMSgrad optimizer (Blue and Yellow colors) during all 

the stages of the training process. It can be seen that the 

validation loss of AMAMSgrad model is continuously 

decreasing. For instance, the validation loss of the model 

with AMAMSgrad at epoch (200) is (0.2484), while the 

validation loss of models with Adam and AMSgrad at 

epoch (200) are (0.2706 and 0.2640) respectively. This is a 

good indicator that the AMAMSgrad can find better 

global minima and converge much faster than AMSgrad 

optimizer. 

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

A
cc

u
ra

cy

Epochs

Validation Accuracy

AMSgrad Fast-AMSgrad Adam

0.85

0.9

0.95

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

A
cc

u
ra

cy

Epochs

Validation Accuracy

AMSgrad Fast-AMSgrad Adam



Academic Journal of Nawroz University (AJNU), Vol.9, No.4, 2020                                               

11 
 
 
 

 

Fig. 9. Validation loss of 200 epochs. 

 

Fig. 10. Magnified Version of Fig. 9. 

6.5 Testing Results 

For testing mode, 2000 images from the validation data 

were randomly chosen and fed to the three models for 

classification. After predicting the labels of 2000 images 

these labels with their corresponding true labels are fed 

to confusion matrix to produce the matrix that was used 

to compute TP, TN, FP and FN. Thereafter, these 

variables are used to produce the performance 

measurements such as overall accuracy, error, precision 

and kappa. 

Table (4) shows the true and false predictions for the 

three models. This table shows that the model with 

AMAMSgrad achieved the higher true prediction.  

TABLE 4 

True and False Acceptance of the samples computed from 

confusion matrix. 

Method TP TN FP FN 

Adam 188.5 1788.5 11.5 11.5 

AMSgrad 188.8 1788.8 11.2 11.2 

AMAMSgrad 189.6 1789.6 10.4 10.4 

In order to evaluate and compare the performances of 

the three classification models, the classification metrics: 

overall accuracy, precision, error and Kappa coefficient  

are calculated for the three models[37]  and given in table 

(5).  

TABLE 5 

Performance Evaluation Metrics of the Testing 

Samples for the Three Models of Classification 

Method Overall 

Accuracy 

% 

Precision Error  Kappa 

Coefficient 

Adam 94.25 0.92.6 0.0574 0.9361 

AMSgrad 94.40 0.9443 0.0560 0.9377 

AMAMSgrad 94.80 0.9486 0.0520 0.9422 

 

According to table (5), the performance of the model 

with AMAMSgrad is better than the performances of the 

two models with Adam and AMSgrad. The overall 

accuracy of the model with AMAMSgrad is improved by 

0.55% over the model with Adam and by 0.4% over the 

model with AMSgrad. While the improvement achieved 

by the model with AMSgrad over that with Adam is only 

0.15%. These results indicate that AMAMSgrad 

performs more efficiently than the other two optimizers. 

Also for the AMAMSgrad, the error is lower and the 

Kappa measure is higher which indicate the 

confidentiality of the results. 

7. CONCLUSIONS 

The results have shown that the value of ϵ and the power 

of the denominator of the updating rule equation have 

crucial effect on the performance of the optimizer during 
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the training mode of CNNs. This was evident from the 

results of the three optimizers, AMAMSgrad, Adam and 

AMSgrad. In AMAMSgrad, taking the value of  ϵ = 10−1 

and the power of (2) for the denominator have led the 

performance of AMAMSgrad to outrage those of Adam 

and AMSgrad.  Increasing ϵ and the power of the 

denominator in AMAMSgrad make the weigh change 

(step size) smaller than those for Adam and MASgrad, 

thus reducing the possibility for bypassing the global 

minima. In addition, the training and validation 

accuracy as a function of epoch number that were 

achieved by AMAMSgrad were better than those of 

Adam and AMSgrad. Moreover, the classification 

metrics including overall accuracy, precision, error and 

Kapa coefficient of the testing mode for AMAMSgrad 

were improved over those of Adam and AMSgrad. 

8. Acknowledgements 

• This research work was implemented at the 

Computer Science Department / College of Science 

/ University of Duhok as a part of the Master degree 

requirements, 2016-2019. 

• The authors would like to express their sincere 

gratitude to the University of Duhok and the College 

of Science for their continuous support to make this 

work possible.  

• The first author wants to use this opportunity to 

express his special thanks to the Duhok Polytechnic 

University for its invaluable support. 

9. REFERENCES 

1. Badrinarayanan, V., Kendall, A., and Cipolla, R., 2017, 

“SegNet: A Deep Convolutional Encoder-Decoder 

Architecture for Image Segmentation”, IEEE Transactions 

on Pattern Analysis And Machine Intelligence, Vol. 39, 

No. 12, Pp. (2481-2495). 

2. Borges, L. R., 2015, “Analysis of the Wisconsin Breast 

Cancer Dataset and Machine Learning for Breast Cancer 

Detection”, Proceedings of XI Workshop de Visão 

Computacional ‐ October 05th‐07th, 2015, Pp. (15-19). 

3. Khan, A. A., and Yong, S., 2016, “An Evaluation of 

Convolutional Neural Nets for Medical Image Anatomy 

Classification”, Springer International Publishing 

Switzerland 2016, in P.J. Soh et al. (eds.), Advances in 

Machine Learning and Signal Processing, Lecture Notes in 

Electrical Engineering, DOI 10.1007/978-3-319-32213-

1_26, Pp. (293-303). 

4. Haryanto, T., Wasito1, I. and Suhartanto, H., 2017, 

“Convolutional Neural Network (CNN) for Gland Images 

Classification”, International Conference on Information 

& Communication Technology and System (ICTS), Pp. 

(55-60). 

5. Kapoor, I., and Mishra, A., 2018, “Automated 

Classification Method for Early Diagnosis of Alopecia 

Using Machine Learning”, International Conference on 

Computational Intelligence and Data Science (ICCIDS 

2018),  ESEVIER, ScienceDirect, Pp. (437-443). 

6. Antipov, G., Berrani, S.A., Ruchaud, N. and Dugelay, J.L., 

2015, October. “Learned vs. hand-crafted features for 

pedestrian gender recognition”. In Proceedings of the 23rd 

ACM international conference on Multimedia. pp. (1263-

1266). 

7. Akcay, S., Kundegorski, M. E., Willcocks, C. G., and 

Breckon, T. P., 2018, “Using Deep Convolutional Neural 

Network Architectures for Object Classification 

andDetection within cX-ray Baggage Security Imagery”, 

IEEE Transactions on Information Forensics and 

Security,DOI 10.1109/TIFS.2018.2812196,Pp. (1-13). 

8. Bian, P., Li, W., Jin, Y., and Zhi, R., 2018, “Ensemble feature 

learning for material recognition with convolutional 

neural networks”, EURASIP Journal on Image and Video 

Processing, 2018:64, Pp. (1-11). 

9. Zuo, J., Xu, G., Fu, K., Sun, X., and Sun, H., 2018, “Aircraft 

Type Recognition Based on Segmentation With Deep 

Convolutional Neural Networks”, IEEE Geoscience And 

Remote Sensing Letters, Vol. 15, No. 2, Pp. (282-286). 

10. Xu, H., Han, Z., Feng, S., Zhou, H., and Fang, Y., 2018 

“Foreign object debris material recognition based on 

convolutional neural networks”,  EURASIP Journal on 

Image and Video Processing, 

https://doi.org/10.1186/s13640-018-0261-2,  2018:21, Pp. 

(1-10). 

11. Wan, J., Chen, B., Xu, B., Liu, H., and Jin, L., 2019, 

“Convolutional neural networks for radar HRRP target 

recognition and rejection”, EURASIP Journal on Advances 

in Signal Processing, https://doi.org/10.1186/s13634-

019-0603-y, 2019:5, Pp. (1-17). 

12. Krizhevsky A., Sutskever I. and Hinton G.E., 2012, 

“ImageNet classification with deep convolutional neural 

networks”, Proceedings of the 25th International 

Conference on neural information processing systems 

(NIPS), Lake Tahoe, December, pp. (1097-1105). 

13. Zhang P., Niu X., Dou Y., and Xia F., 2017, “Airport 

https://doi.org/10.1186/s13634-019-0603-y
https://doi.org/10.1186/s13634-019-0603-y


Academic Journal of Nawroz University (AJNU), Vol.9, No.4, 2020                                               

13 
 
 
 

Detection on Optical Satellite Images Using Deep 

Convolutional Neural Networks”, IEEE Geoscience and 

Remote Sensing Letters, Vol.  14, No. 8, pp. (1183–1187). 

14. Hoseini F., Shahbahrami A. and Bayat P., 2018, “An 

Efficient Implementation of Deep Convolutional Neural 

Networks for MRI Segmentation”, Journal of Digital 

Imaging, Vol. 31, No. 5, pp. (738-747). 

15. Zeiler M.D., Fergus R., 2014, “Visualizing and 

Understanding Convolutional Networks”,in Fleet D., 

Pajdla T., Schiele B., Tuytelaars T., (eds) Computer Vision 

– European Conference on.  

16. Simonyan, K. and Zisserman A., 2015, “Very deep 

convolutional networks for large-scale image 

recognition”, International Conference on Learning 

Representations (ICLR), (pp. 1409.1556). 

17. Szegedy C., Liu W.,  Jia Y., Sermanet P., Reed S., Anguelov  

D., Erhan D., Vanhoucke V. and Rabinovich, A., 2015, 

“Going deeper with convolutions”, in Proceedings of the 

IEEE conference on computer vision and pattern 

recognition, (pp. 1-9). 

18. Zagoruyko, S., and Komodakis, N., 2017, “Wide Residual 

Networks”, rXiv:1605.07146v4, Pp. (1-15). 

19. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986. 

“Learning representations by back-propagating errors”. 

Cognitive modeling, Nature, LETERSTO NATURE, Vol. 

323, PP (533-536). 

20. Qian, N. 1999, “On the momentum term in gradient 

descent learning algorithms”, Neural Networks, 

ELSEVIER, Vol. 12, Issue 1, (pp. 145–151). 

21. Duchi J., Hazan E. and Singer Y., 2011, “Adaptive 

subgradient methods for online learning and stochastic 

optimization”, Journal of Machine Learning Research, 

12(Jul), pp. (2121-2159). 

22. Kingma, D. P., and Ba, J. L., 2015, “Adam: A Method for 

Stochastic Optimization”, in Proceedings of the 

International Conference on Learning Representations 

(ICLR), pp. (1-15).  

23. Reddi S. J., Kale S. and Kumar S., 2018, “On the 

Convergence of Adam And Beyond”, Proceedings of the 

International Conference on Learning Representations 

(ICLR), pp. (1-23). 

24. Zeiler M. D., 2012, “Adadelta: An Adaptive Learning Rate 

Method”, arXiv preprint arXiv, pp. (1212-5701). 

25. Tieleman T. and Hinton G., 2012, “Lecture 6.5-rmsprop: 

Divide the Gradient by a Running Average of Its Recent 

Magnitude”, COURSERA: Neural Networks for Machine 

Learning, 4, pp. (26-31). 

26. Loshchilov I. and Hutter F., 2019, “Decoupled Weight 

Decay Regularization”, Proceedings of the International 

Conference on Learning Representations (ICLR), pp. (1-8). 

27. Ma, J. and Yarats, D., 2019. “Quasi-hyperbolic momentum 

and Adam for deep learning”. International Conference on 

Learning Representations (ICLR), Pp. (1-38). 

28. Hoseini F., Shahbahrami A. and Bayat P., 2019, 

“AdaptAhead Optimization Algorithm for Learning Deep 

CNN Applied to MRI Segmentation”, Journal of Digital 

Imaging, Society of imaging informatics in medicine, 

Springer, Vol. 32, issue 1,  Pp. (105-115). 

29. Huang G., Liu Z., Van Der Maaten L. and Weinberger 

K.Q., 2017, “Densely connected convolutional networks”, 

in Proceedings of the IEEE conference on computer vision 

and pattern recognition. (pp. 4700-4708). 

30. Johnson M., Schuster M., Le Q. V., Krikun M., Wu Y., 

Chen, Z., … Dean, J. (2017). Google’s Multilingual Neural 

Machine Translation System: Enabling Zero-Shot 

Translation. Transactions of the Association for 

Computational Linguistics, Vol. 5, (pp. 339–351). 

31. He K., Zhang X., Ren S. and Sun J., 2016, ”Deep residual 

learning for image recognition”, in Proceedings of the 

IEEE conference on computer vision and pattern 

recognition (CVPR). (pp. 770-778). 

32. Tai, Y., Yang, J., and Liu, X., 2017, “Image Super-

Resolution via Deep Recursive Residual Network”, 

Proceedings of 30th IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 

DOI: 10.1109/CVPR.2017.1, Pp. (3147-3155). 

33. Korzeniowski F., 2018, “Experiments with AMSGrad” 

Retrieved December 24, 2018, from 

https://fdlm.github.io/post/amsgrad/. 

34. Carneiro, T., Da Nóbrega1, R. V., Nepomuceno, T., and 

others, 2018, “Performance Analysis of Google 

Colaboratory as a Tool for Accelerating Deep Learning 

Applications”, IEEE Access, DOI: 

10.1109/ACCESS.2018.2874767, IEEE Access. 

35. He, K., Zhang, X., Ren, S., and Sun, J., 2015, “Delving Deep 

into Rectifiers: Surpassing Human-Level Performance on 

ImageNet Classification”, In Proceedings of the IEEE 

international conference on computer vision, Pp. (1026-

1034). 

36. Krogh, A. and Hertz, J.A., 1992. “A simple weight decay 

can improve generalization”. In Advances in neural 

information processing systems (pp. 950-957). 

37. Drăgulescu B., Bucos M., Vasiu R., 2015, “Predicting 

Assignment Submissions in a Multi-class Classification 

Problem”, TEM Journal, Vol. 4, No. 3, Pp.(244-254). 

https://doi.org/10.1109/CVPR.2017.1
https://fdlm.github.io/post/amsgrad/

