Improving the Performance of Finger-Vein Recognition System Using A New Scheme of Modified Preprocessing Methods

Authors

  • Ahmed A. Mustafa College of Science, Duhok University, Kurdistan Region, Iraq
  • Ahmed AK. Tahir College of Science, Duhok University, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25007/ajnu.v9n3a855

Abstract

This paper aims at improving the performance of finger-vein recognition system using a new scheme of image preprocessing. The new scheme includes three major steps, RGB to Gray conversion, ROI extraction and alignment and ROI enhancement. ROI extraction and alignment includes four major steps. First, finger-vein boundaries are detected using two edge detection masks each of size (4 x 6). Second, the correction for finger rotation is done by calculating the finger base line from the midpoints between the upper and lower boundaries using least square method. Third, ROI is extracted by cropping a rectangle around the center of the finger-vein which is determined using the first and second invariant moments. Forth, the extracted ROI is normalized to a unified size of 192 x 64 in order to compensate for scale changes. ROI enhancement is done by applying the technique of Contrast-Limited Adaptive Histogram Equalization (CLAHE), followed by median and modified Gaussian high pass filters. The application of the given preprocessing scheme to a finger-vein recognition system revealed its efficiency when used with different methods of feature extractors and with different types of finger-vein database. For the University of Twente Finger Vascular Pattern (UTFVP) database, the achieved Identification Recognition Rates (IRR) for identification mode using three feature extraction methods Local Binary Pattern (LBP), Local Directional Pattern (LDP) and Local Line Binary Pattern (LLBP) are (99.79, 99.86 and 99.86) respectively, while the achieved Equal Error Rates (EER) for verification mode for the same feature extraction methods are (0.139, 0.069 and 0.035). For the Shandong University Machine Learning and Applications - Homologous Multi-modal Traits (SDUMLA-HMT) database, the achieved Identification Recognition Rates (IRR) for identification mode using three feature extraction methods LBP, LDP and LLBP are (99.57, 99.73 and 99.65) respectively, while the achieved Equal Error Rates (EER) for verification mode for the same feature extraction methods are (0.419, 0.262 and 0.341). These results outrage those of the previous state-of-art methods.

Downloads

Download data is not yet available.

References

1. Yang, L., Yang, G., Wang, K., Liu, H., Xi, X., and Yin, Y., 2019, “Point Grouping Method for Finger Vein Recognition”, IEEE Acess, doi: 10.1109/ACCESS.2019.2901017.
2. Liu, Z. and Song, S., 2012, “An embedded real-time finger-vein recognition system for mobile devices”, IEEE Transactions on Consumer Electronics. doi: 10.1109/TCE.2012.6227456.
3. Yang, J., Wei, J., and Shi, Y., 2018, “Accurate ROI Localization and Hierarchical Hyper-sphere Model for Finger-vein Recognition”, Neurocomputing, NEUCOM 19858, doi.org/10.1016/j.neucom.2018.02.098.
4. Wang, H., Du, M., Zhou, J., and Tao, L., 2019, “Weber Local Descriptors with Variable Curvature Gabor Filter for Finger Vein Recognition”, IEEE Acess, doi: 10.1109/ACCESS.2019.2928472.
5. Wang, K. Q., KRISA, A. S., WU,X. Q., and ZHAO, Q. S., 2012 “Finger vein recognition using LBP variance with global matching”, Proceedings of the 2012 International Conference on Wavelet Analysis and Pattern Recognition, Xian, July, Pp. (196-200), doi: 10.1109/ICWAPR.2012.6294778.
6. Kauba, C., Reissig, J. and Uhl, A., 2014, “Pre-processing cascades and fusion in finger vein recognition”, In Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG’14), Darmstadt, Germany, September, Pp. (99-110).
7. Shaheed, K., Liu, H., Yang, G., Qureshi, I., Gou, J., and Yin, Y., 2018, “A Systematic Review of Finger Vein Recognition Techniques”, Information, Vol. 9, issue 9, Pp. (1-29), doi.org/10.3390/info9090213/.
8. Lee, E. C., Lee, H. C., and Park, K. R., 2009, “Finger-vein Recognition Using Minutia-Based Alignment and Local Binary Pattern-Based Feature Extraction”, International Journal of Imaging Systems and Technology, Vol. 19, issue 3, Pp. (179-186).
9. Park, K. R., 2011, “Finger Vein Recognition By Combining Global And Local Features Based On SVM”, Computing and Informatics, Vol. 30, No. 2, Pp. (295–309).
10. Rosdi, B. A., Chai, W. S., and Shahrel A. S., 2011, “Finger-vein Recognition Using Local Line Binary Pattern”, Sensors, Vol. 11, Pp. (11357-11371), doi.org/10.3390/s111211357.
11. Ito, K., Aoki, T., Nakajima, H., Kpbayashi, K., Higushi, T., 2008, “A Palmprint Recognition Algorithm Using Phase Only Correlation”, IEICETRANS, FUNDAMENTALS, Vol. E91-A, No. 4, Pp. (1023-1030).
12. Park, Y. H., and Park, K. R., 2012, “Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition”, International Journal of Advanced Robotic Systems, Vol. 9, issue 4, Pp. (1-10).
13. Pang S., Yin Y., Yang G., Li Y., 2012, “ Rotation Invariant Finger Vein Recognition”, In: Zheng WS., Sun Z., Wang Y., Chen X., Yuen P.C., Lai J. (eds) Biometric Recognition, CCBR 2012, Lecture Notes in Computer Science, Vol. 7701, Springer, Berlin, Heidelberg, Pp. (151-156), doi.org/10.1007/978-3-642-35136-5_19.
14. Peng, J., Li, Q., Wang, N., Abd El-Latif, A. a., Niu, X., 2013, “An Effective Preprocessing Method for Finger Vein Recognition”, Fifth International Conference on Digital Image Processing (ICDIP 2013), edited by Yulin Wang, Xie Yi, Proc. of SPIE Vol. 8878, doi: 10.1117/12.2030689.
15. Lu, Y., Yoon, S., and Park, D. S., 2013. “Finger-vein Recognition Based on Matching Score-Level Fusion of Gabor Features”, The Journal of Korean Institute of Communications and Information Sciences, doi.org/10.7840/kics.2013.38a.2.174.
16. Lu, Y., Xie, S. J., Yoon, S., and Park, D. S., 2013. “Finger Vein Identification Using Polydirectional Local Line Binary Pattern”, 2013 International Conference on ICT Convergence (ICTC), Jeju, Pp. (61-65), doi: 10.1109/ICTC.2013.6675307.
17. Xie, S. J., Lu, Y., Yoon, S., Yang, J., and Park, D. S., 2015, “Intensity Variation Normalization for Finger Vein Recognition Using Guided Filter Based Singe Scale Retinex”, Sensors, Vol. 15, Pp. (17089-17105), doi:10.3390/s150717089.
18. Kauba, C. and Uhl, A., 2015, "Sensor ageing impact on finger-vein recognition," International Conference on Biometrics (ICB), Phuket, 2015, Pp. (113-120), doi: 10.1109/ICB.2015.7139084.
19. Kauba, C., Piciucco, E., Maiorana, E., Campisi, P., and Uhl, A., 2016, “Advanced variants of feature level fusion for finger vein recognition,” In 2016 International Conference of the Biometrics Special Interest Group (BIOSIG), Sept, Pp. (1–7).
20. Shin, K. Y., Park, Y. H., Nguyen, D. T., and Park K. R., 2014, “Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering”, Sensors, 14, Pp. (3095-3129), doi:10.3390/s140203095.
21. Yahaya, Y. H., Shamsuddin, S. M., and Leng, W. Y., 2016, “Finger Vein Feature Extraction Using Discretization”, 4th International Conference on Artificial Intelligence and Computer Science, (AICS2016), 28 - 29 November, Langkawi, MALAYSIA.
22. Sikarwar, P., and Manmohan, "Finger vein recognition using local directional pattern," 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, 2016, Pp. (1-5), doi: 10.1109/INVENTIVE.2016.7823248.
23. Syarif, M.A., Ong, T.S., Teoh, A.B.J., and Tee, C., 2017, “Enhanced Maximum Curvature Descriptors for Finger-vein Verification”, Multimedia Tools and Applications, Vol.76, Issue 5, Pp. (6859-6887), doi.org/10.1007/s11042-016-3315-4
24. Liu, H., Yang, L., Yang, G., and Yin, Y., 2018, "Discriminative Binary Descriptor for Finger Vein Recognition”, In IEEE Access, vol. 6, Pp. (5795-5804), doi:10.1109/ACCESS.2017.2787543.
25. Meng, X., Xi, X., Yang, G., and Yin, Y., 2018, “Finger vein recognition based on deformation information”, SCIENCE CHINA, Information Sciences, Vol. 61, doi.org/10.1007/s11432-016-9037-0.
26. Lu, Y., Yoon, s., Wu, S., and Park, D. S., 2018, “pyramid Histogram Of Double Competitive Pattern For Finger Vein Recognition”, IEEE Acess, doi:10.1109/ACCESS.2018.2872493
27. Hong, H. G., Lee, M. B., and Park K. R., 2017, “Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image”, Sensors, Vol. 17, doi.org/10.3390/s17061297.
28. Das, R., Piciucco, E. Maiorana and P. Campisi, 2019, “Convolutional Neural Network for Finger-Vein based Biometric Identification”, in IEEE Transaction for Information Forensics and Security, vol. 14, no. 2, Pp. (360-373).
29. Tallam R. R., Temgire, S. S., and Zirange, R. M., 2014, “Finger Vein Recognition System Using Image Processing”, International Journal of Electrical, Electronics and Data Communication, Vol.-2, Issue-5, Pp. (64-68).
30. Huang, B., Dai, D., Li, R., Tang, D., and Li, W., 2010, “Finger-vein Authentication Based on Wide Line Detector and Pattern Normalization”, 2010 International Conference on Pattern Recognition, Pp. (1269-1272).
31. Lu, Y., Xie, S. J., Yoon, S., Yang, J., and Park, D. S., 2013, “Robust Finger Vein ROI Localization Based on Flexible Segmentation”, Sensors, Vol. 13, No. 11, Pp (14339-14366), doi: 10.3390/s131114339.
32. Huang, Z. , and Leng, J., 2010, “Analysis of Hu’s Moment Invariants on Image Scaling and Rotation”, Proceedings of the 2nd International Conference on Computer Engineering and Technology (ICCET), Pp. (476-480).
33. Kauba, C., Piciucco, E., Maiorana, E., Campisi, P., and Uhl, A., 2018, “Robustness of finger-vein recognition”, Hand-Based Biometrics: Methods and Technology, Chapter nine, Pp. (193-216), doi: 10.1049/PBSE008E.
34. Lee, E. C., Jung, H., and Kim, D., 2011, “New Finger Biometric Method Using near Infrared Imaging”, Sensors, Vol. 11, Pp. (2319-2333), doi.org/10.3390/s110302319.
35. Yin Y., Liu L., Sun X., 2011, “SDUMLA-HMT: A multimodal Biometric Database”, In Biometric Recognition by (Sun, Z., L., J., Chen, X., Tan, T. (Eds.)), Springer Berlin Heidelberg, Pp. (260-268).
36. Lu, Y., Xie, S. J., Yoon, S., Wang, Z., and Park, D. S., 2013, “An Available Database for the Research of Finger Vein Recognition”, 2013 6th International Congress on Image and Signal Processing (CISP 2013), Pp (410-415).
37. Vanoni, M., Tome, P., El Shafey, L., and Marcel, S., 2014, “Cross-Database Evaluation Using an Open Finger Vein Sensor”, 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings, Rome, Pp. (30-35),
doi: 10.1109/BIOMS.2014.6951532.

Published

2020-08-30

How to Cite

Mustafa, A. A., & Tahir, A. A. (2020). Improving the Performance of Finger-Vein Recognition System Using A New Scheme of Modified Preprocessing Methods. Academic Journal of Nawroz University, 9(3), 397–409. https://doi.org/10.25007/ajnu.v9n3a855

Issue

Section

Articles