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ABSTRACT 
The rapid evolution of floating-point computing capacity and memory in recent years has resulted Graphics Processing Units 

(GPUs) an increasingly attractive platform to speed scientific applications and process large amount of data on time. Fractals 

have many implementations that involve faster computation and massive amounts of floating-point computation. In this paper, 

constructing the fractal image algorithm has been implemented both sequential and parallel versions using fractal Mandelbrot 

and Julia sets. Central Processing Unit (CPU) was used for the execution in sequential mode while GPU array and CUDA kernel 

was used for the parallel mode. The evaluation of the performance of the constructed algorithms for sequential structure using 

CPUs (2.20 GHz and 2.60 GHz) and parallelism structure for various models of GPU (GeForce GTX 1060 and GeForce GTX 1660 

Ti) devices, calculated in terms of execution time and speedup to compare between CPU and GPU maximum ability. The results 

showed that the execution on GPU using GPU array or CUDA kernel is faster than its sequential implementation using CPU 

and its execution time increases exponentially while the execution time for GPU CUDA kernel model increases linearly. And 

the execution using the CUDA kernel is faster than the execution using GPU array, and the execution time between GPU devices 

was different, GPU with (Ti) series execute faster than the other models.        

Keywords: Fractal, Fractal shapes, Mandelbrot & Julia set, self-similar, GPU, CUDA model, speedup. 
 

1. Introduction 

The Graphics Processing Units (GPUs) are an 

important development point due to the rapid 

advancement of the technology and in particular in 

video games and 3D applications. There is also a 

continuous increase in the development of GPUs for 

general computing activities. As multicore hardware is 

expanding rapidly, and to improve the computational 

performance in a various application, the reliance on 

the GPUs is quickly increased (Haji et al., 2020). 

In several scientific research areas, the GPU achieves 

great success in high-performance computing, such as 

gene engineering, data mining computer games and 

entertainment software, medical sciences, engineering 

sciences, astronavigation, et al (Razian & 

MahvashMohammadi, 2017). Attaching more parallel 

computing resources makes GPU great compared to 

CPU in the floating-point calculation, particularly on 

large-scale data (Wang et al., 2015).  

Escape-time fractals are a method for efficiently 

constructing fractal shapes at each point in space using 

an equation or recurrence relationship. Nowadays, 

with the development of computer hardware, 

computer-generated models are becoming more and 

more real (Divya Udayan J, 2013). In certain cases, the 

algorithms for constructing various fractal shapes 

usually require large quantities of floating-point 

computation, which modern GPUs adapted for 

(Sallow & Abdullah, 2014). 

In handling tasks with usual data access patterns, the 

GPU's parallel processing power can be completely 

utilized (Xiaodong Liu et al., 2014). Therefore, this 

paper explores the use of GPU to accelerate the 

construction of escape-time fractals (Mandelbrot set 

and Julia set). Matlab2020a is the programming 

language used for CPU and simple GPU 

implementations and CUDA programming model 

with Matlab2020a for using GPU compute kernel. The 

evaluation of the performance of the constructed 

algorithms for sequential structure using CPU and 

parallelism structure for various models of GPU 

devices, calculated in terms of execution time and 

speedup to compare between them. 

The remaining section of this paper is structured as 

follows; in section 2 the literature review is given. 
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Section 3, “Fractals” describes fractals and their 

features, applications and common fractal shape sets. 

Section 4, “Graphics processing unites” defines the 

structure and types of GPU and its applications. 

Section 5, “organization of the implementation 

models” explains the implementation details of the 

algorithms in CPU and GPU. Section 6, “GPU 

hardware platform” describes the configuration of the 

used GPU devices. Section 7, illustrates the 

implementation results and analyze it. Section 8, 

explains the conclusions of the work. 

2. Literature Review 

(Zhang & Xu, 2011) simulated Mandelbrot set and 

Julia set via MATLAB and implemented complex 

calculations, large amounts of data storage and and 

output dependent on System-on-a-Programmable-

Chip (SOPC) embedded in the Altera FPGA unit. It is 

revealed that at various iterations and complex 

parameters, but similar at different sizes, the fractal 

graphics appear differently. The study revealed that, 

based on a smaller hardware architecture, fractal 

algorithms and computer graphics can be 

implemented faster. 

(Divya Udayan J, 2013) described the modeling of the 

fractal 2D model as the Mandelbrot and the fractal 3D 

model as terrain. To demonstrate the issue of natural 

objects with the use of classical geometry, they 

proposed a hardware-accelerated fractal-based 

rendering approach for natural environments. The 

comparison between the serial algorithm and a parallel 

algorithm was developed using the CUDA model 

using a GeForce GTX 650 GPU. The parallel speedup 

implemented was on average 2X times faster than its 

sequential implementation. 

(Sallow & Abdullah, 2014) found that the construction 

of the fractal shapes using GPU Arrays in parallel 

modes was more powerful and faster than the 

construction using serial mode CPUs. Also, they found 

that in many cases, the algorithms for creating various 

fractal shapes usually require huge quantities of 

floating-point computation for that reason, because of 

that they used GPU devices which are equipped for 

parallel computations with lots of arithmetic 

operations. The Sierpinski Gasket set was used as a 

fractal structure for their simulation. 

(Anthony Atella, 2018) developed the Chaos 

application to fix the issue of online tools with 

restricted fractals, rendering techniques, and shaders. 

Which also struggle in a reusable way to abstract these 

concepts. This implies that it is important to learn 

several programs and interfaces and use them to fully 

research the topic. The Chaos, which is an abstract 

rendering program for fractal geometry. 

The goal of Gilbert Gutabaga Hungilo (Hungilo et al., 

2020) in 2020, was to explain the Mandelbrot Set 

construction simulation by comparing the results of 

the Python function generating the Mandelbrot set in 

three cases, using pure Python, Numba, and Numba 

CUDA running the Python function simultaneously. 

Using an iterated function system (IFS), the fractal is 

simulated based on the number of iterations and the 

size of the formed fractals. The simulation was 

accelerated using Numba that uses (Just In Time 

Python) code compilation, and Numba CUDA 

on GPU. Based on the performance results, the GPU 

simulation was quicker than the CPU models. 

In the previous works, many Fractals construction 

methods were implemented using different devices. 

Some of them just used the simulation to construct 

many fractal shapes, while others compare 

implementation on CPU and GPU. In this paper, the 

comparison was done using three different models one 

on CPU and two on GPU. Also, it provides a very well 

distinction between GPU devices that other developers 

and researchers may employ. 

3. Fractals 

Fractals are natural or artificial structures or geometric 

patterns that provide a high degree of scale invariance 

or self-similarity. Fractal-related scale invariance 

means that the scale is not significant to the outcomes. 
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It is possible to observe structures that are invariant in 

scale from various distances, but the object still looks 

the same. Self-similar systems have parts that are 

identical to themselves. It is also clear that inside the 

object the entire structure can be identified. Because of 

these two properties, very complex structures, when 

recognized as fractals, can be based on simple laws. 

There are fractals nearly everywhere in the nature. But 

it is often not easy to determine objects to be fractal 

objects. But the rules of fractals help to understand 

them better and calculate or simulate them. There are 

a lot of objects in the nature has the fractals properties 

(mountains, blood vessels, snowflakes, etc.) 

(Mandelbrot, 2004). Fig (1) shows some fractal plants.   

    

 

Fig.1. Fractals plants 

simply iterating the function again and again, a fractal 

can be generated. For instance, if a function is f(y) and 

the initial value is y = x, then f(x), f(f(x)), f(f(f(x))), etc. 

That would have been the outcome. It could be 

possible that after each iteration it will give greater and 

greater value by iterating function (Negi et al., 2014). 

3.1 Properties of Fractal 

A fractal has the following Combined features (Belma 

& Sonay, 2016): 

• The parts are of the same shape or structure as the 

whole unless they are of different size and maybe 

slightly deformed; 

• Its shape, and remains are extremely irregular or 

fragmented irrespective of the size of the 

examination;  

• It includes 'different components,' the sizes of 

which are very varied and cover a wide range; 

• Composition according to iteration;  

• Scale-independent 

3.2 Fractals applications 

Fractals are the distinctive, irregular patterns left 

behind by the chaotic world's unexpected movements 

at work. Most applications of fractals below are: 

(Biswas et al., 2018)     

• Astronomy: More evidence on the distribution of 

matter in the universe is required by cosmologists 

to prove (or not) that the universe is a fractal. 

• Nature: Modeling nature visually (coastlines, 

mountains, soil erosion and to analyze seismic 

patterns). 

• Computer science: the most beneficial is image 

compression. 

• Fluid mechanics: allows engineers and physicists 

understand complex flows more effectively 

(Turbulent flows). 

• Telecommunications: reducing the antenna size 

and weight (Fractenna company). 

• Surface physics: explain the roughness of 

surfaces.  

• Medicine: biosensor interactions can be studied. 

3.3 Fractals Sets 

3.3.1 Sierpinski triangle 

The Sierpiński triangle also referred to as the 

Sierpiński gasket or Sierpiński sieve, is an elegant 

static fractal set of an equilateral triangle's exact shape, 

iteratively split into smaller equilateral triangles. it can 

be constructed by continuously performing a method 

of joining the midpoints of each side of the triangle to 

form four different triangles and slicing out the middle 

triangle (Sawant, n.d.), as shown in Fig(2). 
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Fig. 2.  Sierpinski Triangle 

3.3.2 Mandelbrot set 

In mathematics, the Mandelbrot set is an instance of a 

fractal set of complex numbers as well. it is critical for 

chaos theory and can be represented with the 

equation (1): (Negi et al., 2014)  

zn+1 = zn
2 + c……..(1) 

Where complicated numbers are c and z and n is 0 or a 

positive integer (natural number). For Z, the starting 

value is always (0.0). C is the constant component that 

specifies the position in the complex plane of the 

iteration sequence. The set of Mandelbrot is now the 

set of (C)s whose outcomes are not diver gating to 

infinity but remain under those limits. Fig (3) shows 

the shape of Mandelbrot set. 

 

Fig.3.  Mandelbrot set 

3.3.3 Julia Set 

A particular Julia set can be described by a point 

matching its constant c value in the Mandelbrot set and 

the look of an entire Julia set is generally identical in 

style to that of the Mandelbrot set at that spot. Usually, 

points near the edges of the Mandelbrot set give the 

most fascinating Julia sets. In the Mandelbrot set, c 

varies with each pixel and equals (x + yi), where x and 

y are the image dimensions.  All Julia sets is a map 

of the Mandelbrot set, since it requires a different c at 

each position, like it is transformed through space 

between one Julia set to the other (Mandelbrot, 1982). 

Fig (4) shows one of Julia set shapes. 

Fig.4.  Julia set 

4. Graphics Processing Units 

A graphics processing unit (GPU) is a specialized 

electronic circuit designed to automatically access 

the memory in order to speed up the production of 

images in a frame buffer designed for display system 

output. In embedded systems, cell phones, personal 

devices, workstations, and game consoles, GPUs are 

included (Kirk & Hwu, 2013). The GPU is extremely 

well-suited to resolve concerns that can be presented 

as data-parallel computations. The same program is 

run on several data elements in parallel with the high 

ratio of arithmetic operations to memory operations. 

Their intensely parallel nature makes them more 

effective for algorithms that process large amounts of 

data in parallel than general-purpose central 

processing units (CPUs) (Jimenez et al., 2017). 

In GPUs, many more transistors act like they can 

process data arrays rather than flow control of many 

sequential processing threads. Fig (5) shows how 

much area different circuits in CPUs and GPUs 

occupy:(Nogues et al., 2020) 
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Fig.5. CPUs vs GPUs 

4.2 GPUs Types (Kirk & Hwu, 2013) 

• Dedicated graphics cards: the most powerful class 

uses an expansion slot to connect with the 

motherboard. 

• Integrated graphics processing (IGP): can be done 

as a part of the (northbridge) chipset into the 

motherboard, or with the Processor on the same 

die. 

• Processing hybrid graphics: share memory with 

the system and have a relatively small dedicated 

memory buffer to help make up for the high 

latency of the RAM. 

• External GPU (eGPU): similar to a large external 

hard drive located outside the computer's 

housing. 

• General-purpose computing on graphics 

processing units: Used as a modified version of a 

stream processor that runs compute kernels. This 

principle converts the huge computational power 

of the modern graphics accelerator into general 

computational power to be used for various forms 

of parallel operations. 

4.3 GPU applications  

Some of the fields where GPUs are used for general 

purpose computing are as follows: (Kirk & Hwu, 

2017) 

• Signal, image and video processing, computer 

vision.  

• Artificial intelligence, database processes.  

• Weather forecasting, geoprocessing, climate 

analysis. 

• Molecular modeling, astrophysics, quantum 

mechanical science.  

• computational finance.  

• Intrusion detection, cryptography, and 

cryptanalysis.  

• Automation of electronic design.  

• Increasing computational resources for distributed 

projects. 

4.4 Compute Unified Device Architecture (CUDA)  

kernel 

CUDA is a model developed by Nvidia for the parallel 

computing and application programming interface 

(API). A CUDA-enabled GPU can be used by software 

developers and software engineers for general 

purpose processing, an approach called General-

Purpose computing on Graphics Processing Units 

(GPGPU). The CUDA platform is a software layer that 

provides direct access to the simulated instruction set 

of the GPU and parallel processing elements for 

computer kernel execution. A kernel is a procedure 

compiled independently from but used by a 

running main program on CPU for high throughput 

accelerators (such as Digital Signal Processors (DSPs) 

or Field-Programmable Gate Arrays (FPGAs), GPUs). 

Sometimes they can be called compute shaders, 

sharing execution units on GPUs with vertex shaders 

and pixel shaders, but they are not restricted to 

execution on one system class or graphics APIs (Liu et 
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al., 2019).  They can be classified through separate 

programming languages such as Open Computing 

Language (OpenCL C), or (compute shaders') 

which are written in a shading language, or are 

directly implemented in application code written in a 

high-level language, as C++AMP (Kirk & Hwu, 2017).  

5. Organization of The Implementation Models 

Mandelbrot set and Julia set were used as a case study 

to be constructed using GPU devices. The goal of using 

these devices is to greatly reducing the time required 

to construct fractals shapes and any other shapes that 

required large amounts of mathematic computations. 

Three models had used in this paper to construct 

fractal shapes. The first is the CPU sequential model, 

and the second is the GPU parallel model using GPU 

array, while the third one uses the GPU parallel CUDA 

model. All the algorithms have been executed using 

MATLAB 2020a. 

5.1 Sequential CPU Model  

Fractal shapes constructed sequentially using a single 

threaded approach, and all calculations are performed 

on the host CPU by MATLAB. Table (1) shows the 

configurations of CPUs that used in the 

implementation.  

Table (1): Complete  CPU configurations 

System 
Processors 

Name 
Speed RAM 

Cores 

Numbers 

System 

type 

Cp1_GeForce_GTX 

1060 

Intel-i7-

8750H 

2.20 

GHz 
16 GB 6 64-bit 

Cp2_GeForce_GTX 

1660 Ti 

Intel-i7-

9750H 

2.60 

GHz 
32 GB 6 64-bit 

 

Fig (6) shows the steps to construct Mandelbrot set 

and Julia set fractals shapes on the host CPU. 

 

Fig. 6. CPU model execution flowchart 

 

5.2 GPU Simple Model (using gpuArray):  

The same algorithm has used to construct fractal 

shapes, but the input coordinates had moved to be 

stored on the GPU using gpuArray. This technique 

allows MATLAB to work with the same data array on 

the GPU using the same code. Also, this technique 

provides some speedup with no coding cost by using 

gpuArray method in MATLAB to convert the input 

data to be storied on the GPU. Fig (7) shows the steps 

to construct Mandelbrot set and Julia set fractals 

shapes on the GPU using gpuArray method. 
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Fig.7. GPU Simple model execution flowchart 

 

5.3 GPU CUDAKernel Model  

The CUDA model constructs the fractal shape 

differently. This model uses a kernel in which each 

thread computes the value of each pixel, and then 

colors it. Fig (8) shows the CUDA kernel code for 

constructing Mandelbrot fractal shape, saved in 

Mandelbrot.cu file written in C programming 

language. Fig (9) shows the steps to construct the 

Mandelbrot set and Julia set fractals shapes on the 

GPU using the CUDA model. The CUDAKernel 

method is used to call the kernel in MATLAB, 

requiring the user to define the thread and block 

configurations to use. To construct the Julia set the 

same kernel used but the values of Cs changed. 

 

Fig.8. CUDA kernel code for constructing fractal shape. 

 

 

Fig.9. GPU CUDAKernel model execution flowchart 
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6. GPU Hardware platform 

A thread is generated within each pixel in the GPU 

architecture and a specific thread id is assigned to each 

thread. In parallel, each thread executes the algorithm 

and outputs the results. NVIDIA hardware is used for 

this implementation. Two laptop computers were used 

each one supported with GPU hardware and their 

complete specification as shown in fig (10.a,10. b). 

  

                

a) Computer 1:  GeForce GTX 1060 

 

b) Computer 2: GeForce GTX 1660 Ti 

Fig.10. MSI PC’s NVIDIA hardware supported 

specification 

7. Implementation Results  

The experimental uses single-precision operation on 

CPU and GPU implementation to construct the fractals 

shapes. Speedup fold (×) measures the acceleration of 

the algorithm in GPU implementation and is the time 

that the algorithm takes to run on the host CPU, 

divided by the time that takes to run on the GPU 

device. Table (2) reports the processing time taken by 

the fractal algorithm for three different iterations 

values (1000,5000,10000) for each fractal set 

(Mandelbrot, Julia).  The plot between execution time 

for implementation fractal algorithm is shown in Fig 

(11), Fig (12), and Fig (13) 

Table (2): Processing time of CPU and GPU systems. 
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1000 7.63secs 1.99secs 3.8x 0.05 secs 171.4x 

5000 35.26secs 10.77secs 3.3x 0.39 secs 101x 

10000 71.60secs 19.40secs 3.7x 0.47secs 173x 

 

1000 8.25secs 2.01secs 4.1x 0.06secs 157.5x 

5000 40.83secs 10.43secs 3.9x 0.25secs 167.2x 

10000 77.50secs 21.33secs 3.6x 0.23secs 373.1x 
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1000 6.30secs 0.94secs 6.7x 0.044 sec 143x 

5000 28.32secs 4.50secs 6.3x 
0.095 
secs 

298x 

10000 55.84secs 8.93secs 6.3x 0.161 sec 347x 

 

1000 6.63secs 1.52secs 4.4x 
0.054 
secs 

123x 

5000 30.17secs 4.69secs 6.4x 
0.055 
secs 

548x 

10000 59.23secs 9.39secs 6.3x 
0.052 
secs 

1139x 

 

Fig (11) shows the execution time on laptop 1 (Pc1) 

that supported with CPU (2.20 GHz) is slower that 

the execution time on labtop2 (Pc2) that supported 

with CPU (2.60 GHz) 
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Fig.11. Comparison of cp1 and cp2 computation time on 

CPU 

Fig (12) shows the execution time using GPU array on 

laptop 1 (Pc1) that supported with GPU (GeForce GTX 

1060) is lower that the execution time on labtop2 (Pc2) 

that supported with GPU (GeForce GTX 1660 Ti). 

 

Fig.12. Comparison of cp1 and cp2 computation time on 

GPU Array 

Fig (12) shows the execution time using CUDA kernel 

on laptop 1 (Pc1) that supported with GPU (GeForce 

GTX 1060) is lower that the execution time on labtop2 

(Pc2) that supported with GPU (GeForce GTX 1660 Ti). 

 

Fig.13. Comparison of cp1 and cp2 computation time on 

GPU CUDA  

From the table (2) and Fig (11), Fig (12), and Fig (13) 

graphs, the time needed by the GPU is almost constant, 

and as the image size increases, the CPU time increases 

exponentially, while the execution time for GPU 

CUDA kernel model increases linearly as showing 

table (3) and Fig (14).   

Table (3): Generation Times for Vary Square Images 

size 

CPU 

Pc1 

GPU Array 

Pc1 

GPU_CUDA 

Kernel Pc1 

10 0.16 0.14 0.03 

100 0.86 0.16 0.04 

1000 9.28 2.00 0.06 

10000 84.30 21.07 0.23 

100000 818.36 203.32 0.38 

 

 

 

Fig.14. Comparison of Generation Times 

 

8. Conclusion 

The construction of fractals Mandelbrot and Julia sets 

were done in both serial and parallel modes using 

different hardwires supported with accelerated 

techniques to increase the speed of computation in 

fractal shapes. The evaluation of the performance of 

the constructed algorithms for sequential structure 

using CPUs (2.20 GHz and 2.60 GHz) and parallelism 

structure for various models of GPU (GeForce GTX 
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1060 and GeForce GTX 1660 Ti) devices, calculated in 

terms of execution time and speedup to compare CPU 

and GPU maximum ability. The results showed that 

execution on GPU using GPU array or GUDA kernel is 

faster than its sequential implementation. And the 

execution using the GUDA kernel is faster than the 

execution using GPU array. The execution time 

between GPU devices was different, GPU with (Ti: 

“Titanium”) series execute faster than the other models 

and more powerful. 
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