
Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

This is an open access article distributed under the Creative Commons Attribution License

Copyright ©2017. e-ISSN: 2520-789X

https://doi.org/10.25007/ajnu.v10n1a1030

1

Implementation and Analysis of Fractals Shapes using GPU-CUDA Model

Amira Bibo Sallow

Dept. of Computer Science, Nawroz University, Dohuk, Kurdistan-region, Iraq

ABSTRACT
The rapid evolution of floating-point computing capacity and memory in recent years has resulted Graphics Processing Units

(GPUs) an increasingly attractive platform to speed scientific applications and process large amount of data on time. Fractals

have many implementations that involve faster computation and massive amounts of floating-point computation. In this paper,

constructing the fractal image algorithm has been implemented both sequential and parallel versions using fractal Mandelbrot

and Julia sets. Central Processing Unit (CPU) was used for the execution in sequential mode while GPU array and CUDA kernel

was used for the parallel mode. The evaluation of the performance of the constructed algorithms for sequential structure using

CPUs (2.20 GHz and 2.60 GHz) and parallelism structure for various models of GPU (GeForce GTX 1060 and GeForce GTX 1660

Ti) devices, calculated in terms of execution time and speedup to compare between CPU and GPU maximum ability. The results

showed that the execution on GPU using GPU array or CUDA kernel is faster than its sequential implementation using CPU

and its execution time increases exponentially while the execution time for GPU CUDA kernel model increases linearly. And

the execution using the CUDA kernel is faster than the execution using GPU array, and the execution time between GPU devices

was different, GPU with (Ti) series execute faster than the other models.

Keywords: Fractal, Fractal shapes, Mandelbrot & Julia set, self-similar, GPU, CUDA model, speedup.

1. Introduction

The Graphics Processing Units (GPUs) are an

important development point due to the rapid

advancement of the technology and in particular in

video games and 3D applications. There is also a

continuous increase in the development of GPUs for

general computing activities. As multicore hardware is

expanding rapidly, and to improve the computational

performance in a various application, the reliance on

the GPUs is quickly increased (Haji et al., 2020).

In several scientific research areas, the GPU achieves

great success in high-performance computing, such as

gene engineering, data mining computer games and

entertainment software, medical sciences, engineering

sciences, astronavigation, et al (Razian &

MahvashMohammadi, 2017). Attaching more parallel

computing resources makes GPU great compared to

CPU in the floating-point calculation, particularly on

large-scale data (Wang et al., 2015).

Escape-time fractals are a method for efficiently

constructing fractal shapes at each point in space using

an equation or recurrence relationship. Nowadays,

with the development of computer hardware,

computer-generated models are becoming more and

more real (Divya Udayan J, 2013). In certain cases, the

algorithms for constructing various fractal shapes

usually require large quantities of floating-point

computation, which modern GPUs adapted for

(Sallow & Abdullah, 2014).

In handling tasks with usual data access patterns, the

GPU's parallel processing power can be completely

utilized (Xiaodong Liu et al., 2014). Therefore, this

paper explores the use of GPU to accelerate the

construction of escape-time fractals (Mandelbrot set

and Julia set). Matlab2020a is the programming

language used for CPU and simple GPU

implementations and CUDA programming model

with Matlab2020a for using GPU compute kernel. The

evaluation of the performance of the constructed

algorithms for sequential structure using CPU and

parallelism structure for various models of GPU

devices, calculated in terms of execution time and

speedup to compare between them.

The remaining section of this paper is structured as

follows; in section 2 the literature review is given.

https://doi.org/10.25007/ajnu.v10n1a1030

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

2

Section 3, “Fractals” describes fractals and their

features, applications and common fractal shape sets.

Section 4, “Graphics processing unites” defines the

structure and types of GPU and its applications.

Section 5, “organization of the implementation

models” explains the implementation details of the

algorithms in CPU and GPU. Section 6, “GPU

hardware platform” describes the configuration of the

used GPU devices. Section 7, illustrates the

implementation results and analyze it. Section 8,

explains the conclusions of the work.

2. Literature Review

(Zhang & Xu, 2011) simulated Mandelbrot set and

Julia set via MATLAB and implemented complex

calculations, large amounts of data storage and and

output dependent on System-on-a-Programmable-

Chip (SOPC) embedded in the Altera FPGA unit. It is

revealed that at various iterations and complex

parameters, but similar at different sizes, the fractal

graphics appear differently. The study revealed that,

based on a smaller hardware architecture, fractal

algorithms and computer graphics can be

implemented faster.

(Divya Udayan J, 2013) described the modeling of the

fractal 2D model as the Mandelbrot and the fractal 3D

model as terrain. To demonstrate the issue of natural

objects with the use of classical geometry, they

proposed a hardware-accelerated fractal-based

rendering approach for natural environments. The

comparison between the serial algorithm and a parallel

algorithm was developed using the CUDA model

using a GeForce GTX 650 GPU. The parallel speedup

implemented was on average 2X times faster than its

sequential implementation.

(Sallow & Abdullah, 2014) found that the construction

of the fractal shapes using GPU Arrays in parallel

modes was more powerful and faster than the

construction using serial mode CPUs. Also, they found

that in many cases, the algorithms for creating various

fractal shapes usually require huge quantities of

floating-point computation for that reason, because of

that they used GPU devices which are equipped for

parallel computations with lots of arithmetic

operations. The Sierpinski Gasket set was used as a

fractal structure for their simulation.

(Anthony Atella, 2018) developed the Chaos

application to fix the issue of online tools with

restricted fractals, rendering techniques, and shaders.

Which also struggle in a reusable way to abstract these

concepts. This implies that it is important to learn

several programs and interfaces and use them to fully

research the topic. The Chaos, which is an abstract

rendering program for fractal geometry.

The goal of Gilbert Gutabaga Hungilo (Hungilo et al.,

2020) in 2020, was to explain the Mandelbrot Set

construction simulation by comparing the results of

the Python function generating the Mandelbrot set in

three cases, using pure Python, Numba, and Numba

CUDA running the Python function simultaneously.

Using an iterated function system (IFS), the fractal is

simulated based on the number of iterations and the

size of the formed fractals. The simulation was

accelerated using Numba that uses (Just In Time

Python) code compilation, and Numba CUDA

on GPU. Based on the performance results, the GPU

simulation was quicker than the CPU models.

In the previous works, many Fractals construction

methods were implemented using different devices.

Some of them just used the simulation to construct

many fractal shapes, while others compare

implementation on CPU and GPU. In this paper, the

comparison was done using three different models one

on CPU and two on GPU. Also, it provides a very well

distinction between GPU devices that other developers

and researchers may employ.

3. Fractals

Fractals are natural or artificial structures or geometric

patterns that provide a high degree of scale invariance

or self-similarity. Fractal-related scale invariance

means that the scale is not significant to the outcomes.

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

3

It is possible to observe structures that are invariant in

scale from various distances, but the object still looks

the same. Self-similar systems have parts that are

identical to themselves. It is also clear that inside the

object the entire structure can be identified. Because of

these two properties, very complex structures, when

recognized as fractals, can be based on simple laws.

There are fractals nearly everywhere in the nature. But

it is often not easy to determine objects to be fractal

objects. But the rules of fractals help to understand

them better and calculate or simulate them. There are

a lot of objects in the nature has the fractals properties

(mountains, blood vessels, snowflakes, etc.)

(Mandelbrot, 2004). Fig (1) shows some fractal plants.

Fig.1. Fractals plants

simply iterating the function again and again, a fractal

can be generated. For instance, if a function is f(y) and

the initial value is y = x, then f(x), f(f(x)), f(f(f(x))), etc.

That would have been the outcome. It could be

possible that after each iteration it will give greater and

greater value by iterating function (Negi et al., 2014).

3.1 Properties of Fractal

A fractal has the following Combined features (Belma

& Sonay, 2016):

• The parts are of the same shape or structure as the

whole unless they are of different size and maybe

slightly deformed;

• Its shape, and remains are extremely irregular or

fragmented irrespective of the size of the

examination;

• It includes 'different components,' the sizes of

which are very varied and cover a wide range;

• Composition according to iteration;

• Scale-independent

3.2 Fractals applications

Fractals are the distinctive, irregular patterns left

behind by the chaotic world's unexpected movements

at work. Most applications of fractals below are:

(Biswas et al., 2018)

• Astronomy: More evidence on the distribution of

matter in the universe is required by cosmologists

to prove (or not) that the universe is a fractal.

• Nature: Modeling nature visually (coastlines,

mountains, soil erosion and to analyze seismic

patterns).

• Computer science: the most beneficial is image

compression.

• Fluid mechanics: allows engineers and physicists

understand complex flows more effectively

(Turbulent flows).

• Telecommunications: reducing the antenna size

and weight (Fractenna company).

• Surface physics: explain the roughness of

surfaces.

• Medicine: biosensor interactions can be studied.

3.3 Fractals Sets

3.3.1 Sierpinski triangle

The Sierpiński triangle also referred to as the

Sierpiński gasket or Sierpiński sieve, is an elegant

static fractal set of an equilateral triangle's exact shape,

iteratively split into smaller equilateral triangles. it can

be constructed by continuously performing a method

of joining the midpoints of each side of the triangle to

form four different triangles and slicing out the middle

triangle (Sawant, n.d.), as shown in Fig(2).

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

4

Fig. 2. Sierpinski Triangle

3.3.2 Mandelbrot set

In mathematics, the Mandelbrot set is an instance of a

fractal set of complex numbers as well. it is critical for

chaos theory and can be represented with the

equation (1): (Negi et al., 2014)

zn+1 = zn
2 + c……..(1)

Where complicated numbers are c and z and n is 0 or a

positive integer (natural number). For Z, the starting

value is always (0.0). C is the constant component that

specifies the position in the complex plane of the

iteration sequence. The set of Mandelbrot is now the

set of (C)s whose outcomes are not diver gating to

infinity but remain under those limits. Fig (3) shows

the shape of Mandelbrot set.

Fig.3. Mandelbrot set

3.3.3 Julia Set

A particular Julia set can be described by a point

matching its constant c value in the Mandelbrot set and

the look of an entire Julia set is generally identical in

style to that of the Mandelbrot set at that spot. Usually,

points near the edges of the Mandelbrot set give the

most fascinating Julia sets. In the Mandelbrot set, c

varies with each pixel and equals (x + yi), where x and

y are the image dimensions. All Julia sets is a map

of the Mandelbrot set, since it requires a different c at

each position, like it is transformed through space

between one Julia set to the other (Mandelbrot, 1982).

Fig (4) shows one of Julia set shapes.

Fig.4. Julia set

4. Graphics Processing Units

A graphics processing unit (GPU) is a specialized

electronic circuit designed to automatically access

the memory in order to speed up the production of

images in a frame buffer designed for display system

output. In embedded systems, cell phones, personal

devices, workstations, and game consoles, GPUs are

included (Kirk & Hwu, 2013). The GPU is extremely

well-suited to resolve concerns that can be presented

as data-parallel computations. The same program is

run on several data elements in parallel with the high

ratio of arithmetic operations to memory operations.

Their intensely parallel nature makes them more

effective for algorithms that process large amounts of

data in parallel than general-purpose central

processing units (CPUs) (Jimenez et al., 2017).

In GPUs, many more transistors act like they can

process data arrays rather than flow control of many

sequential processing threads. Fig (5) shows how

much area different circuits in CPUs and GPUs

occupy:(Nogues et al., 2020)

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

5

Fig.5. CPUs vs GPUs

4.2 GPUs Types (Kirk & Hwu, 2013)

• Dedicated graphics cards: the most powerful class

uses an expansion slot to connect with the

motherboard.

• Integrated graphics processing (IGP): can be done

as a part of the (northbridge) chipset into the

motherboard, or with the Processor on the same

die.

• Processing hybrid graphics: share memory with

the system and have a relatively small dedicated

memory buffer to help make up for the high

latency of the RAM.

• External GPU (eGPU): similar to a large external

hard drive located outside the computer's

housing.

• General-purpose computing on graphics

processing units: Used as a modified version of a

stream processor that runs compute kernels. This

principle converts the huge computational power

of the modern graphics accelerator into general

computational power to be used for various forms

of parallel operations.

4.3 GPU applications

Some of the fields where GPUs are used for general

purpose computing are as follows: (Kirk & Hwu,

2017)

• Signal, image and video processing, computer

vision.

• Artificial intelligence, database processes.

• Weather forecasting, geoprocessing, climate

analysis.

• Molecular modeling, astrophysics, quantum

mechanical science.

• computational finance.

• Intrusion detection, cryptography, and

cryptanalysis.

• Automation of electronic design.

• Increasing computational resources for distributed

projects.

4.4 Compute Unified Device Architecture (CUDA)

kernel

CUDA is a model developed by Nvidia for the parallel

computing and application programming interface

(API). A CUDA-enabled GPU can be used by software

developers and software engineers for general

purpose processing, an approach called General-

Purpose computing on Graphics Processing Units

(GPGPU). The CUDA platform is a software layer that

provides direct access to the simulated instruction set

of the GPU and parallel processing elements for

computer kernel execution. A kernel is a procedure

compiled independently from but used by a

running main program on CPU for high throughput

accelerators (such as Digital Signal Processors (DSPs)

or Field-Programmable Gate Arrays (FPGAs), GPUs).

Sometimes they can be called compute shaders,

sharing execution units on GPUs with vertex shaders

and pixel shaders, but they are not restricted to

execution on one system class or graphics APIs (Liu et

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

6

al., 2019). They can be classified through separate

programming languages such as Open Computing

Language (OpenCL C), or (compute shaders')

which are written in a shading language, or are

directly implemented in application code written in a

high-level language, as C++AMP (Kirk & Hwu, 2017).

5. Organization of The Implementation Models

Mandelbrot set and Julia set were used as a case study

to be constructed using GPU devices. The goal of using

these devices is to greatly reducing the time required

to construct fractals shapes and any other shapes that

required large amounts of mathematic computations.

Three models had used in this paper to construct

fractal shapes. The first is the CPU sequential model,

and the second is the GPU parallel model using GPU

array, while the third one uses the GPU parallel CUDA

model. All the algorithms have been executed using

MATLAB 2020a.

5.1 Sequential CPU Model

Fractal shapes constructed sequentially using a single

threaded approach, and all calculations are performed

on the host CPU by MATLAB. Table (1) shows the

configurations of CPUs that used in the

implementation.

Table (1): Complete CPU configurations

System
Processors

Name
Speed RAM

Cores

Numbers

System

type

Cp1_GeForce_GTX

1060

Intel-i7-

8750H

2.20

GHz
16 GB 6 64-bit

Cp2_GeForce_GTX

1660 Ti

Intel-i7-

9750H

2.60

GHz
32 GB 6 64-bit

Fig (6) shows the steps to construct Mandelbrot set

and Julia set fractals shapes on the host CPU.

Fig. 6. CPU model execution flowchart

5.2 GPU Simple Model (using gpuArray):

The same algorithm has used to construct fractal

shapes, but the input coordinates had moved to be

stored on the GPU using gpuArray. This technique

allows MATLAB to work with the same data array on

the GPU using the same code. Also, this technique

provides some speedup with no coding cost by using

gpuArray method in MATLAB to convert the input

data to be storied on the GPU. Fig (7) shows the steps

to construct Mandelbrot set and Julia set fractals

shapes on the GPU using gpuArray method.

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

7

Fig.7. GPU Simple model execution flowchart

5.3 GPU CUDAKernel Model

The CUDA model constructs the fractal shape

differently. This model uses a kernel in which each

thread computes the value of each pixel, and then

colors it. Fig (8) shows the CUDA kernel code for

constructing Mandelbrot fractal shape, saved in

Mandelbrot.cu file written in C programming

language. Fig (9) shows the steps to construct the

Mandelbrot set and Julia set fractals shapes on the

GPU using the CUDA model. The CUDAKernel

method is used to call the kernel in MATLAB,

requiring the user to define the thread and block

configurations to use. To construct the Julia set the

same kernel used but the values of Cs changed.

Fig.8. CUDA kernel code for constructing fractal shape.

Fig.9. GPU CUDAKernel model execution flowchart

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

8

6. GPU Hardware platform

A thread is generated within each pixel in the GPU

architecture and a specific thread id is assigned to each

thread. In parallel, each thread executes the algorithm

and outputs the results. NVIDIA hardware is used for

this implementation. Two laptop computers were used

each one supported with GPU hardware and their

complete specification as shown in fig (10.a,10. b).

a) Computer 1: GeForce GTX 1060

b) Computer 2: GeForce GTX 1660 Ti

Fig.10. MSI PC’s NVIDIA hardware supported

specification

7. Implementation Results

The experimental uses single-precision operation on

CPU and GPU implementation to construct the fractals

shapes. Speedup fold (×) measures the acceleration of

the algorithm in GPU implementation and is the time

that the algorithm takes to run on the host CPU,

divided by the time that takes to run on the GPU

device. Table (2) reports the processing time taken by

the fractal algorithm for three different iterations

values (1000,5000,10000) for each fractal set

(Mandelbrot, Julia). The plot between execution time

for implementation fractal algorithm is shown in Fig

(11), Fig (12), and Fig (13)

Table (2): Processing time of CPU and GPU systems.

D
e

v
ic

e
Fractal
shape

It
e

ra
ti

o
n

s

C
P

U

(e
xe

cu
ti

o
n

 t
im

e
)

G
P

U
 A

rr
a

y

(e
xe

cu
ti

o
n

 t
im

e
)

S
p

ee
d

 u
p

1

G
P

U
_

C
U

D
A

K

e
rn

e
l

(e

xe
cu

ti
o

n
 t

im
e

)

S
p

ee
d

 u
p

2

C
o

m
p

u
te

r1
:

 G
eF

o
rc

e
G

T
X

 1
06

0

1000 7.63secs 1.99secs 3.8x 0.05 secs 171.4x

5000 35.26secs 10.77secs 3.3x 0.39 secs 101x

10000 71.60secs 19.40secs 3.7x 0.47secs 173x

1000 8.25secs 2.01secs 4.1x 0.06secs 157.5x

5000 40.83secs 10.43secs 3.9x 0.25secs 167.2x

10000 77.50secs 21.33secs 3.6x 0.23secs 373.1x

C
o

m
p

u
te

r2
:

G
eF

o
rc

e
G

T
X

 1
6

60
 T

i

1000 6.30secs 0.94secs 6.7x 0.044 sec 143x

5000 28.32secs 4.50secs 6.3x
0.095
secs

298x

10000 55.84secs 8.93secs 6.3x 0.161 sec 347x

1000 6.63secs 1.52secs 4.4x
0.054
secs

123x

5000 30.17secs 4.69secs 6.4x
0.055
secs

548x

10000 59.23secs 9.39secs 6.3x
0.052
secs

1139x

Fig (11) shows the execution time on laptop 1 (Pc1)

that supported with CPU (2.20 GHz) is slower that

the execution time on labtop2 (Pc2) that supported

with CPU (2.60 GHz)

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

9

Fig.11. Comparison of cp1 and cp2 computation time on

CPU

Fig (12) shows the execution time using GPU array on

laptop 1 (Pc1) that supported with GPU (GeForce GTX

1060) is lower that the execution time on labtop2 (Pc2)

that supported with GPU (GeForce GTX 1660 Ti).

Fig.12. Comparison of cp1 and cp2 computation time on

GPU Array

Fig (12) shows the execution time using CUDA kernel

on laptop 1 (Pc1) that supported with GPU (GeForce

GTX 1060) is lower that the execution time on labtop2

(Pc2) that supported with GPU (GeForce GTX 1660 Ti).

Fig.13. Comparison of cp1 and cp2 computation time on

GPU CUDA

From the table (2) and Fig (11), Fig (12), and Fig (13)

graphs, the time needed by the GPU is almost constant,

and as the image size increases, the CPU time increases

exponentially, while the execution time for GPU

CUDA kernel model increases linearly as showing

table (3) and Fig (14).

Table (3): Generation Times for Vary Square Images

size

CPU

Pc1

GPU Array

Pc1

GPU_CUDA

Kernel Pc1

10 0.16 0.14 0.03

100 0.86 0.16 0.04

1000 9.28 2.00 0.06

10000 84.30 21.07 0.23

100000 818.36 203.32 0.38

Fig.14. Comparison of Generation Times

8. Conclusion

The construction of fractals Mandelbrot and Julia sets

were done in both serial and parallel modes using

different hardwires supported with accelerated

techniques to increase the speed of computation in

fractal shapes. The evaluation of the performance of

the constructed algorithms for sequential structure

using CPUs (2.20 GHz and 2.60 GHz) and parallelism

structure for various models of GPU (GeForce GTX

7.63

35.26

71.60

6.30

28.32

55.84

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1000 5000 10000

 CPU (execution time) Pc1 CPU (execution time) Pc2

1.99

10.78

19.41

1.88

9.00

17.87

0.00

5.00

10.00

15.00

20.00

25.00

1000 5000 10000

GPU Array (execution time) Pc1

GPU Array (execution time) Pc2

0.05

0.39
0.47

0.04
0.10

0.16

0.00

0.20

0.40

0.60

1000 5000 10000

GPU_CUDA Kernel (execution time) Pc1

GPU_CUDA Kernel (execution time) Pc2

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10 100 1000 10000 100000

Ex
ec

u
ti

o
n

 T
im

e
in

 S
ec

o
n

d
s

(l
o

g)

Image Size

CPU Pc1 GPU Array Pc1

GPU_CUDA Kernel Pc1

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

10

1060 and GeForce GTX 1660 Ti) devices, calculated in

terms of execution time and speedup to compare CPU

and GPU maximum ability. The results showed that

execution on GPU using GPU array or GUDA kernel is

faster than its sequential implementation. And the

execution using the GUDA kernel is faster than the

execution using GPU array. The execution time

between GPU devices was different, GPU with (Ti:

“Titanium”) series execute faster than the other models

and more powerful.

9. References

1. Anthony Atella. (2018). Rendering Hypercomplex

Fractals. Honors Projects Overview, 44.

2. Belma, A., & Sonay, A. (2016). Fractals and Fractal Design

in Architecture. 17(3), 10.

3. Biswas, H. R., Hasan, M., & Bala, S. K. (2018). CHAOS

THEORY AND ITS APPLICATIONS IN OUR REAL

LIFE. 19.

4. Divya Udayan J. (2013). Fractal Based Method on

Hardware Acceleration for Natural Environments.

Future Technology Research Association International, 4(3).

5. Haji, L. M., Zebari, R. R., Zeebaree, S. R. M., Mustafa, W.,

Shukur, H. M., & Ahmed, O. M. (2020). GPUs Impact on

Parallel Shared Memory Systems Performance. 24(08), 9.

6. Hungilo, G. G., Emmanuel, G., & Pranowo. (2020).

Performance comparison in simulation of Mandelbrot set

fractals using Numba. 030007.

https://doi.org/10.1063/5.0000636

7. Jimenez, L. I., Sanchez, S., Martan, G., Plaza, J., & Plaza,

A. J. (2017). Parallel Implementation of Spatial–Spectral

Endmember Extraction on Graphic Processing Units.

IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 10(4), 1247–1255.

https://doi.org/10.1109/JSTARS.2016.2645718

8. Kirk, D., & Hwu, W. (2017). Programming massively

parallel processors: A hands-on approach (Third edition).

Elsevier.

9. Kirk, D., & Hwu, W. W. (2013). Programming massively

parallel processors: A hands-on approach (2. ed). Elsevier,

Morgan Kaufmann.

10. Liu, Y., Cui, H., & Zhao, R. (2019). Fast Acquisition of

Spread Spectrum Signals Using Multiple GPUs. IEEE

Transactions on Aerospace and Electronic Systems, 55(6),

3117–3125.

https://doi.org/10.1109/TAES.2019.2902695

11. Mandelbrot, B. B. (1982). The fractal geometry of nature.

W.H. Freeman.

12. Mandelbrot, B. B. (2004). Fractals and Chaos. Springer

New York. https://doi.org/10.1007/978-1-4757-4017-2

13. Negi, A., Garg, A., & Agrawal, A. (2014). A Review on

Natural Phenomenon of Fractal Geometry. International

Journal of Computer Applications, 86(4), 1–7.

https://doi.org/10.5120/14970-3157

14. Nogues, O. C. i, Pascual, D., Onrubia, R., & Camps, A.

(2020). Advanced GNSS-R Signals Processing With

GPUs. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 13, 1158–1163.

https://doi.org/10.1109/JSTARS.2020.2975109

15. Razian, S. A., & Mahvash Mohammadi, H. (2017).

Optimizing Raytracing Algorithm Using CUDA. Italian

Journal of Science & Engineering, 1(3), 167–178.

https://doi.org/10.28991/ijse-01119

16. Sallow, A., & Abdullah, D. (2014). Constructing

Sierpinski Gasket Using GPUs Arrays. International

Journal of Computer Science Issues, 11(6), 3.

17. Sawant, V. G. (n.d.). DESIGN OF HIGH GAIN FRACTAL

ANTENNA. 6(1), 8.

18. Wang, G., Zomaya, A., Martinez, G., & Li, K. (Eds.).

(2015). Algorithms and Architectures for Parallel Processing:

15th International Conference, ICA3PP 2015, Zhangjiajie,

China, November 18-20, 2015, Proceedings, Part I (Vol.

9528). Springer International Publishing.

https://doi.org/10.1007/978-3-319-27119-4

19. Xiaodong Liu, Mo Li, Shanshan Li, Shaoliang Peng,

Xiangke Liao, & Xiaopei Lu. (2014). IMGPU: GPU-

Accelerated Influence Maximization in Large-Scale

Social Networks. IEEE Transactions on Parallel and

Distributed Systems, 25(1), 136–145.

https://doi.org/10.1109/TPDS.2013.41

20. Zhang, X., & Xu, Z. (2011). Implementation of

Mandelbrot set and Julia Set on SOPC platform. 2011

International Conference on Electronics, Communications

and Control (ICECC), 1494–1498.

https://doi.org/10.1109/ICECC.2011.6066355

