
Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

This is an open access article distributed under the Creative Commons Attribution License

Copyright ©2017. e-ISSN: 2520-789X

https://doi.org/10.25007/ajnu.v10n2a1035

189

A Tool to Automate Student UML diagram Evaluation

Salisu Modi 1, Hanan A. Taher2, Hoger Mahmud3

1Department of Computer Science, Sokoto State University, Sokoto, Nigeria
2Department of Information Technology Management, Duhok Polytechnic University, Duhok, Iraq

3Department of Computer Science, University of Human Development, Sulaymaniyah, Kurdistan Region of Iraq

ABSTRACT
Unified modelling language (UML) is the accepted standard and modelling language for modeling in software development

process. UML is widely used by most course tutors in teaching modules of software engineering and system analysis and

design. Students taking such courses do submit assignments with UML diagrams such as use case, class, sequence, activity

and so on. Different versions of such diagrams produced by the students for a given problem have to be assessed by the

course tutor which is a challenging and time-consuming task. This paper presents a java-based tool which is developed based

on a simple yet effective algorithm developed by the authors that will read student and tutors solution diagrams as inputs

and evaluate and grade the diagrams automatically. The output of the tool is the score of the student diagram in respect of

lecturer’s final solution. The output is presented in two feedback files, one containing students’ score for the lecturers and the

other to be send to the student to note the areas that were incorrect. The tool has been tested and evaluated using a simple

and assumed UML class diagram. The result shows that the tool functions effectively and can produce detail feedbacks for

both students and tutors. The outcome of this paper contributes towards automating UML diagram evaluations.

KEYWORDS: Unified Modeling Language (UML), Use case Diagram, Extensible Markup Language (XML), UML Auto-

grading, UML diagram evaluation.

1. Introduction

UML stands for Unified Modeling Language. UML is

a general-purpose modeling language in the field of

software engineering, which is designed to provide a

standard way to visualize the design of a software

system. UML has become the standard for modeling

object-oriented system design, ever since it was

published by the object management group (OMG)

[1]. UML diagrams are used to depict the

architectural, dynamic, and static structures of a

software system [1]. Diagrams such as class and

object show the skeletal structure of classes, their

interfaces, and how their objects relate to each other.

On the other hand, diagrams such as activity,

sequence and state machine can be used to represent

the changing structure and behavior of a system [2].

Software engineers and system modelers use UML to

design and develop mission critical systems in many

sectors such aviation and healthcare. For examples,

the authors of [3] have used UML diagrams to model

and optimize hospital processes and the authors of [4]

use UML to model cancer registration process. To

model the dynamic nature of systems, the authors of

[2] have used UML activity diagram to model service

orchestration in the field of business

Teaching UML diagrams is still popular in university

courses relating to software development [5].

Researchers in [6] have analyzed students’ acceptance

perception regarding the ease of use and usefulness

of UML as a modelling tool and the outcome was

positive. Positive attitude of students to use UML as

modelling tool has been one of the driving factors for

its wide use in software engineering courses. It is a

known fact that in student-centered education

environments learning by doing is essential which

meaning more and more practical exercises should be

given to students. Software design and development,

as one of the subjects taught in higher and further

education institutions, requires a lot of learning by

doing exercises. In student context, diagrams usually

consist of various names, nodes and connections that

need to be read, compared and assessed with the

solution version of the course tutor.

https://doi.org/10.25007/ajnu.v10n2a1

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

190

Students taking such courses do submit assignment

with various UML diagrams such as use cases, class,

sequence, activity. Different UML model solutions

can be developed by for the same problem, this has

led to an issue known as “model consistency issue”

[7]. Therefore, it is highly likely that diagrams

developed by students in a course for a given

problem are different from the diagram developed by

the tutor. Because multiple solution diagrams can be

created for the same problem it presents a grading

challenge to instructors of these courses[8]. Grading

diagrams is a time-consuming process which may

take 10 to 15 minutes per student as claimed by [9].

Thus, finding a way to reduce the grading time makes

a real contribution to the process of teaching UML in

software design and development. To deal with the

grading challenge, the authors of [8] present an

approach which they call UMLGrade to streamline

marking process through considering the sematic and

syntactic aspects of a diagram. Following their

direction, this paper presents a Java-based tool to

automate the evaluation and grading of student UML

diagrams. For the purpose of evaluating the tool, we

use Case Study technique similar to others such as

[10] [11].

The main objectives of the paper are outlined below:

• To identify a preferred UML design tool that

supports all standard UML diagrams, to at least

the version UML 2.2, and exports these in the

XMI data format. The technique to convert

models into XMI format for model evaluation

purpose have been considered in other

publications such as [12].

• To develop a model comparison algorithm that is

able to perform strict and more relaxed

comparisons between a student model and the

instructor’s reference model.

• To develop an assessment algorithm for students’

UML diagrams that gives credit for their attempt

in a way that mimics the instructor’s own

assessment.

• To develop a tool that can unzip a zipped file

containing student diagrams and compare and

assess these against the instructor’s reference

diagram.

• To develop a tool that can output feedbacks into

readable files for both students and tutors.

The rest of this paper is organized as follows; section

2 provides some literature review on similar works,

section 3 provides information on the research

method, section 4 presents a brief discussion on the

result and a compassion of the tool with other tools

proposed in literature. Finally, in section 5 we

conclude and provide some feature work directions.

2. LITERATURE REVIEW

The challenge of comparing and grading UML

diagrams has been recognized by many researchers

and there are a number of proposals in literature to

deal with the challenge and automate the assessment

process. The authors of [13] claim that assessment

automation provides fast and consistent feedback

which can be relied on by both students and teachers.

To evaluate UML class diagrams, the authors of [11]

use software metrics to compare the individual

elements of UML class diagrams in order to identify

similarities and differences between two or more

diagrams. In their work, they have worked on

empirically validating different software metrics with

the aim to identify the most effective metrics for

model comparison. The relationships between the

components of class diagrams have been used by [12]

to develop a method to measure similarities between

two diagrams. The authors of [14] have considered

the type of relations between classes to develop a

calculation method for comparing student class

diagrams with that of the teacher. The authors of [15]

have proposed a similarity calculation method for

UML class diagram based on diagram structure and

semantics.

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

191

In a similar work to what we present in this paper,

the authors of [16] have presented a metamodel plus

a grading algorithm to automate UML class diagram

grading which maps students class diagrams to that

of the instructor’s in order to identify similarities and

differences between them. However, they have

implemented the grading algorithm in the TouchCore

tool (http://touchcore.cs.mcgill.ca) but we have gone

a step further to develop a tool in Java to implement

our algorithm. The authors of [9] have carried out an

exploratory study on the possible use of machine

learning for developing automatic grading methods

for UML class diagram and as a result they have

concluded that machine learning is not reliable for

such tasks. A UML class diagram test application

have been proposed in [17] which aims to evaluate

student diagrams developed for documenting an

existing software. An e-assessment tool which makes

use of design patterns is proposed by [18] for

assessing UML class diagram.

The authors in [10] used “dynamic programming

approach” to develop a mechanism to find

similarities between a number of sequences diagrams

with the aim to improve the efficiency of matching

process. Others have used syntactic and sematic

matching to evaluate Use Case diagrams [19] and the

authors of [20] have proposed an architecture for

assessing Use Case diagram. With improving the

efficiency in software projects in mind, class property

and message sequence parameters have been utilized

in [21] to devise a method for comparing two

sequence diagrams. The structure and semantics of

sequence diagram have been considered in [15] to

measure diagram similarities. The majority of these

researches consider the grading or finding similarities

of one type of UML diagram (e.g. class diagram), the

contribution of our approach is far-reaching since our

method can be applied on all types of UML diagrams.

Due to the complexity of software development

process and teaching the steps, automating

assessments of other tasks of the development such as

the programming task have also been considered by

researchers. For instances, the authors of [22] have

empirically investigated the automation of

programming task assessment and the authors of [23]

have compared two auto-assessment tools; one of the

tool assess the code and the other assess the program

output. This indicates that automating assessments in

all areas of software development are being

considered by researchers. The outcome of this paper

contributes towards the effort of finding an efficient

UML diagram evaluation and grading mechanism.

3. RESEARCH METHOD

The research method followed in this paper is

comprised of four steps, step one involves identifying

a UML drawing tool to be used by students and

instructors to develop model solutions for a given

problem which will be compatible with the Java-

based tool that was developed. In step 2 the algorithm

for comparing and grading student UML diagrams is

developed to be implemented in the tool. In step 3 the

comparison and grading tool was designed and

implemented. Finally, in step 4 the tool was tested

and the results were evaluated. More details about

each of the steps are provided in the following sub-

sections.

3.1 UML Drawing Tool

An UML drawing tool is required to be used in

designing both the student version and Lecturer’s

solution version of a given diagram. Diagrams are

designed using some standard tools, there are

numerous of these tools available [13]. Different tools

from different vendors comes with different

specifications based on how they can handle a UML

diagram. The aim of this step is to research the

available UML tools, choose the most efficient for the

job among them, which can be used to develop

compatible models with the Java-based tool. Below

are number of criteria adapted from [24] and used for

selecting the best UML tool.

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

192

• Support various diagrams: the selected tool

should support the drawing of all standard UML

diagrams such as class, sequence, use case, state

machine and activity.

• Export/import diagram in XMI file format: the

tool should be able to export diagrams in an XMI

file format to be read as XML.

• Open source: the tool should allow extending

and customization by intended users.

• Java code generator: the tool should generate

java code equivalent of the diagram.

• Reverse engineering: the tool should be able to

convert code into diagram and verse vasa.

Based on the above criteria, in table 1 four (4) UML

tools (Agro UML, Modelio, Star UML, and Rational

Rose) are considered and assessed (1 indicate the

feature is present and 0 otherwise). Based on the

assessment results both the Modelio and Star UML

tools seem to have fulfilled all the criteria. Since one

of is required the Moledio has been chosen to be used

for designing both the student and tutor’s solution

version of a given diagram, which will later be read

by the developed Java tool.

Table 1: Assessment of available UML drawing tools

No.

T
o

o
ls

S
u

p
p

o
rt

 w
id

e
ra

n
g

e
 o

f
U

M
L

d
ia

g
ra

m

E
x

p
o

rt
/i

m
p

o
rt

X

M
I

fi
le

 f
o

rm
a

t

O
p

en
 S

o
u

rc
e

Ja
v

a
co

d
e

G

e
n

e
ra

to
r

R
e

v
e

rs
e

E
n

g
in

ee
ri

n
g

1 Agro
UML

1 0 1 1 0

2 Modelio 1 1 1 1 1

3 Star
UML

1 1 1 1 1

4 Rational
Rose

1 0 0 1 0

3.2 Comparison and Grading Algorithm

 The algorithm presented in this step is designed to

compare five types of UML diagrams. The diagrams

are; class, use case, activity, sequence and state

machine. The algorithm designed in such a way to

consider three (3) step processing. The first step is

input processing. Input to the tool are two zip folders,

one for students’ diagrams and other for tutor

solution. The diagrams are developed using Modelio

tool and exported as XMI file format. A function file

reader, was implemented in the tool to read the files.

It then identifies type of a diagrams and read all

elements in the diagram that will be compared

against the same diagram type from the tutor’s file.

The algorithm loops until all diagrams in the folder

are read. The second step is the comparison and

assessment. The algorithm performs matching

between elements and allocate marks to the student

feedback file based on correct matches. The last step

involves generating feedback file for both students

and course tutor. The flowchart describes the steps of

execution of the algorithm. It starts by taking in the

files in XMI format. It then, reads and extracts the file

using an XMI file reader. The algorithm then

proceeds by picking individual element for both

student diagram and tutors’ diagram and compare

them to identify matching elements. Marks are then

allocated and feedback files are generated for both

students and tutors before the algorithm terminates.

Figure 1 is the pseudocode and flowchart that

describe the algorithm developed.

FIGURE 1: COMPARISON AND GRADING ALGORITHMS

PSEUDOCODE AND FLOW CHART

3.3 Tool Design and Implementation

The overall tool implementation is subdivided into

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

193

four (4) logical units as shown in figure 2. The first

component handles how input to the tool is being

processed. The submission has to be in zip format

containing all students’ assignment, then the content

of files are read and individual elements are

extracted. The second subcomponent identifies each

element for the comparison process. The third

component compares individual student diagram

element against solution diagram and allocate marks.

The last component generate feedback to both student

and course tutor.

FIGURE 2: THE UML COMPARISON AND GRADING TOOL

COMPONENTS DESIGN

The tool is intended to be a standalone, as it will be

used by the course tutor for assessing students’

diagrams. The interface of the tool allows the user

(tutor) to interact with the tool in such a way that

he/she uploads his/her own version of UML

diagram in XMI format, then upload the student’s

UML diagram which is also in XMI format. After

uploading both files, the user will click the “compare

button” which will start the comparison process.

There is a processing bar showing the approximate

completion percentage of the comparison process.

After completion, the result is displayed in the

display pan and a copy is of the result saved to a file

which will be send as a feedback. Figure 3 shows the

home interface of the tool developed in Java.

FIGURE 3: THE COMPARISON AND GRADING TOOL HOME

INTERFACE

3.4 Tool test and Evaluation

To test the functionality of the tool, a class diagram

example is assumed and drawn for the tutors to be

used as a comparison base against the possible

student solution. The process is the same for all other

types of UML diagrams, therefore, it was deemed not

necessary to provide examples of other types of

diagrams. Both the tutors and possible student

diagrams are described in the sections 3.4.1 and 3.4.2

and test results is presented in section 3.4.3 in a form

of student and tutor feedback.

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

194

3.4.1 Tutor’s Diagram

The tutor’s solution diagram is shown in figure 4. The

diagram consists of six (6) classes including two (2)

association classes. The association classes are

between class1 and class2 as well as between class4

and class5. The class diagram is developed with all

possible features of a typical diagram in mid such as

attributes, operations and associations in order to see

how the tool copes with the features; also, to ensure

that the tool can handle all possible class diagram

features that students and teachers may include in

their solution diagrams.

Figure 4: Tutor’s Solution Class Diagram

3.4.2 Students Diagrams

The diagrams in figure 5 and Figure 6 are two

possible solution diagrams assumed to have been

submitted by students. The diagram in figure 5

presents student with submission No. aca12asa

diagram. The diagram consists of six (6) classes as in

the tutor’s diagram, but association name (value) for

class 1 and class 2 in tutors’ diagram was test1 and

test2 while in that of the student was test 11 and test

22, therefore the student loses some marks. Similarly,

figure 6 presents student 2 with submission No.

aca13asa diagram. Although the diagram is comprised

of the same number of classes as in tutor’s diagram,

but the association class between class4 and class5 is

wrongly placed in the student diagram between

class2 and class5, therefore student2 also loses some

marks for the association class. Figure 7 shows both

students and tutors sample solutions are uploaded

and processed successfully. The result of comparison

sent to the students as feedback is shown in table 2.

Figure 5: Student1 (aca13asa) different association values

from that of the tutor’s diagram

Figure 6: Student2 (aca12asa) different positioning of

association class from that of the tutor’s diagram

Figure 7: Sample test-running of the tool with tutor’s and

students diagram above

3.4.3 Feedback

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

195

The tool produces two forms of feedback files which

are student and tutor’s file. The students feedback

contains student information, marked scored on each

diagram and information about the comparison

showing the student the elements of the diagram that

are correct and the once that are not correct. Table 2 is

the description of the content of a sample student

feedback file. The tutor’s feedback file contains the list

of students’ information and the marked scores for

each diagram. Figure 8 is a sample feedback file for

the tutor.

Table 2: Sample content of student feedback file for the

class diagrams (in figure 5 and 6) assessment.

Student

info.

Diagram

type

Marked

scored

Feedback info.

Id: aca13asa

Name:

Abdulrahem

Al Abri

Class

diagram
67

Uml element type: Class

Class1- element is correct

Uml element type: Class

Class2- element is correct

Uml element type: Class

Class4- element is correct

Uml element type: Class

Class5- element is correct

Uml element type:

Association

first member:=-

Class4:second member-

Class1

element is correct

Uml element type:

Association

first member:=-

Class5:second member-

Class2

element is missing

Uml element type:

AssociationClass

Class3-element is correct

AssociationClass

Class6- element is missing

Id: aca12asa

Name:

Abdulrahem

Al Abri

Class

diagram
91

Uml element type: Class

Class1- element is correct

Uml element type: Class

Class2- element is correct

Uml element type: Class

Class4- element is correct

Uml element type: Class

Class5- element is correct

Uml element type:

Association

first member:=-

Class4:second member-

Class1

element is correct

Uml element type:

Association

first member:=-

Class5:second member-

Class2

element is correct

Uml element type:

AssociationClass

Class3- partly correct

Uml element type:

AssociationClass

Class6- element is correct

Figure 8: The content of a sample feedback file for

the lecturer.

4. DISCUSSION

It is claimed by [18] that e-assessment is taking a

foothold in higher and further education institutions

despite its complexity in implementation. For

instance, the Open University is expanding the use of

its online quiz engines with the aim to facilitate the

process of marking and providing feedback to its

students [25]. In this paper, we have introduced a

student UML evaluation tool which grades student's

by comparing their submitted solution to that of the

tutor’s. The initial version of the tool is specialized to

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

196

just diagrams created by Modeli. Ideally, the tool

should handle diagrams created by any modeling

tools which is something we intend to work on in the

future. In the proposed tool we use feature matching

technique to match diagrams between students and

tutor answers, which is a qualitative approach for

diagram matching. This approach is different from

others such as [10] which has used a quantitative

approach by calculating Mean Average Precision to

decide on matching quality between two more

diagrams. To showcase the difference in tool

development approach table 3 provides a

comparison of the developed tool with five other

proposed tools in literature [16] [17] [12][26] [27] . The

comparison is carried out based on the following

criteria:

• The utilization of a standard UML tool: this

criterion examines the tools in terms of the use of

standard UML diagram creation tool.

• XMI export: this criterion examines the tools in

terms of the ability to export produced diagrams

in XMI format which facilitates the diagram

comparison process in the developed tool.

• Multi-assessment capability: this criterion

examines the ability of the tools in terms of

assessing multiple types of UML diagrams.

• File type input: this criterion examines the ability

of the tools in terms of accepting single or

multiple files.

• Auto-grading: this criterion examines the ability

of the tools in terms of automatically grading

student diagrams.

• Generation of feedback file: this criterion

examines the ability of the tools to generate

student and tutor feedback files.

The comparison results presented in table 3 shows

that the Auto-UML evaluation tool developed in this

paper is more advanced than the proposed tools in

literature based on the specified criteria. Finally, this

leads us to claim that the developed tool can facilitate

the automation of UML diagrams evaluation more

comprehensively that the proposed tools in literature.

It is clear that this kind of tools can assist instructors

in dealing with student diagram evaluation and

grading challenges by reducing time and effort in the

process. One other use of UML diagram comparison

or matching tool is to reuse past UML design

diagrams that have been implemented in developing

existing software tools [10] [21]. This is particularly

useful when new functionalities are going to be

added to an existing tool which reduces design and

development time and cost.

Table 3: The comparison of the developed tool to other

similar tools presented in literature

No.

T
o

o
ls

T
h

e
u

ti
li

za
ti

o
n

 o
f

a

st
a

n
d

a
rd

 U
M

L
 t

o
o

l

E
x

p
o

rt
 i

n
 X

M
I

fo
rm

a
t

M
u

lt
i-

a
ss

e
ss

m
e

n
t

ca
p

a
b

il
it

y

F
il

e
 t

y
p

e
in

p
u

t

A
u

to
-g

ra
d

in
g

G
e

n
e

ra
ti

o
n

 o
f

d
e

ta
il

e
d

 f
ee

d
b

a
ck

fi
le

1 The

developed

UML tool in

this work

Yes Yes Yes ZIP

(Multi-file

input

capability)

Yes Yes

2 Automated

Grading of

class diagram

[16]

No No No Sigle plain

text file

Yes Yes/

feedback

is only

produced

for

student

3 UML test

application

for

automated

validation of

UML class

diagram [17]

Yes Yes No A single

UXF file

Partially,

evaluates

diagram

but no

mark

allocation

yes

4 Class

diagram

similarity

measurement

[12]

Yes, can

also

accept

manual

drawing

No No Sigle plain

text file

yes No

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

197

5 Mistakes in

UML

diagrams:

analysis of

student

projects in a

software

engineering

course [26]

No No Yes Yes No,

generates

a

catalogue

of

diagram

mistakes

No

6 Automated

Checks on

UML

diagrams

[27]

Yes Yes No Single

XMI file

Yes Yes

6. CONCLUSION AND FUTURE WORK

Tutors teaching software engineering and system

analysis and design courses suffer tremendously from

manually assessing student UML diagrams. In this

paper we have presented the design and

implementation of an automated java-based tool for

comparing and assessing students UML diagrams

against tutor solution diagrams. The tool takes in two

zip files, as in put, containing diagrams in XMI format

for both students and the tutor which are created

using Modellio UML tool. The tool generates two

feedback files, one for the students containing student

marks and some guideline information regarding the

assessed diagram and the other for the tutor

containing all the student information and their final

mark for each diagram. The objective of this research

is to provide an alternative mean to manual

assessment of student UML diagrams in this digital

era.

The current tool is a desktop application, in the future

we intend to develop a web-based application version

of the tool. This is to facilitate the comparison and

grading process by enabling students to upload their

diagrams and get immediate feedback without the

need to wait for tutors to send them the feedback.

7. REFERENCES

1. P. Kumarapeli, S. De Lusignan, T. Ellis, and B. Jones,

“Using Unified Modelling Language (UML) as a

process-modelling technique for clinical-research

process improvement,” Informatics for Health and Social

Care, vol. 32, no. 1, pp. 51–64, 2007.

2. P. Mayer, A. Schroeder, and N. Koch, “MDD4SOA:

Model-driven service orchestration,” in Enterprise

Distributed Object Computing Conference, 2008. EDOC’08.

12th International IEEE, 2008, pp. 203–212.

3. G. T. Jun, J. Ward, Z. Morris, and J. Clarkson, “Health

care process modelling: which method when?,”

International Journal for Quality in Health Care, p.

mzp016, 2009.

4. S. Garde, B. Baumgarten, O. Basu, N. Graf, R. Haux, R.

Herold, U. Kutscha, F. Schilling, B. Selle, C. Spiess, and

others, “A meta-model of chemotherapy planning in

the multi-hospital/multi-trial-center-environment of

pediatric oncology,” Methods Inf Med, vol. 43, no. 2, pp.

171–183, 2004.

5. A. M. Fernández-Sáez, M. R. Chaudron, and M.

Genero, “An industrial case study on the use of UML

in software maintenance and its perceived benefits and

hurdles,” Empirical Software Engineering, vol. 23, no. 6,

pp. 3281–3345, 2018.

6. A. Lopes, I. Steinmacher, and T. Conte, “UML

Acceptance: Analyzing the Students’ Perception of

UML Diagrams,” in Proceedings of the XXXIII Brazilian

Symposium on Software Engineering, 2019, pp. 264–272.

7. F. J. Lucas, F. Molina, and A. Toval, “A systematic

review of UML model consistency management,”

Information and Software Technology, vol. 51, no. 12, pp.

1631–1645, 2009.

8. K. Farias and B. C. da Silva, “What’s the grade of your

diagram? towards a streamlined approach for grading

UML diagrams,” in Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engineering

Languages and Systems: Companion Proceedings, 2020, pp.

1–2.

9. D. R. Stikkolorum, P. van der Putten, C. Sperandio, and

M. Chaudron, “Towards Automated Grading of UML

Class Diagrams with Machine Learning.,” in

BNAIC/BENELEARN, 2019.

10. A. Adamu and W. M. N. W. Zainon, “Similarity

Assessment of UML Sequence Diagrams Using

Dynamic Programming,” in International Visual

Informatics Conference, 2017, pp. 270–278.

11. M. A.-R. Al-Khiaty and M. Ahmed, “UML class

diagrams: Similarity aspects and matching,” Lecture

Notes on Software Engineering, vol. 4, no. 1, p. 41, 2016.

12. R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini,

“Class Diagram Similarity Measurement: A Different

Approach,” in 2018 3rd International Conference on

Information Technology, Information System and Electrical

Engineering (ICITISEE), 2018, pp. 215–219.

13. C. K. Poon, T.-L. Wong, C. M. Tang, J. K. L. Li, Y. T. Yu,

and V. C. S. Lee, “Automatic assessment via intelligent

analysis of students’ program output patterns,” in

International Conference on Blended Learning, 2018, pp.

238–250.

Academic Journal of Nawroz University (AJNU), Vol.10, No.2, 2021

198

14. M. A.-R. Al-Khiaty and M. Ahmed, “Matching UML

class diagrams using a Hybridized Greedy-Genetic

algorithm,” in 2017 12th International Scientific and

Technical Conference on Computer Sciences and Information

Technologies (CSIT), 2017, vol. 1, pp. 161–166.

15. D. Siahaan, Y. Desnelita, and others, “Structural and

semantic similarity measurement of UML sequence

diagrams,” in 2017 11th International Conference on

Information \& Communication Technology and System

(ICTS), 2017, pp. 227–234.

16. W. Bian, O. Alam, and J. Kienzle, “Automated grading

of class diagrams,” in 2019 ACM/IEEE 22nd

International Conference on Model Driven Engineering

Languages and Systems Companion (MODELS-C), 2019,

pp. 700–709.

17. P. Herout and P. Brada, “UML-Test Application for

Automated Validation of Students’ UML Class

Diagram,” in 2016 IEEE 29th International Conference on

Software Engineering Education and Training (CSEET),

2016, pp. 222–226.

18. T. Reischmann and H. Kuchen, “Towards an E-

assessment tool for advanced software engineering

skills,” in Proceedings of the 16th Koli Calling International

Conference on Computing Education Research, 2016, pp.

81–90.

19. V. Vachharajani and J. Pareek, “Framework to

approximate label matching for automatic assessment

of use-case diagram,” International Journal of Distance

Education Technologies (IJDET), vol. 17, no. 3, pp. 75–95,

2019.

20. V. Vachharajani and J. Pareek, “A proposed

architecture for automated assessment of use case

diagrams,” International Journal of Computer

Applications, vol. 108, no. 4, 2014.

21. E. Triandini, R. Fauzan, D. O. Siahaan, and S.

Rochimah, “Sequence diagram similarity

measurement: a different approach,” in 2019 16th

International Joint Conference on Computer Science and

Software Engineering (JCSSE), 2019, pp. 348–351.

22. J. Liebenberg and V. Pieterse, “Investigating the

feasibility of automatic assessment of programming

tasks,” 2018.

23. A. Bey, P. Jermann, and P. Dillenbourg, “A comparison

between two automatic assessment approaches for

programming: An empirical study on MOOCs,” Journal

of Educational Technology \& Society, vol. 21, no. 2, pp.

259–272, 2018.

24. T. Rani and S. Garg, “Comparison of different UML

tool: Tool approach,” International Journal Of

Engineering And Computer Science, vol. 2, no. 6, pp.

1900–1908, 2013.

25. P. Thomas, “Online Automatic Marking of Diagram,”

Springer, vol. 26, no. 349–359, 2012.

26. S. Chren, B. Buhnova, M. Macak, L. Daubner, and B.

Rossi, “Mistakes in UML diagrams: analysis of student

projects in a software engineering course,” in 2019

IEEE/ACM 41st International Conference on Software

Engineering: Software Engineering Education and Training

(ICSE-SEET), 2019, pp. 100–109.

27. M. Striewe and M. Goedicke, “Automated checks on

UML diagrams,” in Proceedings of the 16th annual joint

conference on Innovation and technology in computer

science education, 2011, pp. 38–42.

