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ABSTRACT 
Experiments were carried out to investigate the separate roles of the hydrostatic and deviatoric components of stress tensor 

(using the first and the second invariant 𝐼1 and 𝐼2
′). The results were expressed in term of stress dependent shear compliance 𝐽 

in the time temperature region of the tests (up to104 seconds at 30𝐶0, of the 𝛼 −Relaxation). 

𝐽 was found to increase in magnitude with increasing both hydrostatic 𝐼1,and deviatoric 𝐼2
′ components of stress. 𝐼1, caused a 

shift in the magnitude of 𝐽 and 𝐼2
′ caused an increase in 𝐽 with time. The difference between the shear compliance in creep and 

recovery was found to decrease with 𝐼1, and increase with 𝐼2
′. 

All the different effects mentioned above could be rationalized by the idea of the time dependent free volume. If the free volume 

increases with time by increasing𝐼2
′ this could explain the difference in the effect of  𝐼1, and 𝐼2

′on 𝐽 and explain why creep is 

less than recovery. 
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1. Introduction 

The use of the solid polymeric materials increased 

rapidly, due to its good mechanical properties and 

cheap compared with other materials. Experimental 

studies were done for different kinds of polymers 

under complex loading programs in one and two 

dimensions [1,2]. This solid polymer cannot be 

classified as elastic or viscoelastic liquids, since the 

mechanical properties of these materials depend on 

the test conditions (e.g., the rate of application of load, 

temperature, amount of strain). They are described as 

viscoelastic materials, which can exhibit creep under 

small load, while creep is the ability of the materials to 

extent under the effect of a constant applied load for a 

given time (Fig. 1.1). This could be expressed 

mathematically as follows: -  

𝐽(𝑡) = 𝑒𝑐(𝑡)/𝜎0                     (1.1) 

The creep compliance J(t) can be statically defined as 

the change in strain as a function of time under the 

application of a constant stress [3].  

At a small strain the materials behavior is linear, and 

at a higher strain the material becomes non-linear (Fig. 

1.2). This lies between 0.2-0.5%. The Behaviour of the 

material could be described by applying the 

Boltzmann Superposition Principle [4] for any 

complex sequence of stress. 

𝑒(𝑡) = ∫ 𝐽(𝑡 − 𝑢)
+∝

−∝

𝑑𝜎

𝑑𝑢
𝑑𝑢                  (1.2) 

In the non-linear viscoelastic range, it is difficult to 

predict the polymer Behaviour. The deviation from the 

straight line (Isochronous creep curve) demonstrates 

the non-linearity for the material. The departure will 

occur beyond a certain strain. This implies that the 

superposition principal no longer applies. 

Any departures from linear viscoelastic behavior are of 

considerable importance in engineering design, where 

the design strain for plastic components often lies 

outside the linear range. In the non-linear range, when 

values are often imprecise, creep data is used to solve 

the problem. In practice this problem can be solved 

satisfactorily by the use of the creep data (Fig.1.3). 

After un loading a time dependent recovery is 

observed (Fig. 1.1). The removal of load could be 
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modeled as a continuous stress 𝜎, for a time t which is 

greater than the creep time 𝑡1, where a negative stress 

- 𝜎, was added (Fig. 1.2). the response to a positive 𝜎, 

at a time t is 

𝑒𝑟(𝑡 − 𝑡1) = 𝜎 𝐽(𝑡 − 𝑡1)              (1.3) 

Experimental work was caried out to measure creep 

and recovery in tension and torsion and combined 

tension-torsion to find the effect of loads on the solid 

polymeric materials [5]. In this work the Behaviour of 

the solid polymeric materials was studied using the 

creep compliance 𝐽 for various stress 𝐼1 and 𝐼2
′ at a 

constant temperature. The two invariants 𝐼1 and 𝐼2
′ 

influence the shear compliance 𝐽 quite differently. 

Increasing 𝐼1 cause an almost uniform shift of  𝐽 versus 

log time, while increasing 𝐼2
′ cause increasing 

separation of the curve with increasing creep time, 

over 104 seconds.      

2. Doolittle Equation Concept   

The Free-Volume concept is adopted to explain the 

viscoelastic behavior of PMMA due to the stress 

applications. This concept was applied by Doolittle [6], 

and found to represent with high accuracy viscosities 

of ordinary liquid of low molecular weight  

𝜂0 = ln 𝐴 + 𝑏(𝑣 − 𝑣𝑓)/𝑣𝑓                    (2.1) 

Where 𝜂0 is the viscoelasticity, 𝐴 𝑎𝑛𝑑 𝑏 are empirical 

constants, 𝑣 the specific volume, 𝑣𝑓 the specific free 

volume (Fig. 2.1).  

Equation (2.1) implies that the free-volume is the only 

parameter in determining the rate of the molecular 

rearrangement and transport phenomena such as 

diffusion and viscosity which depend on them. 

One application of the Doolittle Equation to the WLF 

[7] equation (2.2), which describes the effect of 

changing temperature on the shift factor 𝑎.  

log 𝑎 = −
𝑏

2.303 𝑓0
[

(𝑇−𝑇0)

(𝑓0 𝛼𝑓)+(𝑇−𝑇0)⁄
]               (2.2) 

where 𝑎, is the time-temperature dependent shift 

factor,  𝑇0 is a generalized reference temperature, 𝛼𝑓 is 

the expansion coefficient of the free volume, 𝑓0 is the 

fractional free volume in the reference state. 

From equation (2.1) which could be expressed in terms 

of the shift factor 𝑎 and free volume factor 𝑓, where as 

𝑓 = 𝑣𝑓/𝑣  

ln 𝑎 = 𝑏(
1

𝑓
−

1

𝑓0
)                         (2.3) 

The free-volume concept is applied in this work to 

interpret the non-linear viscoelastic behavior of 

polymeric materials under stress application, in terms 

of free-volume. 

Assuming that fraction 𝛼 of the dilation Δ appears as 

free-volume  

𝑓 = 𝑓0 + 𝛼(Δ − Δ0)                  (2.4) 

 From equations (2.3) and (2.4)  

ln 𝑎 =
𝑏

 𝑓0 [1+𝛼
(Δ−Δ0)

𝑓0
]

−
𝑏

𝑏0
             (2.5) 

Expanding equation (2.5)  

ln 𝑎 =
−𝑏𝛼

𝑓0
2 [(Δ − Δ0) … … …

𝛼

𝑓0
(Δ − Δ0)2 + … … ]      (2.6)             

Where Δ is the dilation 

As the dilation difference (Δ − Δ0) is small, equation 

(2.6) was approximated  

ln 𝑎 = −
𝑏𝛼

𝑓0
2 ((Δ − Δ0)              (2.7) 

Where 𝑎 is the shift factor at relaxation time (it is 

applied at each instant), the value of   𝑓0 = 0.0275, 𝑏 =

2.12 gives 𝛼 = 0.9 [8]. The second order curvature in 

equation (2.6) is not enough to explain the curvature of 

the shift factor versus the dilation (Fig. 2.2). The shift 

factor was determined by measuring the shear 

Compliance 𝐽0 (B, Figure 2.3) at time 104 seconds for 

the smallest applied stress level (𝜎 =  5.477𝑀𝑛 𝑚2⁄ ) 

and a horizontal move for the corresponding value of 

𝐽 on the higher stress level (A, Fig. 2.3) at a different 

time (lower time). Interpolation was done to find the 

value of  𝐽  and the time 𝑡′ (Fig.2.3).  

The dilation ∆ was determined for the axial and lateral 

strains (equation 2.8).  
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∆ = (𝑒1 + 2𝑒2)          (2.8) 

Where  𝑒1 is the axial strain and 𝑒2 is the lateral strain. 

The average dilation ∆𝑎𝑣 was taken for the time 

10 𝑡𝑜 104 seconds. The departure from linearity 

suggests that all changes are consistent with time 

dependent volume change (Fig. 2.2).    

3. Time Varying Dilation 

Supposing the non-linearity hypothesis, but the free 

volume is time dependent, let 𝐽0 correspond to the 

reference state (i.e the initial state). Then assuming that 

stress effect acts through the time scale (Morland and 

Lee [9].  

𝐽(𝑡) = 𝐽0(𝜂)                         (3.1) 

Where              

𝜂 = ∫
𝑑𝑡 ,

𝑎
 

𝑡

0
                            (3.2) 

and 𝜂 is reduced time (equivalent time in the new state 

of the material).                

The change of the dilation ∆ gives a change in the time 

shift factor 𝑎 which means ∆ is time dependent. 

𝑑𝐽

𝑑𝑡 
=

1

𝑎

𝑑𝐽0

𝑑𝜂
                               (3.3) 

In terms of the data plotted in (linear – log) (Fig.3) 

𝑑𝐽

𝑑𝑙𝑜𝑔𝑡 
=

𝑑𝐽

𝑑𝑡
 

𝑑𝑡

𝑑𝑙𝑜𝑔𝑡
                                   (3.4) 

𝑡𝑑𝐽

𝑑𝑡 
=

𝑡𝑑𝐽0

𝑑𝜉
 
𝑑𝜉

𝑑𝑡
                                          (3.5) 

𝑡
𝑑𝐽0

𝑑𝜉 

1

𝑎
=

𝑡

𝑎
 

𝑎𝑑𝐽0

𝑑𝑙𝑜𝑔𝜉
 
1

𝜉
                                   (3.6) 

∴  𝑎−1 =
1

𝑡
 

𝑑𝐽

𝑑𝑙𝑜𝑔𝑡
/

1

𝜉
 

𝑎𝑑𝐽0

𝑑𝑙𝑜𝑔𝜉
 
1

𝜉
                     (3.7) 

N. B if 𝑎 is constant then  

1

𝑎
=

𝜉

𝑡
                                      (3.8) 

   

𝑑𝐽

𝑑𝑙𝑜𝑔𝑡
=

𝑑𝐽0

𝑑𝑙𝑜𝑔𝜉
                           (3.9) 

 

But if (1 𝑎)⁄  is increased (e.g due to an increase in 

dilation with time) then  

 

1

𝑎
>

𝜉

𝑡
                                            (3.10) 

 

∴ 1 >
𝑑𝐽0(𝜉)

𝑑𝑙𝑜𝑔𝜉
     /

𝑑𝐽(𝑡)

𝑑𝑙𝑜𝑔𝑡
                        (3.11) 

 

Consider that means on a 𝜉~𝑡 diagram (Fig.3)   

1

𝑎
=

𝑑𝜉

𝑑𝑡
                          (3.12) 

The increase in the dilation ∆𝑎𝑣  will have the effects  

a)   
1

𝑎
 increases hence  <

1

𝑎
>       

b) The shear compliance 𝐽 will obey equation (3.11).  

where  <
1

𝑎
> is the time average reciprocal shift factor.                                  

4. Results and Discussion   

Combination of tensile and shear stresses were used, 

in a set of experiments the first and second invariants 

(𝐼1 and 𝐼2
′  ), 𝐼1 was kept constant and 𝐼2

′ was increased 

by changing the shear stress 𝜏 for each experiment.  

The load application was extended to cover the non-

linear region. These experiments were started by 

uniaxial tensile stress, then the shear stress applied, 

and increased in each experiment using the first and 

second invariants 𝐼1 and 𝐼2
′ (Fig. 4.1).  

 Three strains were measured (Axial tensile, Lateral, 

and Shear strains) in each experiment where biaxial 

stress was applied.   

 There is no significant tensile strain, when only shear 

stress (𝜏) is applied, (Fig. 4.2 and 4.3). The effect of the 

tensile shear stress on the compliance 𝐽 is shown in 

figure (4.4) for different tensile stress levels. This 

shows that 𝐽 increases with increasing 𝜎 and time.  

The same effect appears, when 𝐼1 was kept constant 

and 𝐼2
′ increases for each experiment as shown in 

figures (4.5, 4.6, 4.7, 4.8, 4.9, and 4.10). 

When 𝐼1 was kept constant and 𝐼2
′  increased for each 

experiment as shown in figure (4.1). The first and 

second invariants (𝐼1 and 𝐼2
′  ) were defined in term of 

tensile and shear stresses 𝜎, 𝑎𝑛𝑑 𝜏 respectively 

𝐼2
, =

𝜎2

3
+  𝜏2                     (4.1) 

When the only stress applied is 𝜎 (𝜏 = 0)  

𝐼2
, =

𝜎2

3
                                      (4.2) 
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𝐼1 = 𝜎                                       (4.3) 

𝐼2
, =

𝐼1
2

3
                                     (4.4) 

 

From equations (4.1, and 4.3) it can be seen that the 

increase of 𝜏 affect 𝐼2
′   only, where the increase of 

𝜎 affects  𝐼1 and  𝐼2
′. The time dependent deformation 

of PMMA at room temperature is influenced by the 

broad 𝛽 retardation process [10]. This 𝛽 retardation 

process is thought to have rotations within side groups 

which may be coupled to local torsional displacement 

of the main polymer chain [11].The increase in the 

shear compliance 

 𝐽 corresponds to the short - time tail of the glass rubber 

or 𝛼 − relaxation process which marks the onset of 

hindered rotation around main - chain bond with 

consequent rearrangements in local chain 

conformation  [12]. The results of this work are at the 

beginning of the 

 𝛼 − relaxation process (All tests are carried out at 

300𝐶). 

The effect of increasing  𝐼1 at constant 𝐼2
′  was to 

produce approximately constant shift in 𝐽 as shown in 

figures (4.11, 4.12) and the effect of 𝐼2
′ at constant 

𝐼1 was found to produce a separation in shear 

compliance 𝐽 with increasing time. With applying 

shear stress 𝜏 only, the shear creep compliance curves 

shift to a shorter time (with increasing 𝐼2
′ and the 

absence  

of 𝐼1) [13]. The effect of the non-linearity could be due 

to 𝐼1 at the beginning of the experimental time, where 

the effect of the non-linearity was due to  𝐼2
 ′  at a later 

time. This means that 𝐼1 affects the volume at short 

time and 𝐼2
′ at long time.  

From the results, it was found that the increase of 

∆ with 𝐼1 is independent of time.        

The creep data for each experiment were compared 

with the recovery data. These creep and recovery data 

were determined using the Buckley and McCrum 

approach [14]. It was found that by dividing the shear 

compliance 𝐽(𝑡, 𝐼1, 𝐼2
 ′ ) from torque and the shear 

compliance from the tensile load [ 𝛾/𝜏][𝜎/2(𝑒1 − 𝑒2)] is 

always equal to 1 (Fig. 4.13). The result shows the same 

for recovery were the recoverable shear compliance 

𝐽𝑟  defined as shown in figure (4.14).    The three strains 

𝑒1, 𝑒2, and 𝛾 are used for recovery to define the shear 

compliance. 

       All the experiments used in this work, whether 

uniaxial or biaxial stress, show recovery compliance 

always exceeding creep compliance (Fig. 4.15, and 

4.16) over the time scale studied. This has been shown 

by many researchers [15,16]. 

               𝐽𝑟 − 𝐽𝑐 > 0                            (4.6) 

The effect of 𝐼1, 𝑎𝑛𝑑  𝐼2
′ on (𝐽𝑟 − 𝐽𝑐) is as if the second 

invariant 𝐼2
′ produces the  

non-linearity effect and the first invariant 𝐼1 is to kill 

this effect.                                   

Because the Doolittle equation works with changing of 

the temperature, an assumption was made that it could 

work with changing of the stress (stress inducing 

dilation). This was done by measuring the shear 

compliance 𝐽 and finding the volume change from the 

uniaxial tensile stress application experiments.                                       

The measurements of the volume changes were 

established from the uniaxial test only,  

because of the difficulties in measuring the changes in 

the thickness of the specimen when subjected to biaxial 

stress other than uniaxial tensile stress,  

The shift with the volume could be found with the base 

of the Doolittle equation (2.7) and on the other hand 

from the experimental data and the changes of the 

creep curves with volume for the polymeric materials. 

To find the shift factor, a point on the lowest shear 

compliance 𝐽 (B, Fig. 2.3) is taken and an assumption is 

made that the shift is a horizontal shift only (B shifted 

by a reduction in the relaxation time is found), the 

point B is shifted to the point A which is on a higher 

stress state. To find the point A in figure (2.3) a linear 

interpolation scheme was applied (Fig. 4.17)                                
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𝑙𝑜𝑔𝑡′−𝑙𝑜𝑔𝑡𝑃

𝑙𝑜𝑔𝑡𝑄−𝑙𝑜𝑔𝑡𝑃
=

𝐽′−𝐽𝑃

𝐽𝑄−𝐽𝑝
                        (4.7) 

∴  𝑙𝑜𝑔𝑡′ = 𝑙𝑜𝑔𝑡𝑃 +
𝑙𝑜𝑔𝑡𝑃−𝑙𝑜𝑔𝑡𝑄

𝐽𝑄−𝐽𝑃
 (𝐽′ − 𝐽𝑝)            (4.8) 

The shift factor was found by a fit of 𝐽 with lower stress 

data of 𝑙𝑜𝑔𝑡 = 4 to the creep curve for the higher stress 

level.  

The Doolittle equation was found to fit the first five 

points (Fig. 2.2) very well (with 

𝛼 = 0.9), but after that the shift < 1 𝑎 > ⁄ increase more 

slowly than predicted, but this could be explained by 

the dilation increasing with time, here < 1 𝑎 > ⁄  <

1 𝑎 ⁄ (Fig. 3). This condition was supported 

qualitatively by the fact that the 𝐽 versus 𝑙𝑜𝑔𝑡 curves 

exhibited the trend expressed in equation (3.11). 

5. Conclusion  

From the results of this work, it can be concluded that 

the two invariants 𝐼1 and 𝐼2
′ influence the shear 

compliance 𝐽 quite differently. Increasing 𝐼1 cause an 

almost uniform shift of  𝐽 versus log time, while 

increasing 𝐼2
′   cause increasing separation of the curve 

with the increasing creep time, over 104 seconds.      

With increasing  𝐼1 at constant 𝐼2
′, there was no 

significant variation to within the scatter 12% for time 

of 104 seconds. 

The effect of the invariants on the creep and recovery 

shear compliances 𝐽𝑐 𝑎𝑛𝑑 𝐽𝑟 were different. 𝐼2
′ was 

found to increase the difference between the creep and 

recovery shear compliances ∆𝐽 = 𝐽𝑟 − 𝐽𝑐 , where as an 

increase of 𝐼1 was found to decrease the difference 

between creep and recovery compliances.                                          

The time independent free-volume theory was applied 

to the uniaxial tensile data. This theory was found to 

fit the first five experimental data (fitted the dilation 

versus the time dependent shift factor).  

 The time dependent dilation appeared to be enhanced 

with increasing 𝐼2
′ . This explains why the 

experimental data for the four other data points does 

not appear to obey the Doolittle equation at the end 

(because the way the graphs where plotted).       

    The mean features of the results can be explained by 

the non-linearity being controlled by the volume and 

the deviatoric stress causing the time dependent 

dilation.  
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