
Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

This is an open access article distributed under the Creative Commons Attribution License

Copyright ©2017. e-ISSN: 2520-789X

https://doi.org/10.25007/ajnu.v10n3a1145

345

Python Parallel Processing and Multiprocessing: A Review

Zena A. Aziz1, Diler Naseradeen Abdulqader2, Amira B. Sallow3, Herman Khalid Omer4

1 Technical College of Information Akre, Duhok Polytechnic University, Kurdistan Region-Iraq
2,3,4 Department of Computer and Communication, Nawroz University, Kurdistan Region-Iraq

 ABSTRACT

Parallel and multiprocessing algorithms break down significant numerical problems into smaller subtasks, reducing the total

computing time on multiprocessor and multicore computers. Parallel programming is well supported in proven programming

languages such as C and Python, which are well suited to “heavy-duty” computational tasks. Historically, Python has been

regarded as a strong supporter of parallel programming due to the global interpreter lock (GIL). However, times have changed.

Parallel programming in Python is supported by the creation of a diverse set of libraries and packages. This review focused on

Python libraries that support parallel processing and multiprocessing, intending to accelerate computation in various fields,

including multimedia, attack detection, supercomputers, and genetic algorithms. Furthermore, we discussed some Python

libraries that can be used for this purpose.

KEYWORDS: Parallel processing, multiprocessing, Python, CPU, Multicore CPU, GPU.

1. Introduction

In recent years, the Python programming language has

gained momentum for scientific computing. Often

conventional tools like MatLab are replaced. [1]. It is

open to all at no cost because Python is open source,

and its portability makes its usability possible on many

platforms. The language itself is lightweight, abridged,

and highly suitable for quick prototyping, although it

is strong enough to write significant applications.

Some people don't give it enough credit for its usability

and flexibility.

Python can very well be integrated with the C/C++ so

that external performance or code-based modules can

be easily invoked. Besides, it offers a wide range of

scientific libraries, e.g. Processing and analyzing data,

plotting and graphical user interfaces [2][3][4]. All

these feature makes Python attractive to the scientific

public but it has to be parallel to the languages used in

large projects. CPython is the default implementation

and most commonly used. [5], due to the global look

in the interpreter, several threads cannot be run at

once. A variety of options have been developed to

create many Python processes, Shared and elastic

infrastructure environments, including networks,

clusters, and clouds.

Parallel computing, on the other hand, is a

computational paradigm where several instructions

are performed concurrently. It is based on the premise

that significant problems can often be broken into

separate ones and solved simultaneously (parallel).

Bit-level parallelism, instruction-level parallelism,

data parallelism, and task parallelism are the four

types of parallel computation [6].

Hiotas been used for many years, especially in high-

performance computing; however, interest in this field

has recently increased due to physical hardware

constraints on CPU frequency, such as shared-memory

and distributed services, as well as infrastructure

networks, clusters, and clouds [7][8]. Furthermore, the

use of such resources and the generation of heat by

computers has become a focus of recent technological

advancement. As a result, parallel computing has

established itself as a key concept in computer

architecture, specifically in multi-core processors.

The Python multiprocessing module [9] allows

processes to be spawned in SMP machines with an API

like the module for threading, explicit calls for process

https://doi.org/10.25007/ajnu.v10n3a1145

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

346

generation, declaration passing, and implementation,

cooperation, and result selection. The GIL problem is

avoided by the multiprocessing module, which

launches sub processes rather than threads through a

fork system call. Parallel Python (PP) is a Python

module that implements frameworks for parallel

Python code execution on SMP and clusters. It is based

on an API that includes explicit functions for

specifying the number of workers to be used,

submitting jobs for execution, obtaining worker

results, Etc. Similarly to the multiprocessing module,

the programmer is in charge of parallelism

management, which combines the actual algorithm

parallelism management. [10].

The paper is organized as follows. Sections 2, 3, 4, and

5 include context theory; Section 6 addresses related

work. Section 7 contains a discussion of the analysis.

Section 8 concludes with observations and future

work.

2. Parallel Processing

Most modern PCs, workstations, and even handheld

devices contain several central processing unit (CPU)

cores. These cores are self-contained and can execute

various instructions at the same time. Programs that

use parallelization to take advantage of multiple cores

run faster and allow better use of CPU resources.

Parallel Processing is another term for speeding up the

efficiency of running a program by dividing it into

smaller pieces that can be performed simultaneously

on multiple processors. [11], In general, each

component has its processor. A program running on Q

processors can complete Q times faster than a program

running on one processor. [12].

Figure 1: Structure of Parallel Processing [13]

2.1 Parallel Processing benefits

Just one program could be run on the original

computers at a given time. The intensive operational

program for one hour would take two hours to

complete, and a tape-collection program that lasted for

one hour would take two hours. In parallel, all

programs are run simultaneously at the beginning of

the parallel processing. The machine begins an input

and output instructions first, and while waiting to

complete the mission, the intensive operations

program would be executed. It will take less than one

hour to complete the two tasks. [14] .

2.2 Applications for Parallel Processing

▪ Parallel processing systems are used to ensure the

security and dependability of the United States'

remaining nuclear weapons arsenal. In the absence

of nuclear testing, either above or below ground,

very fine-grained numerical simulation is needed

to evaluate and forecast potential problems caused

by long-term storage of nuclear products. [15].

▪ Parallel processing is used to create computer-

generated vehicles and railings to monitor the

strength and endurance of the railings in the event

of a collision. Executing one model on a single

processing system will take up to five days, while

it only takes a few hours on a parallel machine.

▪ Airlines use parallel processing to analyze

customer data, estimate requests, and determine

the fees to charge.

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

347

▪ MRI images and models of bone implantation

systems are examined using medical parallel

processing equipment.

▪ Other uses include broken coding, geological

research, animated graphics, computer fluid

dynamics, chemistry, the science of physics,

electronic styling, and climatology.

3. Multiprocessing

The capacity of a device to support more than one

processor at the same time is referred to as

multiprocessing. In a multiprocessing method,

applications are divided into smaller chunks of code

that run independently. The operating system assigns

these threads to the processors, which improves

system performance. It does two things at once: it runs

code on multiple CPUs at the same time, or it runs code

on the same CPU and achieves speedups by using

"wasted" CPU cycles while the software is waiting for

external resources such as file loading, API calls, and

so on.

Figure 2: Structure of Multiprocessing

3.1 The Benefits of Multiprocessing

• Enhanced Throughput: More work can be

completed in the same amount of time by

increasing the number of processors.

• Saving money by sharing memory, buses,

peripherals, and so on: When opposed to multiple

single systems, a multiprocessor system saves

resources. Furthermore, if numerous programs

run on the same data, it is less expensive to store

the data on a single disk shared by all processors

in the system rather than using several copies of

the same data.

• In this method increase reliability, since the ability

is spread over many processors, the reliability is

increased. If one of the processors fails, the

system's speed will be slightly slowed, but the

system will continue to function normally.

4. Python

For learning as well as actual world programming,

Python is an appropriate language. Python is Guido

van Rossum's strong object-oriented language of

programming. The language designs allow the user to

write simple programs on large and small scales. [5].

Python supports many programming paradigms,

including object-oriented, mandatory, functional, or

procedural types. Python supports the essential

feature. Python supports an automatic memory

management system of a dynamic kind and has broad

and extensive standard libraries. Many operating

systems have Python interpreters available.

Figure 2: Python-based Parallel Processing Libraries [16] .

4.1 Python Libraries for Parallel Processing and

Multiprocessing systems.

In this section, some Python Libraries will be

discussed. Python Programming Language provides a

standard library as well as a variety of libraries for

parallel processing and multiprocessing system.

a. The multiprocessing library: It allows parallel

processing in which multiple processes with

different input arguments can be produced from a

single function. On the other hand, the process

library allows external processes such as another

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

348

Python script or a C/C++ execution from a Python

script. [17].

b. JMetalPy: Create an environment for solving

multi-objective optimization problems using

traditional meta-heuristics and techniques for

preference articulation and emotional problems,

as well as a rich set of features and real-time and

interactive visualization. JMetalPy also supports

parallel computing in multicore and cluster

systems. [18].

c. Parsl: It is a Python-based parallel scripting library

that facilitates data-oriented workflows that are

both asynchronous and implicitly parallel. Using

Swift's model as a foundation [12], Parsl extends

Python scripts (or applications) with advanced

parallel workflow capabilities. Parsl scripting links

selected python functions, and external

applications (called apps), with shared

input/output data objects in versatile parallel

workflows. Parsl summarizes the execution

environment for multi-core processors, clusters,

and supercomputers [19].

d. Ray: Is an open-source Python parallel and

distributed library. Ray provides a cohesive

interface for expressing in cooperation calculations

that are parallel to the role and actor based on a

single dynamic implementation motor. Ray

monitors the system's control state using a

distributed scheduler and a parallel fault-tolerant

store to meet performance requirements. [20].

e. PyWren: an open-source project that runs user-

supplied Python code and dependencies as server-

less activities on a server-less platform. PyWren

performs server-less actions at a large scale and

tracks the effects without needing awareness of

how they are invoked and run. PyWren provides

a client that operates locally and a runtime

deployed as a server-less action in the cloud.

PyWren uses object storage to communicate

between the client and server sides. PyWren, on

the client-side, serializes Python code and related

data and stores it in object storage. The client

instructs the stored actions to run concurrently

and then awaits the output. PyWren takes the code

and processes the related data from object storage

on the server-side, saving the output. [21].

f. PyNetLogo: Is a connector. The Python general-

purpose programming language will be used to

handle NetLogo. Due to Python’s increasing

demand in the field of IT in general, the analysts

and modelers have the ability to choose within

many different selections. PyNetLogo features

include monitoring using one of NetLogo's

example frameworks in an interactive Python

environment to conduct a global data analysis

with parallel processing. [22].

5. Literature Review

This paper reviewed many papers related to

multiprocessing and parallel processing issues that

Python solved. And demonstrates how

multiprocessing and parallel processing can

significantly reduce calculation time by using python

libraries.

D. Meunier et al., [23] NetLogo can be controlled

through the programming language of Python. Given

Python's growing popularity in computer science,

modelers and analysts now have more choices.

PyNetLogo features include controlling one of

NetLogo's example models from an integrated Python

environment and performing a global sensitivity

analysis with parallel processing.

J. Kready et al., [24] This paper proposes an

implementation using multiprocessing from Python to

process a parallel application for the YouTube Data

API. First, parallel data collection from YouTube. The

tests show that multiprocessing increases the output

by 400 percent with parallel processing for YouTube

data collection. These enhancements minimize

calculation time by using multi-threaded CPUs.

J. Niruthika et al., [25] The output of the parallel Aho-

https://github.com/ray-project/ray
http://pywren.io/

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

349

Corasick algorithm was compared to that of the serial

version. Aho-Corasick is a well-known algorithm that

solves the problem of exact string matching, which is a

significant problem in the field of computer science.

The results show that parallel Aho-Corasick

implemented in Python has a lower time performance

than its serial counterpart, while parallel Aho-Corasick

implemented in C has a higher time performance than

its serial counterpart. As a result, Python is unsuitable

for parallelizing the Aho-Corasick algorithm since the

algorithm's CPU consumption may be significant

compared to its I/O usage.

A. Benítez-Hidalgo et al ., [26] jMetalPy is

implemented in a Python-based multi-objective

optimization system with meta-heuristics. It is

distributed under the MIT license and is freely

available to the public on GitHub. They presented and

discussed the central architecture of the NSGA-II

program and some of its variants as ample examples

of how to use this framework. Dynamic optimization,

parallelism, and data processing decision-making are

all assisted by Metal.

Y. Babuji et al., [27] Parsl is a parallel script library that

extends Python through fast, scalable, and adaptable

encoding parallels. Experimental results on computing

in Blue Waters show that Python scripts can run

components of just 5 MS overhead, scale to over

250,000 employees across more than 8,000 nodes, and

process up to 1200 tasks a second. It has shown

multitasking, collaborative, web-based, and machine

learning skills in biology, cosmology, and materials

science.

D. S. Wahyuni [28] The BayesFactorFMRI tool, written

in R and Python, was presented to enable Bayesian

second-level analysis and Bayesian meta-analysis for

multiprocessing fMRI image data by neuroimaging

researchers. This tool accelerates computer-intensive

Bayesian fMRI analysis by using multiprocessing. Its

graphical user interface (GUI) enables researchers to

conduct Bayesian fMRI analysis without the need for

computer programming expertise. BayesFactorFMRI

can be downloaded for free from Zenodo and GitHub.

Neuroimaging researchers who wish to analyze their

fMRI data with Bayesian analysis will usually use it, as

it is more sensitive than conventional analysis and

increases efficiency by spreading analytical tasks

across multiple processors.

G. Heine, T et al., [29] Introduced a method for

asynchronous streaming. Stream subscriptions are

proposed as a tool for monitoring public opinion. A

prototype is presented that integrates Twitter sources,

Python text processing, and Cassandra storage

methods, with three main points elaborated on: 1) A

comparison of results in writing techniques. 2) Data

parallelization and asynchronous concurrent database

writes are used in multiprocessing procedures. 3)

Monitoring of public opinion by noun extraction.

D. Datta et al., [30] The performance of parallelized

CPUs was compared. Python's Ray library is used to

parallelize multicore CPUs. In this project, the

benchmark image classification algorithm used is

based Convolutional Neural Network. The author

attempted to demonstrate the Parallelization of a

CPU's multicores which allows for faster training of a

model. In this paper, a comparison analysis was

conducted between three different Convolutional

Neural Network models.

T. Shaffer et al., [31] Native Python functions were

proposed at scale, and techniques for dynamically

evaluating a minimal collection of dependencies and

assembling a lightweight function monitor (LFM) that

captures the software environment and manages

resources at the granularity of single functions were

introduced. The author tests these approaches in

various settings, from a campus cluster to a

supercomputer, and demonstrates that their advanced

dependency management planning and complex

resource management strategies outperform the

competition.

E. Jonas et al., [32] Introduced the MPI Python connect

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

350

with the standard MPI communication API, known as

mpiPython. The author discussed the design issues

associated with the implementation of the mpiPython

API in this paper. The second part of the paper

addressed the node/parallel output to compare

mpiPython with other MPI bindings on a Linux

cluster.

Galvez et al., [33] CharmPy was introduced as a

parallel programming model and application based on

the Python programming language. It had many

distinguishing features, including a simpler model and

API, improved flexibility, and writing anything in

Python. Another example is a general-purpose

distributed map function that can run independent

jobs on multiple nodes simultaneously and supports

load balancing. The authors also demonstrated how to

use CharmPy to write parallel Python applications that

scale to massive core counts on supercomputers and

perform similarly to MPI or C++ versions.

R. Eggen et al,. [34] The effect of the global python

interpreter lock (GIL) has been examined. To show the

effect of GIL, the authors analyze a comparison of

python threads to python processes. The GIL leads to

sequential execution of threads, while concurrent

processing is executed. Processes need more start-up

time; it answers the amount of data needed to execute

processes faster than threads.

M. R. Rizqullah et al., [35] The middleware in this

paper was developed using the Python parallel

programming language and installed on a Raspberry

Pi 3. The console frame was designed to help people

learn the basics of IoT through the transmission and

receipt of control data to access sensors or actuators.

This middleware transforms a command line for

running or accessing the various IoT module features.

In order to increase program operating time

performance, Python employs multiprocessing or

multithreading.

V. Skorpil et al., [36] The paper discussed various

methods for parallelizing genetic algorithms with

subsequent implementation. For example purposes,

the Python programming language is used. Various

models of genetic algorithm parallel processing are

also provided and described. The Python

implementations of the models are then defined and

compared using iteration count as a criterion. While

individual model output can only be compared to a

certain degree, all parallel models outperform the

simple serial model.

H. Jan et al., [37] In this article, the NetLogo connector

was initially introduced, which connects the NetLogo

modeling agent to a Python environment. This was

illustrated with one of NetLogo's sample versions. The

library SALib Python was used as an example of the

more complex tests given in a Python GUI in Sobol's

variance-based structural reliability analysis of the

model. For better results in the study, the ipyparallel

library was used to parallel sequential simulations.

Zhang et al., [38] This paper proposed Quant Cloud, a

program that integrates a parallel Python framework

with a C++-coded Big Data system. This extensive data

framework is built in C++, and the user methods are

written in Python. A coprocessor-based parallel

strategy underpins the automatic parallel execution of

Python code. They have put the program into two

popular algorithms: moving window and self-

adjusting average movements (ARMA). The Intel Xeon

E5 and Xeon Phi processors are thoroughly compared.

Their approach to parallelization is almost linear and

is suitable for today's multicore processors. The

findings show that their method is almost linear.

Sindhu et al.,[39] A Python multi-processing library

has implemented a simultaneous implementation of

the Max-p problem. The author achieves speeds up to

12 and 19 times with the best sequential algorithm for

developing and improving phases utilizing an

intuitive multi-lock data structure. In order to validate

the algorithms, the author provides detailed

experiential results.

Real et al., [40] This paper has presented Auto Parallel

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

351

which is a Python module that facilitates parallelism

and runs on distributed infrastructures. It is built on

top of PyCOMP and is sequential, This helps in

making it easy to scale up to hundreds of cores for

creative purposes. Users can specify the affine loop on

sequential methods using the @parallel annotation

instead of testifying sequential python code. As it

turns out, the generated codes for Choles, LU, and QR

algorithms can achieve similar performance without

any effort from the programmer. Thus, taking the Auto

Pip parallelizes distributed systems one step further.

Z. Rinkevicius et al ., [41] Prsened an Open source

software named VeloxChem that was created to

measure electronic complicated, real linear response

functions for functional theories of Hartree–Fock and

Kohn–Sham density. Points to an objective software

framework written in Python/C++ layered fashion,

VeloxChem enables the time-efficiently prototyping of

new techniques without cooperating computational

achievement.

V. Canh Vu et al,. [42] In parallel, a genetic

programming technique for classifying data patterns

for wireless attack detection was presented. The author

performed tests on the same computer system

configuration, parameters and datasets in order to

associate the performance of Karoo GP and standard

GP. Karoo GP was, however, implemented alongside

the high-speed GPU processing mechanism when the

mainstream GP for multi-core CPUs has been used.

Karoo GP is much faster than its average GP, according

to performance.

S. Khan and A. Latif [43] Proposed solution eliminates

this constraint and allows a single machine to run

several instances. The SIME method for the

measurement of critical clearance time (CCT) and the

stability of the rotor angles is measured on a piece of

single infinite system equipment (SIME). This method

reduces computational time as a parallel factor and

dramatically improves the handling and aggregation

of the tasks. The approach is generic and possible.

A. V. M. Barone et al., [44] Introduce a broad and

diverse Parallel Corpus with its documentation strings

("docstrings") created by scrapping open source

repositories on GitHub, with a hundred thousand

Python functionalities. The paper defined the

fundamental results in neural machine-created

translations for the code documentation and code

generation tasks. To further increase the number of

training information

Table 1: Summary of Review Papers Based on Parallel

Processing and Multiprocessing in Python

Ref. Year Objectives Methods /

Tools

Research

Problem

Applied Field

[23] 2020 Create parallel

processing

pipelines that can

be shared and keep

track of all

analyses.

NeuroPyc

on

Multi-modal

and decided

reproducible

brain

connectivity

pipelines

Health Care

(Brain

Pipelines)

[24] 2020 Reduce

computation time

of YouTube Data

API request in

parallel.

Python The requests

from the

YouTube Data

API take time

Multimedia

(YouTube)

[25] 2019 Checking the

performance of the

parallel version of

the Aho-Corasick

algorithm against

its serial version

Pyrhon. Problem of

Exact String

Matching

Electronic

Dictionary

(Aho–

Corasick)

[26] 2019 Create multi-object

optimizations like

quick prototyping

facilities and a vast

number of data

libraries available,

and support multi-

core and cluster

systems for parallel

computing

processing,

analyzing, and

viewing.

jMetalPy Multi-

Objective

Optimization

with Met-

Heuristics

Engineering,

Economics and

Logistics

[27] 2019 Build a dynamic

component

dependency graph

that can then run

effectively on one

or more processors

Parsl Encoding

parallelism

Biology,

cosmology,

and materials

science.

[28] 2021 Comparing

Bayesian meta-

analysis of fMRI

image data with

multiprocessing

with serial analysis.

BayesFact

orFMRI

Perform

Bayesian

second-level

analysis and

Bayesian meta-

analysis

Image

Processing

[29] 2018 Combining Twitter

streams, by Python,

Multiprocessing

procedures

employing data

parallelization.

Python Asynchronous

streaming

Stream

subscriptions

Multimedia

(Twitter)

[30] 2020 Comparing the

performance of

parallelized CPUs

Python’s

Ray

library

Huge

Convolutional

Neural

Networks

Image

Processing

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

352

[31] 2021 Resource

management in a

distributed system

raises issues

relating to granular

parallelism,

management of

software

environments, and

adaptation to

computing

resources.

Parsl Dependency

management

planning and

complex

resource

management

strategies

Complex

application at

supercomputer

- scale.

[32] 2020 Creates a message

passing Python

linking interface to

facilitate parallel

computing

Python Big Data Media, Data

Science,

Physics,

Healthcare.

[33] 2018 Write parallel

Python apps with

CharmPy, which

rely on a

supercomputer to

be a huge center.

CharmPy Distributed

asynchronous

execution-

driven

migratory

objects.

Computation

and

Communicatio

n.
[34] 2019 Examine Thread

and multi-Process

Efficiency in

python.

Python Thread and

Process

Efficiency in

Python

Professor

Security

[35] 2019 Creating an App, A

console program to

help people

understand IoT for

basics.

Python Difficulties of

command line

command for

IoT users

Console

Application

[36] 2019 The use of genetic

algorithm parallel

processing that is

adapted to this

results in speeding

and optimization.

Master-

Slave

 Algorithm

speed and load

distribution

Genetic

Algorithms

[37] 2019 To manage one of

NetLogo's

examples from a

Python-interactive

environment,

perform a parallel

processing global

sensitivity analysis.

PyNetLog

o

 global

sensitivity

analysis of Net

Lgo

Controling the

Communicatio

n and Linking

[38] 2018 Coding Big Data

system in C++.

Pyrhon Data

Analysis and

big data

Finance

[39] 2018 Max-p problem

parallel

implementation

Python Max-P Area

Efficiency and

Synergy

Geospatial

[40] 2019 facilitates

parallelism and

runs on distributed

infrastructural

infrastructures

Python Improving how

users cannot

deal with

distributed and

parallel

computing

problems

directly.

Programming

language

[41] 2020 Calculating real

and complex

electronic linear

responses at the

Hartree–Fock and

Kohn–Sham

density stages.

Computer

effectiveness

sacrifice

Python Execution in

cluster

environments

with high

efficiency.

Spectroscopy

simulations

[42] 2018 Parallel to the

classification of

data patterns for the

identification of

wireless attacks

 (Karoo

GP)

Classify data

patterns for

wireless

attacks

Security

[43] 2019 Reduce computer

time as a parallel

factor and greatly

increase handling

and aggregation of

results

Python Software

Instance

Modular and

Scalable.

PowerFactory

[44] 2017 Introduce the

extensive and

diverse parallel

corpus with its

documentation

("docstrings") of

one hundred 000

Python functions,

provided by

removing the

GitHub open

source repository.

Python The nature and

the production

of code is not

reprehensible

by the current

company.

Documentation

and code

generation

6. Discussion

Increased use of Python and other high-level

programming languages calls for intuitive interfaces in

libraries written in different components in the lower

languages and applications. In combination with the

growing need for parallel computation (for example

because of big data and the end of Moore's law), this

change to orchestration instead of execution calls for a

revision on how parallelism in programs is

interpreted. In order to compare the performance of

the python libraries in parallel processing and

multiprocessing fields, we reviewed some papers

which used python libraries for the purpose of parallel

processing and multiprocessing. As a result, some of

the researcher proposed a python based new software

such as VeloxChem to be used for Actual and complex

electronic response functions calculation. Moreover,

Parsl, a parallel scripting library is used by the author

Babuji [19] for constructing a dynamic dependency

graph of components. On the other hand, Shffere [31],

worked with Parsl scripting for issues relating to

granular parallelism, management of software

environments, and adaptation to computing.

Foremother, Python parallel scripting language used

for Internet of Things (IoT) console applications. This

survey aims to concentrate on python open sources

language libraries used in different parallel and

multiprocessing systems. There are numerous

feedbacks and so, they can be used widely in the

future.

7. Conclusion

This paper demonstrated that Python is a new, mature,

complete, and scalable scripting language that is well-

suited to scientific research and education in power

system analysis. Python's programming language

provides the resources needed to run parallel code on

multicore machines. Throughout the paper, several

Python libraries were discussed that are used in

parallel and multiprocessing in various approaches.

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

353

Multimedia, websites, massive core counts on

supercomputers, genetic algorithms, attack detection,

and so on were all reviewed in the related work

section. It was stated that Python has features for

spreading work between multiple processes, allowing

it to take advantage of multiple CPU cores and larger

quantities of usable machine memory.

8. Reference

1. S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A.
Mustapha, and K. Y. Leong, “Crossover and mutation
operators of genetic algorithms,” Int. J. Mach. Learn. Comput.,
vol. 7, no. 1, pp. 9–12, 2017, doi: 10.18178/ijmlc.2017.7.1.611.

2. I. V. Kotenko, I. B. Saenko, and A. G. Kushnerevich,
“Architecture of the parallel big data processing system for
security monitoring of internet of things networks,” SPIIRAS
Proc., vol. 4, no. 59, pp. 5–30, 2018, doi: 10.15622/sp.59.1.

3. A. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke,
“COBRApy: COnstraints-Based Reconstruction and Analysis
for Python,” BMC Syst. Biol., vol. 7, 2013, doi: 10.1186/1752-
0509-7-74.

4. L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel
distributed computing using Python,” Adv. Water Resour., vol.
34, no. 9, pp. 1124–1139, 2011, doi:
10.1016/j.advwatres.2011.04.013.

5. A. Rogohult, “Benchmarking Python Interpreters,” KTH, Sk. för
datavetenskap och Kommun. (CSC), 2016, p. 119, 2016.

6. W. Y. Je, S. Teh, and H. R. Chern, “A parallelizable chaos-based
true random number generator,” 2018.

7. [7] W. K. Lee, R. C. W. Phan, W. S. Yap, and B. M. Goi,
“SPRING: a novel parallel chaos-based image encryption
scheme,” Nonlinear Dyn., vol. 92, no. 2, pp. 575–593, 2018, doi:
10.1007/s11071-018-4076-6.

8. T. Wang and Q. Kemao, “Parallel computing in experimental
mechanics and optical measurement: A review (II),” Opt. Lasers
Eng., vol. 104, no. June 2017, pp. 181–191, 2018, doi:
10.1016/j.optlaseng.2017.06.002.

9. E. Tejedor et al., “PyCOMPSs: Parallel computational
workflows in Python,” Int. J. High Perform. Comput. Appl., vol.
31, no. 1, pp. 66–82, 2017, doi: 10.1177/1094342015594678.

10. R. Filguiera, A. Krause, M. Atkinson, I. Klampanos, and A.
Moreno, “Dispel4py: A Python framework for data-intensive
scientific computing,” Int. J. High Perform. Comput. Appl., vol.
31, no. 4, pp. 316–334, 2017, doi: 10.1177/1094342016649766.

11. S. R. M. Zebari and N. O. Yaseen, “Effects of Parallel Processing
Implementation on Balanced Load-Division Depending on
Distributed Memory Systems Client / Server Principles,” vol.
5, no. 3, 2011.

12. M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz,
and I. Foster, “Swift: A language for distributed parallel
scripting,” Parallel Comput., vol. 37, no. 9, pp. 633–652, 2011, doi:
10.1016/j.parco.2011.05.005.

13. S. Y. Yu, S. R. Chhetri, A. Canedo, P. Goyal, and M. A. Al
Faruque, “Pykg2vec: A python library for knowledge graph
embedding,” arXiv, vol. 22, pp. 1–6, 2019.

14. C. Evangelinos and C. Hill, “Cloud Computing for Parallel
Scientific HPC Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2,” Ratio,
vol. 2, Jan. 2008.

15. K. Asanovíc et al., “The Landscape of Parallel Computing
Research : A View from Berkeley,” pp. 1–54, 2006.

16. T. Kim, “Survey and Performance Test of Python-based
Libraries for Parallel Processing,” pp. 1–4, 2020.

17. N. Singh, L. M. Browne, and R. Butler, “Parallel astronomical
data processing with Python: Recipes for multicore machines,”
Astron. Comput., vol. 2, pp. 1–10, 2013, doi:

10.1016/j.ascom.2013.04.002.

18. B. Lewis, I. Smith, M. Fowler, and J. Licato, “The robot mafia: A
test environment for deceptive robots,” 28th Mod. Artif. Intell.
Cogn. Sci. Conf. MAICS 2017, pp. 189–190, 2017, doi:
10.1145/1235.

19. Y. Babuji et al., “Introducing Parsl: A Python Parallel Scripting
Library,” pp. 1–2, 2017, [Online]. Available:
https://doi.org/10.5281/zenodo.891533#.WdOPKS_nvdE.me
ndeley.

20. P. Moritz et al., “Ray : A Distributed Framework for Emerging
AI Applications This paper is included in the Proceedings of
the,” USENIX Symp. Oper. Syst. Des. Implement., 2018.

21. J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. García-López,
“Serverless data analytics in the IBM cloud,” Middlew. Ind. 2018
- Proc. 2018 ACM/IFIP/USENIX Middlew. Conf. (Industrial Track),
no. October 2019, pp. 1–8, 2018, doi: 10.1145/3284028.3284029.

22. M. Jaxa-Rozen and J. Kwakkel, “PyNetLogo: Linking NetLogo
with Python,” J. Artif. Soc. Soc. Simul., vol. 21, Mar. 2018, doi:
10.18564/jasss.3668.

23. D. Meunier et al., “NeuroPycon: An open-source python
toolbox for fast multi-modal and reproducible brain
connectivity pipelines,” Neuroimage, vol. 219, no. June, 2020,
doi: 10.1016/j.neuroimage.2020.117020.

24. J. Kready, S. A. Shimray, M. N. Hussain, and N. Agarwal,
“YouTube data collection using parallel processing,” Proc. -
2020 IEEE 34th Int. Parallel Distrib. Process. Symp. Work. IPDPSW
2020, pp. 1119–1122, 2020, doi:
10.1109/IPDPSW50202.2020.00185.

25. J. Niruthika and S. Pranavan, “222 implementation of parallel
aho-corasick algorithm in python,” no. November, pp. 222–233,
2019.

26. A. Benítez-Hidalgo, A. J. Nebro, J. García-Nieto, I. Oregi, and J.
Del Ser, “jMetalPy: A python framework for multi-objective
optimization with metaheuristics,” arXiv, 2019.

27. Y. Babuji et al., “Parsl: Pervasive parallel programming in
Python,” HPDC 2019- Proc. 28th Int. Symp. High-Performance
Parallel Distrib. Comput., pp. 25–36, 2019, doi:
10.1145/3307681.3325400.

28. H. Han, “BayesFactorFMRI: Implementing Bayesian Second-
Level fMRI Analysis with Multiple Comparison Correction and
Bayesian Meta-Analysis of fMRI Images with
Multiprocessing,” J. Open Res. Softw., vol. 9, no. 1, pp. 1–7, 2021,
doi: 10.5334/jors.328.

29. G. Heine, T. Woltron, and W. Alexander, “Towards a Scalable
Data-Intensive Text Processing Architecture with Python and
Towards a Scalable Data-Intensive Text Processing
Architecture with Python and Cassandra,” no. November,
2018.

30. D. Datta, D. Mittal, N. P. Mathew, and J. Sairabanu,
“Comparison of Performance of Parallel Computation of CPU
Cores on CNN model,” Int. Conf. Emerg. Trends Inf. Technol. Eng.
ic-ETITE 2020, pp. 1–8, 2020, doi: 10.1109/ic-
ETITE47903.2020.142.

31. T. Shaffer, Z. Li, B. Tovar, and Y. Babuji, “Lightweight Function
Monitors for Fine-Grained Management in Large Scale Python
Applications,” pp. 1–11.

32. H. Park, J. Denio, J. Choi, and H. Lee, “MpiPython: A robust
python MPI binding,” Proc. - 3rd Int. Conf. Inf. Comput. Technol.
ICICT 2020, pp. 96–101, 2020, doi:
10.1109/ICICT50521.2020.00023.

33. J. J. Galvez, K. Senthil, and L. Kale, “CharmPy: A Python
Parallel Programming Model,” Proc. - IEEE Int. Conf. Clust.
Comput. ICCC, vol. 2018-Septe, pp. 423–433, 2018, doi:
10.1109/CLUSTER.2018.00059.

34. R. Eggen and E. M. Eggen, “Thread and Process Efficiency in
Python,” pp. 32–36.

35. M. R. Rizqullah, A. R. Anom Besari, I. Kurnianto Wibowo, R.
Setiawan, and D. Agata, “Design and implementation of
middleware system for IoT devices based on raspberry Pi,” Int.
Electron. Symp. Knowl. Creat. Intell. Comput. IES-KCIC 2018 -
Proc., pp. 229–234, 2019, doi: 10.1109/KCIC.2018.8628528.

36. V. Skorpil, V. Oujezsky, P. Cika, and M. Tuleja, “Parallel
Processing of Genetic Algorithms in Python Language,” Prog.

Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021

354

Electromagn. Res. Symp., vol. 2019-June, pp. 3727–3731, 2019,
doi: 10.1109/PIERS-Spring46901.2019.9017332.

37. H. Jan, J. H. Pynetlogo, L. Netlogo, M. Jaxa-rozen, and J. H.
Kwakkel, “Article PyNetLogo : Linking NetLogo with Python
Reference PyNetLogo : Linking NetLogo with Python,” vol. 21,
no. 2.

38. P. Zhang, Y. Gao, and X. Shi, “QuantCloud: A software with
automated parallel python for Quantitative Finance
applications,” Proc. - 2018 IEEE 18th Int. Conf. Softw. Qual.
Reliab. Secur. QRS 2018, pp. 388–396, 2018, doi:
10.1109/QRS.2018.00052.

39. V. Sindhu, “ScholarWorks @ Georgia State University
Exploring Parallel Efficiency and Synergy for Max-P Region
Problem Using Python,” 2018.

40. F. Real, A. Batou, T. Ritto, and C. Desceliers, “Stochastic
modeling for hysteretic bit–rock interaction of a drill string
under torsional vibrations,” J. Vib. Control, p. 107754631982824,
2019, doi: 10.1177/ToBeAssigned.

41. Z. Rinkevicius et al., “VeloxChem: A Python-driven density-
functional theory program for spectroscopy simulations in
high-performance computing environments,” Wiley Interdiscip.
Rev. Comput. Mol. Sci., vol. 10, no. 5, pp. 1–14, 2020, doi:
10.1002/wcms.1457.

42. V. Canh Vu and T. H. Hoang, “Detect Wi-Fi Network Attacks
Using Parallel Genetic Programming,” Proc. 2018 10th Int. Conf.
Knowl. Syst. Eng. KSE 2018, pp. 370–375, 2018, doi:
10.1109/KSE.2018.8573378.

43. S. Khan and A. Latif, “Python based scenario design and
parallel simulation method for transient rotor angle stability
assessment in PowerFactory,” 2019 IEEE Milan PowerTech,
PowerTech 2019, pp. 1–6, 2019, doi: 10.1109/PTC.2019.8810949.

44. A. V. M. Barone and R. Sennrich, “A parallel corpus of Python
functions and documentation strings for automated code
documentation and code generation,” arXiv, 2017.

