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 ABSTRACT 

Parallel and multiprocessing algorithms break down significant numerical problems into smaller subtasks, reducing the total 

computing time on multiprocessor and multicore computers. Parallel programming is well supported in proven programming 

languages such as C and Python, which are well suited to “heavy-duty” computational tasks. Historically, Python has been 

regarded as a strong supporter of parallel programming due to the global interpreter lock (GIL). However, times have changed. 

Parallel programming in Python is supported by the creation of a diverse set of libraries and packages. This review focused on 

Python libraries that support parallel processing and multiprocessing, intending to accelerate computation in various fields, 

including multimedia, attack detection, supercomputers, and genetic algorithms. Furthermore, we discussed some Python 

libraries that can be used for this purpose. 
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1. Introduction 

In recent years, the Python programming language has 

gained momentum for scientific computing. Often 

conventional tools like MatLab are replaced. [1]. It is 

open to all at no cost because Python is open source, 

and its portability makes its usability possible on many 

platforms. The language itself is lightweight, abridged, 

and highly suitable for quick prototyping, although it 

is strong enough to write significant applications. 

Some people don't give it enough credit for its usability 

and flexibility.  

Python can very well be integrated with the C/C++ so 

that external performance or code-based modules can 

be easily invoked. Besides, it offers a wide range of 

scientific libraries, e.g. Processing and analyzing data, 

plotting  and graphical user interfaces [2][3][4]. All 

these feature makes Python attractive to the scientific 

public but it has to be parallel to the languages used in 

large projects. CPython is the default implementation 

and most commonly used. [5], due to the global look 

in the interpreter, several threads cannot be run at 

once. A variety of options have been developed to 

create many Python processes, Shared and elastic 

infrastructure environments, including networks, 

clusters, and clouds. 

Parallel computing, on the other hand, is a 

computational paradigm where several instructions 

are performed concurrently. It is based on the premise 

that significant problems can often be broken into 

separate ones and solved simultaneously (parallel). 

Bit-level parallelism, instruction-level parallelism, 

data parallelism, and task parallelism are the four 

types of parallel computation [6]. 

Hiotas been used for many years, especially in high-

performance computing; however, interest in this field 

has recently increased due to physical hardware 

constraints on CPU frequency, such as shared-memory 

and distributed services, as well as infrastructure 

networks, clusters, and clouds [7][8]. Furthermore, the 

use of such resources and the generation of heat by 

computers has become a focus of recent technological 

advancement. As a result, parallel computing has 

established itself as a key concept in computer 

architecture, specifically in multi-core processors. 

The Python multiprocessing module [9] allows 

processes to be spawned in SMP machines with an API 

like the module for threading, explicit calls for process 
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generation, declaration passing, and implementation, 

cooperation, and result selection. The GIL problem is 

avoided by the multiprocessing module, which 

launches sub processes rather than threads through a 

fork system call. Parallel Python (PP) is a Python 

module that implements frameworks for parallel 

Python code execution on SMP and clusters. It is based 

on an API that includes explicit functions for 

specifying the number of workers to be used, 

submitting jobs for execution, obtaining worker 

results, Etc. Similarly to the multiprocessing module, 

the programmer is in charge of parallelism 

management, which combines the actual algorithm 

parallelism management. [10]. 

The paper is organized as follows. Sections 2, 3, 4, and 

5 include context theory; Section 6 addresses related 

work. Section 7 contains a discussion of the analysis. 

Section 8 concludes with observations and future 

work. 

2. Parallel Processing  

Most modern PCs, workstations, and even handheld 

devices contain several central processing unit (CPU) 

cores. These cores are self-contained and can execute 

various instructions at the same time. Programs that 

use parallelization to take advantage of multiple cores 

run faster and allow better use of CPU resources. 

Parallel Processing is another term for speeding up the 

efficiency of running a program by dividing it into 

smaller pieces that can be performed simultaneously 

on multiple processors. [11], In general, each 

component has its processor. A program running on Q 

processors can complete Q times faster than a program 

running on one processor. [12].  

 
Figure 1: Structure of  Parallel Processing [13] 

 

2.1 Parallel Processing benefits 

Just one program could be run on the original 

computers at a given time. The intensive operational 

program for one hour would take two hours to 

complete, and a tape-collection program that lasted for 

one hour would take two hours. In parallel, all 

programs are run simultaneously at the beginning of 

the parallel processing. The machine begins an input 

and output instructions first, and while waiting to 

complete the mission, the intensive operations 

program would be executed. It will take less than one 

hour to complete the two tasks. [14] .  

 

2.2 Applications for Parallel Processing  

 

▪ Parallel processing systems are used to ensure the 

security and dependability of the United States' 

remaining nuclear weapons arsenal. In the absence 

of nuclear testing, either above or below ground, 

very fine-grained numerical simulation is needed 

to evaluate and forecast potential problems caused 

by long-term storage of nuclear products. [15]. 

▪ Parallel processing is used to create computer-

generated vehicles and railings to monitor the 

strength and endurance of the railings in the event 

of a collision. Executing one model on a single 

processing system will take up to five days, while 

it only takes a few hours on a parallel machine. 

▪ Airlines use parallel processing to analyze 

customer data, estimate requests, and determine 

the fees to charge.  
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▪ MRI images and models of bone implantation 

systems are examined using medical parallel 

processing equipment.  

▪ Other uses include broken coding, geological 

research, animated graphics, computer fluid 

dynamics, chemistry, the science of physics, 

electronic styling, and climatology. 

3. Multiprocessing 

The capacity of a device to support more than one 

processor at the same time is referred to as 

multiprocessing. In a multiprocessing method, 

applications are divided into smaller chunks of code 

that run independently. The operating system assigns 

these threads to the processors, which improves 

system performance. It does two things at once: it runs 

code on multiple CPUs at the same time, or it runs code 

on the same CPU and achieves speedups by using 

"wasted" CPU cycles while the software is waiting for 

external resources such as file loading, API calls, and 

so on. 

 
Figure 2: Structure of Multiprocessing 

 

3.1 The Benefits of Multiprocessing 

• Enhanced Throughput: More work can be 

completed in the same amount of time by 

increasing the number of processors. 

• Saving money by sharing memory, buses, 

peripherals, and so on: When opposed to multiple 

single systems, a multiprocessor system saves 

resources. Furthermore, if numerous programs 

run on the same data, it is less expensive to store 

the data on a single disk shared by all processors 

in the system rather than using several copies of 

the same data. 

• In this method increase reliability, since the ability 

is spread over many processors, the reliability is 

increased. If one of the processors fails, the 

system's speed will be slightly slowed, but the 

system will continue to function normally.  

4. Python 

For learning as well as actual world programming, 

Python is an appropriate language. Python is Guido 

van Rossum's strong object-oriented language of 

programming. The language designs allow the user to 

write simple programs on large and small scales. [5]. 

Python supports many programming paradigms, 

including object-oriented, mandatory, functional, or 

procedural types. Python supports the essential 

feature. Python supports an automatic memory 

management system of a dynamic kind and has broad 

and extensive standard libraries. Many operating 

systems have Python interpreters available. 

 
Figure 2: Python-based Parallel Processing Libraries [16] . 

 

4.1 Python Libraries for Parallel Processing and 

Multiprocessing systems. 

In this section, some Python Libraries will be 

discussed. Python Programming Language provides a 

standard library as well as a variety of libraries for 

parallel processing and multiprocessing system. 

a. The multiprocessing library: It allows parallel 

processing in which multiple processes with 

different input arguments can be produced from a 

single function. On the other hand, the process 

library allows external processes such as another 
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Python script or a C/C++ execution from a Python 

script. [17]. 

b. JMetalPy: Create an environment for solving 

multi-objective optimization problems using 

traditional meta-heuristics and techniques for 

preference articulation and emotional problems, 

as well as a rich set of features and real-time and 

interactive visualization. JMetalPy also supports 

parallel computing in multicore and cluster 

systems. [18]. 

c. Parsl: It is a Python-based parallel scripting library 

that facilitates data-oriented workflows that are 

both asynchronous and implicitly parallel. Using 

Swift's model as a foundation [12], Parsl extends 

Python scripts (or applications) with advanced 

parallel workflow capabilities. Parsl scripting links 

selected python functions, and external 

applications (called apps), with shared 

input/output data objects in versatile parallel 

workflows. Parsl summarizes the execution 

environment for multi-core processors, clusters, 

and supercomputers [19]. 

d. Ray: Is an open-source Python parallel and 

distributed library. Ray provides a cohesive 

interface for expressing in cooperation calculations 

that are parallel to the role and actor based on a 

single dynamic implementation motor. Ray 

monitors the system's control state using a 

distributed scheduler and a parallel fault-tolerant 

store to meet performance requirements. [20]. 

e. PyWren: an open-source project that runs user-

supplied Python code and dependencies as server-

less activities on a server-less platform. PyWren 

performs server-less actions at a large scale and 

tracks the effects without needing awareness of 

how they are invoked and run. PyWren provides 

a client that operates locally and a runtime 

deployed as a server-less action in the cloud. 

PyWren uses object storage to communicate 

between the client and server sides. PyWren, on 

the client-side, serializes Python code and related 

data and stores it in object storage. The client 

instructs the stored actions to run concurrently 

and then awaits the output. PyWren takes the code 

and processes the related data from object storage 

on the server-side, saving the output. [21]. 

f. PyNetLogo: Is a connector. The Python general-

purpose programming language will be used to 

handle NetLogo. Due to Python’s increasing 

demand in the field of IT in general, the analysts 

and modelers have the ability to choose within 

many different selections. PyNetLogo features 

include monitoring using one of NetLogo's 

example frameworks in an interactive Python 

environment to conduct a global data analysis 

with parallel processing. [22]. 

5. Literature Review  

This paper reviewed many papers related to 

multiprocessing and parallel processing issues that 

Python solved.  And demonstrates how 

multiprocessing and parallel processing can 

significantly reduce calculation time by using python 

libraries. 

D. Meunier et al., [23] NetLogo can be controlled 

through the programming language of Python. Given 

Python's growing popularity in computer science, 

modelers and analysts now have more choices. 

PyNetLogo features include controlling one of 

NetLogo's example models from an integrated Python 

environment and performing a global sensitivity 

analysis with parallel processing. 

J. Kready et al., [24] This paper proposes an 

implementation using multiprocessing from Python to 

process a parallel application for the YouTube Data 

API. First, parallel data collection from YouTube. The 

tests show that multiprocessing increases the output 

by 400 percent with parallel processing for YouTube 

data collection. These enhancements minimize 

calculation time by using multi-threaded CPUs. 

J. Niruthika et al., [25] The output of the parallel Aho-

https://github.com/ray-project/ray
http://pywren.io/
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Corasick algorithm was compared to that of the serial 

version. Aho-Corasick is a well-known algorithm that 

solves the problem of exact string matching, which is a 

significant problem in the field of computer science. 

The results show that parallel Aho-Corasick 

implemented in Python has a lower time performance 

than its serial counterpart, while parallel Aho-Corasick 

implemented in C has a higher time performance than 

its serial counterpart. As a result, Python is unsuitable 

for parallelizing the Aho-Corasick algorithm since the 

algorithm's CPU consumption may be significant 

compared to its I/O usage. 

A. Benítez-Hidalgo et al ., [26]  jMetalPy is 

implemented in a Python-based multi-objective 

optimization system with meta-heuristics. It is 

distributed under the MIT license and is freely 

available to the public on GitHub. They presented and 

discussed the central architecture of the NSGA-II 

program and some of its variants as ample examples 

of how to use this framework. Dynamic optimization, 

parallelism, and data processing decision-making are 

all assisted by Metal. 

Y. Babuji et al., [27] Parsl is a parallel script library that 

extends Python through fast, scalable, and adaptable 

encoding parallels. Experimental results on computing 

in Blue Waters show that Python scripts can run 

components of just 5 MS overhead, scale to over 

250,000 employees across more than 8,000 nodes, and 

process up to 1200 tasks a second. It has shown 

multitasking, collaborative, web-based, and machine 

learning skills in biology, cosmology, and materials 

science. 

D. S. Wahyuni [28] The BayesFactorFMRI tool, written 

in R and Python, was presented to enable Bayesian 

second-level analysis and Bayesian meta-analysis for 

multiprocessing fMRI image data by neuroimaging 

researchers. This tool accelerates computer-intensive 

Bayesian fMRI analysis by using multiprocessing. Its 

graphical user interface (GUI) enables researchers to 

conduct Bayesian fMRI analysis without the need for 

computer programming expertise. BayesFactorFMRI 

can be downloaded for free from Zenodo and GitHub. 

Neuroimaging researchers who wish to analyze their 

fMRI data with Bayesian analysis will usually use it, as 

it is more sensitive than conventional analysis and 

increases efficiency by spreading analytical tasks 

across multiple processors. 

G. Heine, T et al., [29] Introduced a method for 

asynchronous streaming. Stream subscriptions are 

proposed as a tool for monitoring public opinion. A 

prototype is presented that integrates Twitter sources, 

Python text processing, and Cassandra storage 

methods, with three main points elaborated on: 1) A 

comparison of results in writing techniques. 2) Data 

parallelization and asynchronous concurrent database 

writes are used in multiprocessing procedures. 3) 

Monitoring of public opinion by noun extraction. 

D. Datta et al.,  [30] The performance of parallelized 

CPUs was compared. Python's Ray library is used to 

parallelize multicore CPUs. In this project, the 

benchmark image classification algorithm used is 

based Convolutional Neural Network. The author 

attempted to demonstrate the Parallelization of a 

CPU's multicores which allows for faster training of a 

model. In this paper, a comparison analysis was 

conducted between three different Convolutional 

Neural Network models. 

T. Shaffer et al.,  [31] Native Python functions were 

proposed at scale, and techniques for dynamically 

evaluating a minimal collection of dependencies and 

assembling a lightweight function monitor (LFM) that 

captures the software environment and manages 

resources at the granularity of single functions were 

introduced. The author tests these approaches in 

various settings, from a campus cluster to a 

supercomputer, and demonstrates that their advanced 

dependency management planning and complex 

resource management strategies outperform the 

competition. 

E. Jonas et al., [32]  Introduced the MPI Python connect 
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with the standard MPI communication API, known as 

mpiPython. The author discussed the design issues 

associated with the implementation of the mpiPython 

API in this paper. The second part of the paper 

addressed the node/parallel output to compare 

mpiPython with other MPI bindings on a Linux 

cluster. 

Galvez et al.,  [33] CharmPy was introduced as a 

parallel programming model and application based on 

the Python programming language. It had many 

distinguishing features, including a simpler model and 

API, improved flexibility, and writing anything in 

Python. Another example is a general-purpose 

distributed map function that can run independent 

jobs on multiple nodes simultaneously and supports 

load balancing. The authors also demonstrated how to 

use CharmPy to write parallel Python applications that 

scale to massive core counts on supercomputers and 

perform similarly to MPI or C++ versions. 

R. Eggen et al,. [34] The effect of the global python 

interpreter lock (GIL) has been examined. To show the 

effect of GIL, the authors analyze a comparison of 

python threads to python processes. The GIL leads to 

sequential execution of threads, while concurrent 

processing is executed. Processes need more start-up 

time; it answers the amount of data needed to execute 

processes faster than threads. 

M. R. Rizqullah et al., [35] The middleware in this 

paper was developed using the Python parallel 

programming language and installed on a Raspberry 

Pi 3. The console frame was designed to help people 

learn the basics of IoT through the transmission and 

receipt of control data to access sensors or actuators. 

This middleware transforms a command line for 

running or accessing the various IoT module features. 

In order to increase program operating time 

performance, Python employs multiprocessing or 

multithreading. 

V. Skorpil et al.,  [36] The paper discussed various 

methods for parallelizing genetic algorithms with 

subsequent implementation. For example purposes, 

the Python programming language is used. Various 

models of genetic algorithm parallel processing are 

also provided and described. The Python 

implementations of the models are then defined and 

compared using iteration count as a criterion. While 

individual model output can only be compared to a 

certain degree, all parallel models outperform the 

simple serial model. 

H. Jan et al., [37] In this article, the NetLogo connector 

was initially introduced, which connects the NetLogo 

modeling agent to a Python environment. This was 

illustrated with one of NetLogo's sample versions. The 

library SALib Python was used as an example of the 

more complex tests given in a Python GUI in Sobol's 

variance-based structural reliability analysis of the 

model. For better results in the study, the ipyparallel 

library was used to parallel sequential simulations.  

Zhang et al., [38] This paper proposed Quant Cloud, a 

program that integrates a parallel Python framework 

with a C++-coded Big Data system. This extensive data 

framework is built in C++, and the user methods are 

written in Python. A coprocessor-based parallel 

strategy underpins the automatic parallel execution of 

Python code. They have put the program into two 

popular algorithms: moving window and self-

adjusting average movements (ARMA). The Intel Xeon 

E5 and Xeon Phi processors are thoroughly compared. 

Their approach to parallelization is almost linear and 

is suitable for today's multicore processors. The 

findings show that their method is almost linear. 

Sindhu et al.,[39] A Python multi-processing library 

has implemented a simultaneous implementation of 

the Max-p problem. The author achieves speeds up to 

12 and 19 times with the best sequential algorithm for 

developing and improving phases utilizing an 

intuitive multi-lock data structure. In order to validate 

the algorithms, the author provides detailed 

experiential results. 

Real et al., [40] This paper has presented Auto Parallel 
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which is a Python module that facilitates parallelism 

and runs on distributed infrastructures. It is built on 

top of PyCOMP and is sequential, This helps in 

making it easy to scale up to hundreds of cores for 

creative purposes. Users can specify the affine loop on 

sequential methods using the @parallel annotation 

instead of testifying sequential python code. As it 

turns out, the generated codes for Choles, LU, and QR 

algorithms can achieve similar performance without 

any effort from the programmer. Thus, taking the Auto 

Pip parallelizes distributed systems one step further. 

Z. Rinkevicius et al ., [41] Prsened an Open source 

software named VeloxChem that was created to 

measure electronic complicated, real linear response 

functions for functional theories of Hartree–Fock and 

Kohn–Sham density. Points to an objective software 

framework written in Python/C++ layered fashion, 

VeloxChem enables the time-efficiently prototyping of 

new techniques without cooperating computational 

achievement. 

V. Canh Vu et al,. [42] In parallel, a genetic 

programming technique for classifying data patterns 

for wireless attack detection was presented. The author 

performed tests on the same computer system 

configuration, parameters and datasets in order to 

associate the performance of Karoo GP and standard 

GP. Karoo GP was, however, implemented alongside 

the high-speed GPU processing mechanism when the 

mainstream GP for multi-core CPUs has been used. 

Karoo GP is much faster than its average GP, according 

to performance. 

S. Khan and A. Latif  [43] Proposed solution eliminates 

this constraint and allows a single machine to run 

several instances. The SIME method for the 

measurement of critical clearance time (CCT) and the 

stability of the rotor angles is measured on a piece of 

single infinite system equipment (SIME). This method 

reduces computational time as a parallel factor and 

dramatically improves the handling and aggregation 

of the tasks. The approach is generic and possible. 

A. V. M. Barone et al., [44] Introduce a broad and 

diverse Parallel Corpus with its documentation strings 

("docstrings") created by scrapping open source 

repositories on GitHub, with a hundred thousand 

Python functionalities. The paper defined the 

fundamental results in neural machine-created 

translations for the code documentation and code 

generation tasks. To further increase the number of 

training information 

Table 1: Summary of Review Papers Based on Parallel 

Processing and Multiprocessing in Python 

Ref.  Year Objectives Methods / 

Tools 

Research 

Problem  

Applied Field  

[23] 2020 Create parallel 

processing 

pipelines that can 

be shared and keep 

track of all 

analyses. 

NeuroPyc

on 

Multi-modal 

and decided 

reproducible 

brain 

connectivity 

pipelines 

Health Care 

(Brain 

Pipelines) 

[24] 2020 Reduce 

computation time 

of YouTube Data 

API request in 

parallel. 

Python The requests 

from the 

YouTube Data 

API take time 

Multimedia 

(YouTube) 

[25] 2019 Checking the 

performance of the 

parallel version of 

the Aho-Corasick 

algorithm against 

its serial version 

Pyrhon. Problem of 

Exact String 

Matching 

Electronic 

Dictionary                              

(Aho–

Corasick) 

[26] 2019 Create multi-object 

optimizations like 

quick prototyping 

facilities and a vast 

number of data 

libraries available, 

and support multi-

core and cluster 

systems for parallel 

computing 

processing, 

analyzing, and 

viewing. 

jMetalPy Multi-

Objective 

Optimization 

with Met-

Heuristics 

Engineering, 

Economics and 

Logistics 

[27] 2019 Build a dynamic 

component 

dependency graph 

that can then run 

effectively on one 

or more processors 

Parsl Encoding 

parallelism 

Biology, 

cosmology, 

and materials 

science. 

[28] 2021 Comparing 

Bayesian meta-

analysis of fMRI 

image data with 

multiprocessing 

with serial analysis. 

BayesFact

orFMRI  

Perform 

Bayesian 

second-level 

analysis and 

Bayesian meta-

analysis 

Image 

Processing  

[29] 2018 Combining Twitter 

streams, by Python, 

Multiprocessing 

procedures 

employing data 

parallelization. 

Python  Asynchronous 

streaming 

Stream 

subscriptions 

Multimedia 

(Twitter) 

[30] 2020 Comparing the 

performance of 

parallelized CPUs 

Python’s 

Ray 

library  

Huge 

Convolutional 

Neural 

Networks 

Image 

Processing 
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[31] 2021 Resource 

management in a 

distributed system 

raises issues 

relating to granular 

parallelism, 

management of 

software 

environments, and 

adaptation to 

computing 

resources. 

Parsl Dependency 

management 

planning and 

complex 

resource 

management 

strategies 

Complex 

application at 

supercomputer

- scale. 

[32] 2020 Creates a message 

passing Python 

linking interface to 

facilitate parallel 

computing 

Python   Big Data  Media, Data 

Science, 

Physics, 

Healthcare. 

[33] 2018 Write parallel 

Python apps with 

CharmPy, which 

rely on a 

supercomputer to 

be a huge center. 

CharmPy  Distributed 

asynchronous 

execution-

driven 

migratory 

objects. 

Computation 

and 

Communicatio

n. 
[34] 2019 Examine Thread 

and multi-Process 

Efficiency in 

python. 

Python  Thread and 

Process 

Efficiency in 

Python 

Professor 

Security  

[35] 2019 Creating an App, A 

console program to 

help people 

understand IoT for 

basics. 

Python  Difficulties of 

command line 

command for 

IoT users 

Console 

Application  

[36] 2019 The use of genetic 

algorithm parallel 

processing that is 

adapted to this 

results in speeding 

and optimization. 

Master-

Slave  

 Algorithm 

speed and load 

distribution 

Genetic 

Algorithms 

[37] 2019 To manage one of 

NetLogo's 

examples from a 

Python-interactive 

environment, 

perform a parallel 

processing global 

sensitivity analysis. 

PyNetLog

o 

 global 

sensitivity 

analysis of Net 

Lgo 

Controling the 

Communicatio

n and Linking 

[38] 2018 Coding Big Data 

system in C++. 

Pyrhon  Data 

Analysis and 

big data 

Finance 

[39] 2018 Max-p problem 

parallel 

implementation 

Python  Max-P Area 

Efficiency and 

Synergy 

Geospatial  

[40] 2019 facilitates 

parallelism and 

runs on distributed 

infrastructural 

infrastructures 

Python  Improving how 

users cannot 

deal with 

distributed and 

parallel 

computing 

problems 

directly. 

Programming 

language 

[41] 2020 Calculating real 

and complex 

electronic linear 

responses at the 

Hartree–Fock and 

Kohn–Sham 

density stages. 

Computer 

effectiveness 

sacrifice 

Python  Execution in 

cluster 

environments 

with high 

efficiency. 

Spectroscopy 

simulations 

[42] 2018 Parallel to the 

classification of 

data patterns for the 

identification of 

wireless attacks 

 (Karoo 

GP) 

Classify data 

patterns for 

wireless 

attacks 

Security  

[43] 2019 Reduce computer 

time as a parallel 

factor and greatly 

increase handling 

and aggregation of 

results 

Python  Software 

Instance 

Modular and 

Scalable. 

PowerFactory 

[44] 2017 Introduce the 

extensive and 

diverse parallel 

corpus with its 

documentation 

("docstrings") of 

one hundred 000 

Python functions, 

provided by 

removing the 

GitHub open 

source repository. 

Python  The nature and 

the production 

of code is not 

reprehensible 

by the current 

company. 

Documentation 

and code 

generation 

 

6. Discussion  

Increased use of Python and other high-level 

programming languages calls for intuitive interfaces in 

libraries written in different components in the lower 

languages and applications. In combination with the 

growing need for parallel computation (for example 

because of big data and the end of Moore's law), this 

change to orchestration instead of execution calls for a 

revision on how parallelism in programs is 

interpreted. In order to compare the performance of 

the python libraries in parallel processing and 

multiprocessing fields, we reviewed some papers 

which used python libraries for the purpose of parallel 

processing and multiprocessing. As a result, some of 

the researcher proposed a python based new software 

such as VeloxChem to be used for Actual and complex 

electronic response functions calculation. Moreover, 

Parsl, a parallel scripting library is used by the author 

Babuji [19] for constructing a dynamic dependency 

graph of components. On the other hand, Shffere [31], 

worked with Parsl scripting for issues relating to 

granular parallelism, management of software 

environments, and adaptation to computing. 

Foremother, Python parallel scripting language used 

for Internet of Things (IoT) console applications. This 

survey aims to concentrate on python open sources 

language libraries used in different parallel and 

multiprocessing systems. There are numerous 

feedbacks and so, they can be used widely in the 

future. 

7. Conclusion 

This paper demonstrated that Python is a new, mature, 

complete, and scalable scripting language that is well-

suited to scientific research and education in power 

system analysis. Python's programming language 

provides the resources needed to run parallel code on 

multicore machines. Throughout the paper, several 

Python libraries were discussed that are used in 

parallel and multiprocessing in various approaches. 



Academic Journal of Nawroz University (AJNU), Vol.10, No.3, 2021                                               

353 
 

Multimedia, websites, massive core counts on 

supercomputers, genetic algorithms, attack detection, 

and so on were all reviewed in the related work 

section. It was stated that Python has features for 

spreading work between multiple processes, allowing 

it to take advantage of multiple CPU cores and larger 

quantities of usable machine memory. 
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