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ABSTRACT 
One of the most common health care problems globally is COVID-19, and also there are an international effort to monitor it 

have been proposed and discussed. Despite the fact that many studies have been performed based on clinical evidence and 

confirmed infected cases. However, there is room for additional research since a range of complex criteria are included for later 

research forecast. As a consequence, mathematical modelling mixed with the numerical simulations is an effective method for 

estimating main propagation parameters and forecasting disease model dynamics. We study and present some models for the 

COVID-19 in this paper, which can answer significant questions concerning global health care and implement important notes. 

The IMEX Runge–Kutta and classical Runge–Kutta methods are two well-known computational schemes to find the solution 

for such system of differential equations. The results, which are based on these numerica l procedures suggested and provide 

estimated solutions, provide critical answers to this global problem. The amount of recovered, infected, susceptible, and 

quarantined people in the expectation can be estimated using numerical data. The findings could also aid international efforts 

to increase prevention and strengthen intervention programs.  The findings could also support international efforts to increase 

prevention and strengthen intervention programs. It is clearly that the proposed methods more accurate and works in a very 

large interval in time with a few step sizes. That is consequently beginning to a decrease in the computational price of the 

method. Numerical experiments show that there is a good argument and accurate solutions for solving this type of problem.  

Keywords COVID-19, Mathematical model, Runge-Kutta method, Numerical simulation, Model dynamics, Comparison 

simulations. 
 

1. Introduction

COVID-19 is a modern coronavirus that has expanded 

among humans and was 1st recognized in Wuhan, 

China. Furthermore, has presently expanded to 196 

countries, today along with that the new version of this 

disease is appear. COVID-19 will be known as a 

respiratory illness that is transferred through 

communication by the infected body or by saliva 

droplets during somebody sneezes or coughs [1]. More 

specifically, the simple replication numbers R0  for 

both Turkey and Iraq have been stated by [2, 3], and 

the estimate through 9 April 2020 confirmed that the 

value of R0 for Iraq is 3.4 and the value of R0 for Turkey 

is 7.4 [3]. Furthermore, according to daily pandemic 

data on the amount of approved new cases recorded 

from WHO, the number of new cases in Iraq on 29 May 

was 416 [6] also in Turkey on 11 April was 5138 [5], 

which can be recognized as the peak value behind the 

epidemic began. 

It has since been designated a pandemic disease by the 

WHO. Governments all over the world are under 

pressure to avoid the spread of the disease. The WHO 

warned people to clean their hands regularly and rest 

at home if they can; if they must go out, they must wear 

a mask and gloves [4]. Investigators at Harvard 

Medical School, for instance, possess pulled up among 

a skilful organization to improve characteristic 

reagents. Furthermore, foreign assistance aids in the 

alleviation of medical supply shortages [5]. A few 

articles on the COVID-19 pandemic have recently been 

published. One of the most modern investigations 

focused on the control and prediction of covid-19, in 

which fascinating models based on the dynamics were 

practiced to reduce infection transmission in the three 

Indian countries [9]. Moreover, in the truancy of 

treatments or prosperous treatments in world, 

fascinating nations, such as Italy, South Korea and 

Brazil, offered measures for example city lock-downs 

with border protection and social isolation for helping 
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public solicitudes [10]. The Long-short term memory 

systems were defined previously [11]. It is dealt with 

in another report. The mathematical simulation of 

fourteen nonlinear FDEs [6] was introduced to show 

how the transference dynamics of disease happened in 

community. In addition, COVID-19 has been predicted 

in Brazil in a short-term analysis. However, producing 

short term forecasting models provide for a forecast of 

possible cases [7]. To return to the subject of prediction, 

it has been suggested that the scientific community 

work together to develop new and improved 

approaches, tactics, forecasting procedures, and 

diagrams to fully agree and decrease the consequences 

of that also expected pandemics [8]. 

At the same time, during a separate investigation, the 

optimal regression tree description has been used to 

recognize significant variables which have a 

significant impact on case fatality rates in various 

countries, including Canada, South Korea, India, 

United Kingdom and France [9]. COVID-19 

mathematical modelling is working behind the scenes 

to better understand and forecast how infections 

spread. Mathematical models have been used to create 

a reduced description of disease developed in the 

community also to realize how a disease could raise in 

future. Certain estimates can support us to make more 

regular use of public health supplies such as vaccines, 

medications, interventions and preventions. Estimates 

of population parameters can be used to guide a 

simulation which combines individual case at the 

moment ere a statistically important variation among 

the innovative organizations is mentioned. A list of 

these simulations will provide researchers with a 

midpoint and sample size range that will enable them 

to test their hypothesis [10]. Since Covid-19 is a new 

virus that only arose in the last months of 2019, there 

are some magnificent studies on it. Moreover, some 

studies in this area have been suggested, they are 

inadequate. As an illustration, a thought was managed 

by Biao Tang. in [11]. Altaf Khan and Atangana, on the 

other hand, suggested a model based on the premise 

that the seafood industry has enough sources of 

infection to infect people [12]. More modifications for 

the COVID-19 models can be found in [13-16].  

While several mathematical models have been 

proposed for the prediction of new coronavirus 

diseases, some of them can still be improved. 

Numerical approaches may be used to determine some 

estimated solutions for this virus, which could help to 

boost forecasts and estimates. The IMEX Runge-Kutta 

methods for COVID-19 are a challenge that has yet to 

be investigated. In a complicated coronavirus model, 

it's critical to get more precise and widespread 

numerical results. Iraqi people who have been away in 

the last 14 days that must be quarantined for 14 days 

later the government declared a curfew for a long time 

also prevented journey among all Iraqi regions. In 

February,2020, the first case occurred in one of Iraq's 

provinces. Concerning to the WHO, the cases of 

Coronavirus has raised to 4848 since the outbreak 

began in April. Iraq had 169 coronavirus deaths at the 

time of the outbreak. When analysing infected 

coronavirus cases between May and March in Turkey, 

just some cases were approved, however the number 

of cases increased dramatically in May, to 158762, with 

4397 deaths. This work contributes by analysing the 

COVID-19 model also determining the primary model 

components by using IMEX Runge-Kutta methods. 

This work's key contributions can be summarized as 

some points: the first point is COVID-19 has been 

studied and discussed in recently published articles. 

And the second one is the transmission rates are 

calculated using a collection of nonlinear differential 

equations. And the third point is to find numerical 

solutions for such equations, the IMEX Runge-Kutta 

methods are recommended. And the last point is 

according to numerical simulations, each quantity of 

infected people has regularly extended until April 

2020, behind that marginally reduce after May 2020. 
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2. THE PROPOSED METHOD 

High order implicit-explicit Runge Kutta (IMEX-RK) 

techniques are used for solving stiff problems. 

Whenever first-order IMEX-RK techniques have 

generally been applied to deals with the stiff terms of 

the chemistry implicitly in combustion simulations 

and hypersonic flow, two IMEX-RK techniques are 

fourth-order accurate. As a result, there have been 

several studies that have attracted much interest, and 

many numerical schemes, like the Euler method, 

Runge Kutta method, multistep schemes [17-20], Finite 

difference method [21,34-40], and Finite element 

methods [22-25], have been proposed over time. 

Consider the numerical form for the ordinary 

differential equations in the following system: 

dx(t)

dt
= FIm(t, x(t)) + FEx(t, x(t)).           (2.1) 

Splitting the right-hand side of (2.1) into stiff and non-

stiff is a key idea for the proposed process. An explicit 

Runge-Kutta (ERK) technique is applied for finding 

the solution for the non-stiff part FEx(t, x(t)) and a 

diagonally implicit Runge Kutta (DIRK) technique is 

manipulated for finding the solution for the stiff part 

FIm(t, x(t)). A common s-stage implicit-explicit Runge-

Kutta (IMEX-RK) technique involves an s-stage of both 

ERK and DIRK technique including the same 

weighting coefficients bi, for i = 1, 2,… , s. An Implicit-

Explicit Runge-Kutta scheme to the system (2.1) will be 

of the follow form [26, 27].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The explicit and implicit components are indicated by 

the letters (Ex) and (Im). The Implicit-Explicit scheme, 

defined by its Butcher coefficients (A[Ex], A[Im], 

 b[Ex], b[Im], c[Ex], c[Im]) will be of the form: 

xn+1 = xn + ∆t∑(bi

[Im]
ki

[Im]
+ bi

[Ex]
ki

[Ex]
)

s

i=1

, (2.2) 

where ki
[Im]

 and ki
[Ex]

 are the discrete counterparts of 

the stiff and nonstiff operators respectively in (2.2), FIm 

and FEx, 

ki
[Im]

= FIm(ti + ci∆t, xi(t)), 

ki

[Ex]
= FEx(ti + ci∆t, xi(t)), 

and the values of the stages are as follows: 

xi = xn + ∆t∑(aijki

[Im]
+ âijki

[Ex]
)

s

j=1

.         (2.3) 

The above expression, using DIRK schemes for the 

implied part, gives 

xi = xn + ∆t∑(aijki

[Im]
+ âijki

[Ex]
)

i−1

j=1

+ ∆taiiki

[Im]
. (2.4) 

In order to deal with the case of a linearly implicit 

case, we use  

(I − ∆taiiK)xi = xn + ∆t∑(aijki

[Im]
+ âijki

[Ex]
)

i−1

j=1

, (2.5) 

 

𝑐1 a11 0 0 ⋯ 0  

𝑐2 a21 a22 0 ⋯ 0  

𝑐3 a31 a32 a33 ⋯ 0  

⋮ ⋮ ⋮ ⋮ ⋱ ⋮  

𝑐𝑠 as1 as2 as3 ⋯ ass  

 𝑏1 𝑏2 𝑏3 ⋯ 𝑏𝑠  

𝑐1̂ 0 0 0 ⋯ 0 

𝑐2̂ 𝑎21 0 0 ⋯ 0 

𝑐3̂ 𝑎31 𝑎32 0 ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑐𝑠̂ 𝑎𝑠1 𝑎𝑠2 𝑎𝑠3 ⋯ 0 

 𝑏1 𝑏2 𝑏3 ⋯ 𝑏𝑠 
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3. THE SUGGESTED COVID-19 COMPARTMENT 

MODEL 

The current coronavirus outbreak has turned into a 

worldwide health-care issue. Some procedures for 

managing the disease have been announced, for 

example limiting communications as much as they can 

also advising people to stay at home. The benefit of 

using the mathematical models for this virus are in 

demonstrating model dynamics and forecasting the 

number of infected people for the prospect. In the 

result, the model included compartments for 

quarantine, isolation (hospitalization) and treatment 

[11].  That model has recently been revised to include 

a time-dependent dynamic system [16].  

In Figure (1), we establish the model diagram as well 

as the interaction individual components and their 

interaction rates. Exposed E, susceptible S, pre-

symptomatic A, symptomatic I, quarantine exposed 

Eq, quarantine susceptible Sq, recovered R and 

hospitalized H are the eight classes (individuals) in the 

model. 

For the recorded situations in China, that model initial 

populations and interaction parameters were 

obtained. Table (1) and Table (2) lists all parameter 

values and the initial populations respectively. The 

estimated values were specified first in [11] and then 

modified in [16]. In our numerical simulations, we 

mostly followed reference [28, 29], and we used those 

values. Based on the COVID-19 model that suggested 

in [28, 29] the model diagram described in Figure (1), 

and for more simplifications we introduce new 

variables {xi ∶ i = 1,2,3,… ,8. }, so we suppose that x1 =

S, x2 = E, x3 = I, x4 = A, x5 = Sq, x6 = Eq, x7 = H, and 

x8 = R, then the model parameters, and variables with 

their definitions and estimating values are given in 

Table (1) and Table (2) respectively. 

 

  Fig. 1. COVID-19 transmission model structure[28, 29]. 

 

Table 1: The Model parameters with their estimating 

values[28, 29]. 

Parameters Biological definition Values 

𝑘1 Contact rate. 14.782 

𝑘2 Possibility of transmitting per contact. 2.1011 𝑥 10−8 

𝑘3 Exposure rate of those who have been 

quarantined. 

1.8887 𝑥 10−7 

𝑘4 Individuals who have been exposed to 
the virus are more likely to become 
sick. 

1

7
 

𝑘5 The multiplier of A to I 
transmissibility. 

0.3 

𝑘6 The rate for which uninfected contacts 
who had been quarantined were 
released into the broader community. 

1

14
 

𝑘7 Infected individuals' chances of 
developing symptoms. 

0.86834 

𝑘8 Symptomatic infected people's transfer 
levels to quarantined infected people's 
class. 

0.13266 

𝑘9 Transition rate from quarantined 
exposed to quarantined contaminate. 
.individuals 

0.1259 

𝑘10 Symptomatic infected  
individual’s recovery rate. 

0.33029 

𝑘11 Asymptomatic infected  
individual’s recovery rate. 

0.13978 

𝑘12 Infected individuals who have been 
quarantined recovery rate. 

0.11624 

𝑘13 Death rate due to disease. 1.7826 𝑥 10−5 

 

Table 2: The Model populations(variables) with their 

estimating initial values[28, 29]. 
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Following[28, 29] and replacing the logistic model, the 

system of nonlinear differential equations of the Figure 

(1) based on mass action law can be defined as follows: 

𝑑𝑥1

𝑑𝑡
= 𝑘6𝑥5 − 𝑘1𝑥1(𝑥3 + 𝑘5𝑥4)(𝑘2(1 − 𝑘3) + 𝑘2𝑘3

+ 𝑘3(1 − 𝑘2)), 

𝑑𝑥2

𝑑𝑡
= 𝑘1𝑘2(1 − 𝑘3)𝑥1(𝑥3 + 𝑘5𝑥4)

− 𝑥2(𝑘5(1 − 𝑘7) + 𝑘4𝑘7),  

 
𝑑𝑥3

𝑑𝑡
= 𝑘4𝑘7𝑥2 − (𝑘10𝑥3 + 𝑘8𝑥3 + 𝑘13𝑥3),        

𝑑𝑥4

𝑑𝑡
= 𝑘5(1 − 𝑘7)𝑥2 − 𝑘11𝑥4,                                 (3.1)   

𝑑𝑥5

𝑑𝑡
= 𝑘1𝑘3(1 − 𝑘2)𝑥1(𝑥3 + 𝑘5𝑥4) − 𝑘6𝑥5,                            

𝑑𝑥6

𝑑𝑡
= 𝑘1𝑘2𝑘3𝑥1(𝑥3 + 𝑘5𝑥4) − 𝑘9𝑥6,               

𝑑𝑥7

𝑑𝑡
= 𝑘9𝑥6 + 𝑘8𝑥3 − (𝑘12𝑥7 + 𝑘13𝑥7),      

𝑑𝑥8

𝑑𝑡
= 𝑘11𝑥4 + 𝑘10𝑥3 + 𝑘12𝑥7.    

Based on Table (2) the initial populations can be 

expressed as follows: 

x1(0) = x1
0 > 0,   x2(0) = x2

0 > 0,   x3(0) = x3
0 > 0,    

x4(0) = x4
0 > 0, x5(0) = x5

0 ≥ 0,   x6(0) = x6
0 ≥ 0,    

x7(0) = x7
0 ≥ 0, x8(0) = x8

0 ≥ 0.                                (3.2) 

The Eq. (3.1) is a non–linear system of differential 

equations that cannot be solved analytically. As a 

result, the computational techniques proposed in this 

paper might be able to provide some approximations 

for the COVID-19 model states. We calculate 

numerical predictions in MATLAB using the initial 

populations and estimated parameters mentioned in 

Table (2) and Table (1).  Only biological methods are 

also insufficient to comprehend the high-dimensional 

models of infectious disease transmission. 

Mathematical approaches and mathematical models 

are also useful techniques for properly interpreting 

model states and making numerical predictions. 

4. IMPLICIT–EXPLICIT (IMEX) RUNGE KUTTA 

METHOD 

This section aims to solve the model equations of 

COVID-19 applying the high-order IMEX-RK 

techniques. This can be gained by recalling (3.1) and, 

for brevity's part, writing it as 

 FIm(t, x(t)) =

[
 
 
 
 
 
 
 
 
k6x5                                                          

−x2(k5(1 − k7) + k4k7)                  

k4k7x2 − (k10x3 + k8x3 + k13x3)

k5(1 − k7)x2 − k11x4                        
−k6x5                                                     
−k9x6                                                    

k9x6 + k8x3 − (k12x7 + k13x7)    
k11x4 + k10x3 + k12x7                      ]

 
 
 
 
 
 
 
 

 ,  

 

FEx(t, x(t)) =

[
 
 
 
 
 
 
 

−k1x1(x3 + k5x4)(k2(1 − k3) + k2k3 + k3(1 − k2))

k1k2(1 − k3)x1(x3 + k5x4)
0                                                  
0                                                  

                                                   

k1k3(1 − k2)x1(x3 + k5x4)

k1k2k3x1(x3 + k5x4)           
0                                                  
0                                                  

                                                   

]
 
 
 
 
 
 
 

. 

 

Consider the system (3.1), and replacing preceding 

equations in (3.1), this leads us to   

dx

dt
= FIm(t, x(t)) + FEx(t, x(t)),                  (4.1) 

where  

x(t) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑥4(𝑡) 𝑥5(𝑡) 𝑥6(𝑡) 𝑥7(𝑡) 𝑥8(𝑡)]
𝑇 , 

 

A key idea for the proposed method is to split the 

right-hand side of (4.1) into stiff FIm(t, u(t)) and 

nonstiff (FEx(t, u(t))). 

𝑐1     1/4                                   0                                               0                                        0                  0 

𝑐2 0.34114705729739           1/4                                              0                                      0                  0 

𝑐3 0.80458720789763        −0.07095262154540                      1/4                                  0                  0 

𝑐4 −0.52932607329103      1.15137638494253        −0.80248263237803                    1/4                0 

𝑐5 0.11933093090075       0.55125531344927      −0.1216872844994       0.20110104014943     1/4 

 0.11933093090075          0.55125531344927      −0.1216872844994     0.20110104014943     1/4 

and 

𝑐̂1          0                                     0                                              0                                      0                                       0 

Variables  Biological definition 
Initial population 

values 

𝑥1(0) 
Initial susceptible 
individuals. 

11.081 𝑥 106 

𝑥2(0) 
Individuals that were first 
revealed. 

105.1 

𝑥3(0) 
Infected individual who 
was symptomatic. at first 

27.679 

𝑥4(0) 
Initial pre-symptomatic 
infected individuals. 

53.839 

𝑥5(0) 
Initial quarantined 
susceptible individuals. 

739 

𝑥6(0) 
Initial quarantined 
exposed individuals. 

1.1642 

𝑥7(0) 
initial individuals that 
were hospitalized. 

1 

𝑥8(0) 
Initial individuals that 
were recovered. 

2 
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𝑐̂2 0.39098372452428           0                                                0                                  0                                       0 

𝑐̂3 1.09436646160460       0.33181504274704                 0                                  0                                      0 

𝑐̂4 0.14631668003312       0.69488738277516          0.46893381306619      0                                     0 

𝑐̂5 −1.33389883143642     2.90509214801204      −1.06511748457024  0.27210900509137     0 

 0.11933093090075       0.55125531344927      −0.1216872844994     0.20110104014943   1/4 

 

 
 

5. NUMERICAL EXPERIMENTS 

The aim of this section is to explain the performance of 

a presented method using a Matlab programming 

implementation. For solving (3.1) and (4.1), the IMEX - 

RK (4, 5, 5) and the classical Runge Kutta method ERK4 

are used, where 4 is the order of the scheme and 5 is 

the number of steps implicit and explicit schemes.  

  

  

 

 

Fig. 2. Numerical approximate solutions for COVID-19 model Eq. 

(3.1) using IMEX-RK method of order four (IMEX-RK (4,5,5)) and 

classical RK of order four (ERK4); (a): the number of susceptible 

populations 𝐱𝟏 , (b): the number of exposed populations 𝐱𝟐, (c): the 

number of symptomatic populations 𝐱𝟑, (d): the number of pre-

symptomatic populations 𝐱𝟒. (e): the number of quarantine 

susceptible populations 𝐱𝟓. 

 

 

 

Table 3: Comparing results by using IMEX-RK (4,5,5) 

and ERK4 methods for 𝒙𝟏 , and 𝒙𝟐  compartments. 

Time 

ERK4 IMEX-RK (4,5,5) 

ℎ = 0.01 ℎ =  1 

𝒙𝟏  𝒙𝟐  𝒙𝟏  𝒙𝟐  

0 1.1081e7 105.1 1.1081e7 321240 

50 1335988 323469 1356499 222716 

100 1393144 223929 1402766 155988 

150 1393100 156616 1397655 109198 

200 1393100 109537 1395255 76417.9 

250 1393100 76610.3 1394100 53466.7 

300 1393100 53581.2 1393544 37403.2 

350 1393100 37474.7 1393288 26163.2 

400 1393100 26209.8 1393155 18299.7 

450 1393100 18331.1 1393088 12799.0 

500 1393100 12820.8 1393055 105.1 

 

Table 4: Comparing results by using IMEX-RK (4,5,5) and 

ERK4 methods for 𝒙𝟑 , and 𝒙𝟒  compartments. 

Time 

ERK4 IMEX-RK (4,5,5) 

ℎ = 0.01 ℎ =  1 

𝒙𝟑 𝒙𝟒 𝒙𝟑 𝒙𝟒 

0 27.679 53.839 27.679 53.839 

50 88961.5 102160.0 90257.9 102766.0 

100 60940.6 66686.4 61704.6 66986.8 

150 42622.3 46641.4 43125.5 46839.1 

200 29810.0 32621.0 30146.4 32752.5 

250 20849.1 22815.1 21076.4 22903.2 

300 14581.9 15956.9 14736.5 16016.1 

350 10198.6 11160.2 10304.3 11200.2 

400 7132.88 7805.48 7205.5 7832.5 

450 4988.74 5459.15 5038.72 5477.43 

500 3489.12 3818.13 3523.58 3830.51 

  

Here, we used two numerical approaches to describe 

the COVID-19 model dynamics. In this analysis, 

IMEX-RK and classical Runge–Kutta methods are 

used. The National Health Commission for Republic to 

the China (WHO) situation report shown in[11, 16] 

provided the initial populations and parameter values 

for this analysis. Table (1) and Table (2) summarizes 

the approximate values. Figures (2) and (3) show how 

we used MATLAB to measure the numerical results 

for the model Eq. (3.1) for initial populations and 

several parameters. As a result, the population model 

states have a distinct model dynamic. The results of 

this research, which are focused on theoretical 

simulations, are a significant step ahead in divining 
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potential model dynamics to the community projects, 

therapies, also health-care procedures. The numerical 

estimates for the number of symptomatic infected, 

susceptible exposed, 

Table 5: Comparing results by using IMEX-RK (4,5,5) and 

ERK4 methods for 𝒙𝟓 , and 𝒙𝟔  compartments. 

Time 

ERK4 IMEX-RK (4,5,5) 

ℎ = 0.01 ℎ =  1 

𝒙𝟓  𝒙𝟔  𝒙𝟓  𝒙𝟔  

0 739.0 1.1642 739.0 1.1642 

50 7056211 0.083811 7047822 0.0835313 

100 4897644 0.055706 4895500 0.0555338 

150 3425444 0.038957 3425555 0.0388761 

200 2395755 0.027247 2396522 0.0272075 

250 1675599 0.019056 1676400 0.0190367 

300 1171911 0.013328 1172577 0.0133176 

350 819631 0.009321 820118 0.0093156 

400 573250 0.006519 573584 0.0065158 

450 400931 0.004559 401151 0.0045572 

500 280411 0.003189 280550 0.0031873 

 

Table 6: Comparing results by using IMEX-RK (4,5,5) 

and ERK4 methods for 𝒙𝟕 , and 𝒙𝟖  compartments. 

Time 

ERK4 IMEX-RK (4,5,5) 

ℎ = 0.01 ℎ =  1 

𝒙𝟕 𝒙𝟖 𝒙𝟕 𝒙𝟖 

0 1 2 1 2 

50 115085 2059944 115346 2047899 

100 73989.6 4365344 74086.5 4357900 

150 51737.9 5965411 51801.0 5960600 

200 36185.4 7084499 36226.6 7081400 

250 25308.1 7867177 25334.7 7865211 

300 17700.5 8414588 17717.5 8413366 

350 12379.7 8797444 12390.5 8796699 

400 8658.37 9065211 8665.12 9064777 

450 6055.66 9252499 6059.82 9252244 

500 4235.33 9383477 4237.84 9383355 

 

and pre-symptomatic infected individuals are shown 

in Figure (2). It is clearly that the numerical methods 

suggested are in good agreement, and the number of 

susceptible exposed become more stable after 50 days, 

meanwhile the number of symptomatic infected, and 

pre-symptomatic infected individuals are become 

decreasing after 50 days.  Furthermore, as t 𝜖 [0, 70], 

the dynamics of quarantine susceptible and 

hospitalized people start shifting and become flatter. 

On the other hand, after t > 40, the number of 

quarantined individuals stabilizes rapidly, however, 

the amount of recovered people rises slightly and 

stabilizes slowly, as shown in Figure (3). 

6. CONCLUSION 

Global programs are focusing on and discussing a 

variety of health-care methods for preventing the 

spread of the latest coronavirus in the population. As 

can be shown, this virus has the potential to become a 

public health threat, spreading quickly among 

individuals. There are also several programs and 

preventative measures in place as part of global 

initiatives to minimize the COVID-19's global effects.  

Mathematical modeling is one of the theoretical tools 

that can be used to make a broad range of predictions 

and estimates about this problem. Computational sim

ulations combined with mathematical modelling 

include model predictions and define key critical 

parameters. 

Confirmed cases and clinical data in Wuhan are 

applied to the model of COVID-19. Moreover, the 

differential equations of this model are nonlinear that 

needs numerical solutions. On the basis of the reported 

cases, we used IMEX-RK and classical Runge–Kutta 

schemes to evaluate the approximations for every 

model state. These are a big step forward in terms of 

identifying model basic elements and improving the 

model in the future. The results of computational work 

could help global attempts to lessen the number of 

people that have been infected with the virus and to 

restrict this coronavirus from spreading within the 

community. The dynamics of each compartment are 

analysed, and the results show that it is possible to 

foretell and examine the population of all model state. 

They proposed method [28] for solving this type of 

problem has some disadvantages due to stability. We 

address this challenge by employing Implicit Explicit 

Runge kutta method. This scheme can be provided 

another significant step forward in understanding 

model dynamics and predicting disease transmission 

in the population. Another interesting of this scheme 

is to use a small sample in the population instead of the 
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large sample. This is consequently managing to a 

decrease within the computational expense and save 

data. 

The findings of that work indicated that healthcare 

operations must focus more on the original model 

parameters. This model can be estimated by using 

finite element methods see [35-39]. 
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