
Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

This is an open access article distributed under the Creative Commons Attribution License

 Copyright ©2017. e-ISSN: 2520-789X

https://doi.org/10.25007/ajnu.v10n4a1328

240

Keras Deep Learning for Pupil Detection Method

Renas R. Asaad

Department of Computer Science, Nawroz University, Duhok, Kurdistan Region – Iraq

ABSTRACT
Nowadays, deep learning is the most common field in artificial intelligence, it is a technique invented by scientist trying to

imitate the way the human mind works. Deep learning tries to simulate the human mind in all its capabilities, which include;

Seeing, understanding speech, composing it, hearing, and other powerful abilities that our human mind possesses and is not

rivaled by anything else, or so it was. The matter did not stop at that only, but that scientists have studied the human brain and

how it works in order to design algorithms and programs capable of simulating it, and for this reason we find that these

algorithms are inspired by medical and neurological studies of humans and try as much as possible to imitate them, but by

computer methods. Not biological. In this paper studied and practiced the multi-task deep convolution neural

network(MTCNN) for face detection after detecting the faces its tries to extract eyes from an image, finally pupil detector works

by using Keras model in python. The result of this paper shows the power of the deep learning field biologically comparative

with human thinks.

Keywords: Machine Learning, Deep Learning, MTCNN Keras Model, AI.

1. Introduction

Deep learning is a largely new science, but it has roots

in human knowledge, and it has stages through which

it has developed from the 1940s to the present day, and

according to an article on the history of the

development of deep learning on the popular website

Towards Data Science, these stages are:

The stage of cybernetics: which extended from the

forties of the twentieth century until the nineties.

The stage of Connectionism, which was in the nineties

and eighties of the last century.

The stage of Deep Learning: It is what we now know

as deep learning, and it started from 2006 and

extended until now.[1]

1.1 The First Stage (Nervous Stage)

It was characterized by an attempt to understand how

the human mind works, in which computer scientists

(who were then mathematicians), psychologists and

neuroscientists participated, who worked together to

create an equation or a mathematical system that

simulates the way the brain works, in order to provide

the same inputs to it, and in return Obtaining the same

judgments and outputs as what the human mind

produces.

The artificial neural unit or perceptron, which we

talked about a while ago, is one of the most prominent

discoveries of this stage, and was reached by the

famous American psychologist Frank Rosenblatt, who

is considered one of the most prominent scientists who

contributed to the sciences of artificial intelligence.

1.2 The Second Stage (Communicative Stage)

It is the stage that began after the discoveries and

developments accompanying the increased interest in

cognitive science, which was carried out by some

brilliant psychologists to try to understand how the

mind and senses work in a more abstract way.

Computer scientists and mathematicians have

benefited a lot from this stage, and used it to produce

the first simple forms of what we know today. In the

name of deep learning.

https://doi.org/10.25007/ajnu.v10n4a1328

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

241

One of the most famous productions of this important

period in the history of global technology is Artificial

Neural Networks (ANNs), or Artificial Neural

Networks. They are neural networks that simulate

how the natural neural networks that operate in the

human mind work. Scientists at this stage also came up

with the back propagation model, which has been used

a lot in natural language processing, computer vision,

and many other branches of artificial intelligence.

1.3 The Third Stage (Deep Learning Stage)

It was also due to a development made by Canadian

cognitive psychologist and computer scientist

Geoffrey Hinton in 2006; Where he did DBN or Deep

Belief Networks; Which is a neural network that

contains a lot of hidden layers under it, which works

without human supervision, and from that time until

now the era of artificial intelligence and deep learning

began.

2. Literature Review

Initially, the concept of machine learning refers to the

discipline concerned with the study of algorithms

based on making a machine learn and evolve on its

own without the need for specific software commands.

A "data set" is fed into these algorithms, which they

analyze, learn from, and then build predictions based

on what they've learned. The machine learning major

represents the intersection of computer science and

statistics.

A simple example of an application of machine

learning algorithms is "Suggestions". When you listen

to music on a popular listening platform, on your next

visit you will find more similar music and

recommendations related to your listening history.

Machine learning algorithms analyze your listening

history and preference data, find patterns within them

and then build predictions for many other music that

suits your taste.[1]

As for the concept of deep learning, it is a specialty of

machine learning, which in turn is a specialty of

artificial intelligence. As shown in below figure.

Fig 1: Concept of Deep Learning

It is the specialization concerned with the study of

"artificial neural networks" that simulate the neural

networks in the human brain.

3. Artificial Neural Network

An artificial neural network is an information

processing system, the concept is taken from biological

neurons. this is human kind’s best effort to emulate a

biological network. The computing method is based on

multiple connected artificial neurons that process

information in a distributed matter across the

computing neurons.[1]

Artificial neural networks are best suited to solve

complex problems that require generalization and

pattern recognition. As shown in below figure.

Fig 2: Perceptron Neurons

Artificial Intelligence

Machine Learning

Deep
Learning

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

242

Properties of the Nervous System

• Parallel, distributed information processing.

• High degree of connectivity between basic

processing units.

• Connections are modified based of experience.

• Learning is a constant process.

• Learning is based on local information.

Biological Neuron

A biological neuron is most basic information

processing unit in the nervous system. a biological

neuron consists of the following parts:

1. Dendrites (input)

2. Cell body

3. Axon (output)

Fig 3: Biological Neuron

Figure 3 shows an biological neuron takes signals from

its dendrites and processes the signal and outputs a

signal from its axon based on the input signal.[2]

4. Deep Learning

The discipline of deep learning emerged as an

extension and evolution of machine learning when

traditional machine learning algorithms were unable

to perform some complex tasks. For example,

traditional machine learning algorithms require a

simplified and tidy data set to learn from. But it is not

able to learn from large and complex data sets such as

different sound waves, image dimensions and the

number of pixels inside, so deep learning algorithms

are used to handle such complex data as in the "voice

recognition" applications that Siri uses to help Google

recognize The voices of its creators and the "image

recognition" applications used by Facebook to identify

people's faces in photos.[3]

4.1 Configure a Deep Learning Algorithm

The algorithm consists of a multi-layer structure of

artificial neural networks. Where the layer on the left

end is the input layer, the layer on the right is the

output layer, and in the middle are several hidden

layers responsible for processing. The architecture of

stratified deep learning algorithms enables better data

handling and better performance. As shown in below

figure.[3]

Fig 4: Multi-Layer ANN

Accordingly, the deep learning algorithm requires a

lower level of human intervention in optimizing the

algorithm's results. The algorithm learns and improves

from its mistakes on its own. Unlike the traditional

machine learning algorithm that requires a lot of

human intervention for modification and

optimization.[3]

However, deep learning algorithms are still under

development. Despite its progress and the remarkable

improvement in its results and performance, it

requires a lot of time and high computing power to

learn from the huge data set and build a viable model.

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

243

Despite the advancement of algorithms and

techniques in the world of artificial intelligence and the

promising results that their applications carry, they are

still in their early stages, and there are many advances

and opportunities ahead.[4]

5. Face Detector

Speaking of face detection, we first think of using the

Harr extraction feature and the Adaboost face

detection classifier, the detection effect is also good,

but the current application scenarios for face detection

are gradually developing from Indoor to outdoor,

from one limited scene to scenes like squares, stations,

subway entrances, etc. higher and higher. For example,

faces vary in size, number is large, and poses are

varied, including top shots of faces, masks wearing

hats and masks, exaggerated expressions,

camouflaging makeup, poor lighting conditions, low

resolution, and even difficult to distinguish with the

naked eye. In such a complex environment, the

performance of face detection based on Haar features

is unsatisfactory. With the development of deep

learning, face detection technology based on deep

learning has achieved great success. This section

introduce the MTCNN algorithm, which is a high-

precision face detection and real-time detection

algorithm based on convolutional neural networks.[5]

The first step in building a face recognition system is

face detection, which is to find the position of the face

in the image. In this process, the input is an image

containing human faces, and the output is a

rectangular frame of all faces. In general, face detection

should be able to detect all the faces in the image, and

there should be no missed detections, not to mention

false detections.[5]

After getting the face, the second step we need to do is

align the face. Since the face in the original image may

have differences in position and position, for

subsequent unified processing, we have to "straighten"

the face. To this end, it is necessary to detect the main

points of the face, such as the position of the eyes, the

position of the nose, the position of the mouth, and the

points of the facial contour. According to these key

points, the affine transformation can be used to

uniformly calibrate the face to eliminate errors caused

by different situations.[5]

Fig 5: Eye Centre Localization

5.1 MTCNN Algorithm Structure

The MTCNN algorithm(multi-task deep convolutional

neural network) is a deep learning-based face

detection and face alignment method, which can

complete face detection and face alignment tasks at the

same time. Compared with traditional algorithms, it

has better performance and faster detection speed.

The MTCNN algorithm contains three subnets:

Proposal Network (P-Net), Refine Network (R-Net),

Input
image

face detection
Isophote global
centre voting

Energy map 𝐸𝑎
processing

Coarse centre
estimation

Eye region
extraction

SOG filter

Gradient based eye
centre estimation

Radius
constraint

Energy map Eb
processing

Ea & Eb
Integration

Eye centre
localised

The first modality

The second modality

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

244

and Output Network (O-Net). These three grids

process faces from coarse to fine see figure 5.[8]

Fig 5: MTCNN stages

6. Keras Model

Keras is one of the most popular deep learning

libraries, and its artificial intelligence has made

significant contributions. It's simple use, just a few

lines of code can build a powerful neural network. In

this article, you will learn how to build a neural

network using KERAS.[9]

Keras is an open source Python library that allows you

to easily build a neural network. This library can run

on Tensorflow, Microsoft Cognitive Toolkit, Theano

and MXNet. Tensorflow and Theano are the most

common scientific computing platforms used to build

deep learning algorithms in Python, but they can

sometimes be very complex and difficult to use. In

contrast, Keras provides a simple and convenient way

to build an in-depth learning model. Its creator,

Françoischollet, developed it to enable people to build

a neural network as quickly and easily as possible.

Focus on scalability, maintenance, simplicity and

support for the python. Keras can use both the GPU

and the CPU, which supports Python 2 and 3. Google

Keras makes great contributions to the field of deep

learning and artificial intelligence, because it has been

product-embedded in a modern learning algorithm,

these algorithms are not only accessible, but also

unusable.

In 2017, the TenserFlow team from Google decided to

add Keras support in the TenserFlow core library. He

also explained that Keras was designed as a

programming interface rather than a standalone

machine learning framework. Keras offers a higher

and more intuitive set of abstractions that make it easy

to develop deep learning models regardless of the

background used to perform the calculations (be it

Tenserflow or otherwise). Microsoft has also added a

backend based on Microsoft Cognitive Tools CNTK to

Keras.[9]

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

from six import string_types,

iteritems

import numpy as np

import tensorflow as tf

import cv2

import os

def layer(op):

 """Decorator for composable

network layers."""

 def layer_decorated(self, *args,

**kwargs):

 name =

kwargs.setdefault('name',

self.get_unique_name(op.__name__))

 if len(self.terminals) == 0:

 raise RuntimeError('No

input variables found for layer %s.' %

name)

 elif len(self.terminals) == 1:

 layer_input =

self.terminals[0]

 else:

 layer_input =

list(self.terminals)

 layer_output = op(self,

layer_input, *args, **kwargs)

 self.layers[name] =

layer_output

 self.feed(layer_output)

 return self

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

245

 return layer_decorated

class PNet(Network):

 def setup(self):

 (self.feed('data')

 .conv(3, 3, 10, 1, 1,

padding='VALID', relu=False,

name='conv1')

 .prelu(name='PReLU1')

 .max_pool(2, 2, 2, 2,

name='pool1')

 .conv(3, 3, 16, 1, 1,

padding='VALID', relu=False,

name='conv2')

 .prelu(name='PReLU2')

 .conv(3, 3, 32, 1, 1,

padding='VALID', relu=False,

name='conv3')

 .prelu(name='PReLU3')

 .conv(1, 1, 2, 1, 1,

relu=False, name='conv4-1')

 .softmax(3,name='prob1'))

 (self.feed('PReLU3')

 .conv(1, 1, 4, 1, 1,

relu=False, name='conv4-2'))

class RNet(Network):

 def setup(self):

 (self.feed('data')

 .conv(3, 3, 28, 1, 1,

padding='VALID', relu=False,

name='conv1')

 .prelu(name='prelu1')

 .max_pool(3, 3, 2, 2,

name='pool1')

 .conv(3, 3, 48, 1, 1,

padding='VALID', relu=False,

name='conv2')

 .prelu(name='prelu2')

 .max_pool(3, 3, 2, 2,

padding='VALID', name='pool2')

 .conv(2, 2, 64, 1, 1,

padding='VALID', relu=False,

name='conv3')

 .prelu(name='prelu3')

 .fc(128, relu=False,

name='conv4')

 .prelu(name='prelu4')

 .fc(2, relu=False,

name='conv5-1')

 .softmax(1,name='prob1'))

 (self.feed('prelu4')

 .fc(4, relu=False,

name='conv5-2'))

class ONet(Network):

 def setup(self):

 (self.feed('data'

 .conv(3, 3, 32, 1, 1,

padding='VALID', relu=False,

name='conv1')

 .prelu(name='prelu1')

 .max_pool(3, 3, 2, 2,

name='pool1')

 .conv(3, 3, 64, 1, 1,

padding='VALID', relu=False,

name='conv2')

 .prelu(name='prelu2')

 .max_pool(3, 3, 2, 2,

padding='VALID', name='pool2')

 .conv(3, 3, 64, 1, 1,

padding='VALID', relu=False,

name='conv3')

 .prelu(name='prelu3')

 .max_pool(2, 2, 2, 2,

name='pool3')

 .conv(2, 2, 128, 1, 1,

padding='VALID', relu=False,

name='conv4')

 .prelu(name='prelu4')

 .fc(256, relu=False,

name='conv5')

 .prelu(name='prelu5')

 .fc(2, relu=False,

name='conv6-1')

 .softmax(1,

name='prob1'))

 (self.feed('prelu5')

 .fc(4, relu=False,

name='conv6-2'))

 (self.feed('prelu5'

 .fc(10, relu=False,

name='conv6-3'))

6.Results

This model groups the layers into an objects with

training and inference features and contain three

arguments (Inputs, Outputs and Name):

• Inputs: The input(s) of the model:

a keras.Input object.

• Outputs: The output(s) of the model. See

Functional API example below.

• Name: String, the name of the model.

With the "Functional API", where you start

from Input, you chain layer calls to specify the model's

forward pass, and finally you create your model from

inputs and outputs:

A new Functional API model can also be created by

using the intermediate tensors. This enables you to

quickly extract sub-components of the model. The

MTCNN algorithm, is a high-precision face detection

and real-time detection algorithm based on

convolutional neural networks. The MTCNN

algorithm contains three subnets: Proposal Network

https://keras.io/api/layers/core_layers/input#input-function

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

246

(P-Net), Refine Network (R-Net), and Output Network

(O-Net). These three grids process faces from coarse to

fine. Before using these three subnets, you need to use

the image hierarchy to scale the original image at

different scales, and then send the images at different

scales to these three subnets for training. The purpose

is to detect different sizes of faces • Achieve multi-

band target detection. The finalizing and the outputs

are plotting eyes, eyes circle and pupil of eyes as

shown in below figure.

 Fig 6: Three steps of detection

Fig 7: Results by plotting of pupil detection

7.Conclusion

In this paper, pupil, iris and eyes detection allows

researchers to study the movements of a participant's

eyes during a range of activities. This gives insight into

the cognitive processes underlying a wide variety of

human behavior and can reveal things such as learning

patters and social interaction methods. Big data is

perhaps the most powerful factor in the process of

developing deep learning, making it more relevant to

our lives by providing the large amount of data it

needs in order to learn and become smart on its own.

In this paper, keras deep learning technique was used

to detect the pupil of the human eye. With these

results, we can in the near future control computers by

the eye or the pupil of the eye for ease of use or to

extend artificial intelligence in the field of deep

learning, and it is also possible for people with special

needs and with disabilities to benefit from this

experience.

References

[1] Hoang, A. T., Nižetić, S., Ong, H. C., Tarelko, W.,

Le, T. H., Chau, M. Q., & Nguyen, X. P. (2021). A

review on application of artificial neural network

(ANN) for performance and emission characteristics of

diesel engine fueled with biodiesel-based

fuels. Sustainable Energy Technologies and

Assessments, 47, 101416.

[2] Moldwin, T., & Segev, I. (2020). Perceptron learning

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

247

and classification in a modeled cortical pyramidal

cell. Frontiers in computational neuroscience, 14, 33.

[3] Ramasubramanian, K., & Singh, A. (2019). Deep

learning using keras and tensorflow. In Machine

Learning Using R (pp. 667-688). Apress, Berkeley, CA.

[4] Vasilev, I., Slater, D., Spacagna, G., Roelants, P., &

Zocca, V. (2019). Python Deep Learning: Exploring deep

learning techniques and neural network architectures with

Pytorch, Keras, and TensorFlow. Packt Publishing Ltd.

[5] Ghofrani, A., Toroghi, R. M., & Ghanbari, S. (2019).

Realtime face-detection and emotion recognition using

mtcnn and minishufflenet v2. In 2019 5th Conference on

Knowledge Based Engineering and Innovation (KBEI) (pp.

817-821). IEEE.

[6] Rajab Asaad, R. (2021). Review on Deep Learning

and Neural Network Implementation for Emotions

Recognition . Qubahan Academic Journal, 1(1), 1–4.

https://doi.org/10.48161/qaj.v1n1a25

[7] Asaad, R. R., & Ali, R. I. (2019). Back Propagation

Neural Network(BPNN) and Sigmoid Activation

Function in Multi-Layer Networks. Academic Journal

of Nawroz University, 8(4), 216–221.

https://doi.org/10.25007/ajnu.v8n4a464

[8] Chen, X., Luo, X., Liu, X., & Fang, J. (2019, May).

Eyes localization algorithm based on prior MTCNN

face detection. In 2019 IEEE 8th Joint International

Information Technology and Artificial Intelligence

Conference (ITAIC) (pp. 1763-1767). IEEE.

[9] Manaswi, N. K. (2018). Understanding and working

with Keras. In Deep Learning with Applications Using

Python (pp. 31-43). Apress, Berkeley, CA.

Appendix

#Keras Model
from keras.layers import *
from keras.models import Model
import tensorflow as tf
import numpy as np
class KerasELG():
 def __init__(self, first_layer_stride=3, hg_num_feature_maps=64, hg_num_modules=3):
 self._first_layer_stride = first_layer_stride
 self._hg_num_feature_maps = hg_num_feature_maps
 self._hg_num_modules = hg_num_modules
 self._hg_num_residual_blocks = 1
 self._hg_num_landmarks = 18
 self.net = self.build_elg_network()
 def build_elg_network(self):

 return self.elg()
 def elg(self):
 outputs = {}
 inp = Input((108, 180, 1))
 n = self._hg_num_feature_maps
 pre_conv1 = self._apply_conv(inp, n, k=7, s=self._first_layer_stride, name="hourglass_pre")
 pre_conv1 = self._apply_bn(pre_conv1, name="hourglass_pre_BatchNorm")
 pre_conv1 = Activation('relu')(pre_conv1)
 pre_res1 = self._build_residual_block(pre_conv1, 2*n, name="hourglass_pre_res1")
 pre_res2 = self._build_residual_block(pre_res1, n, name="hourglass_pre_res2")
 x = pre_res2
 x_prev = pre_res2
 for i in range(self._hg_num_modules):
 prefix = f"hourglass_hg_{str(i+1)}"
 x = self._build_hourglass(x, steps_to_go=4, f=self._hg_num_feature_maps, name=prefix)
 x, h = self._build_hourglass_after(
 x_prev,
 x,
 do_merge=(i<(self._hg_num_modules-1)),
 name=prefix)
 x_prev = x

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

248

 x = h

 outputs['heatmaps'] = x
 return Model(inp, outputs['heatmaps'])
 def _apply_conv(self, x, f, k=3, s=1, padding='same', name=None):
 return Conv2D(f, kernel_size=k, strides=s, use_bias=True, padding=padding, name=name)(x)
 def _apply_bn(self, x, name=None):
 return BatchNormalization(name=name)(x)
 def _apply_pool(self, x, k=2, s=2):
 return MaxPooling2D(pool_size=k, strides=s, padding="same")(x)
 def _build_residual_block(self, x, f, name="res_block"):
 num_in = x.shape.as_list()[-1]
 half_num_out = max(int(f/2), 1)
 c = x
 conv1 = self._apply_bn(c, name=name+"_conv1_BatchNorm")
 conv1 = Activation('relu')(conv1)
 conv1 = self._apply_conv(conv1, half_num_out, k=1, s=1, name=name+"_conv1")
 conv2 = self._apply_bn(conv1, name=name+"_conv2_BatchNorm")
 conv2 = Activation('relu')(conv2)
 conv2 = self._apply_conv(conv2, half_num_out, k=3, s=1, name=name+"_conv2")
 conv3 = self._apply_bn(conv2, name=name+"_conv3_BatchNorm")
 conv3 = Activation('relu')(conv3)
 conv3 = self._apply_conv(conv3, f, k=1, s=1, name=name+"_conv3")
 if num_in == f:
 s = x
 else:
 s = self._apply_conv(x, f, k=1, s=1, name=name+"_skip")
 out = Add()([conv3, s])
 return out

 def _build_hourglass(self, x, steps_to_go, f, depth=1, name=None):
 prefix_name = name + f"_depth{str(depth)}"
 up1 = x
 for i in range(self._hg_num_residual_blocks):
 up1 = self._build_residual_block(up1, f, name=prefix_name+f"_up1_{str(i+1)}")
 low1 = self._apply_pool(x, k=2, s=2)
 for i in range(self._hg_num_residual_blocks):
 low1 = self._build_residual_block(low1, f, name=prefix_name+f"_low1_{str(i+1)}")
 low2 = None
 if steps_to_go > 1:
 low2 = self._build_hourglass(low1, steps_to_go-1, f, depth=depth+1, name=prefix_name)
 else:
 low2 = low1
 for i in range(self._hg_num_residual_blocks):
 low2 = self._build_residual_block(low2, f, name=prefix_name+f"_low2_{str(i+1)}")
 low3 = low2
 for i in range(self._hg_num_residual_blocks):
 low3 = self._build_residual_block(low3, f, name=prefix_name+f"_low3_{str(i+1)}")
 up2 = Lambda(
 lambda x: tf.image.resize_bicubic(
 x[0],
 x[1].shape.as_list()[1:3],
 align_corners=True))([low3, up1]) # default resize_bilear
 out = Add()([up1, up2])
 return out
 def _build_hourglass_after(self, x_prev, x_now, do_merge=True, name=None):
 prefix_name = name+"_after"
 for j in range(self._hg_num_residual_blocks):

 x_now = self._build_residual_block(
 x_now,
 self._hg_num_feature_maps,

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

249

 name=prefix_name+f"_after_hg_{str(j+1)}")

 x_now = self._apply_conv(x_now, self._hg_num_feature_maps, k=1, s=1, name=prefix_name)
 x_now = self._apply_bn(x_now, name=prefix_name+"_BatchNorm")
 x_now = Activation('relu')(x_now)
 h = self._apply_conv(x_now, self._hg_num_landmarks, k=1, s=1, name=prefix_name+"_hmap")
 x_next = x_now
 if do_merge:
 prefix_name = name
 x_hmaps = self._apply_conv(
 h,
 self._hg_num_feature_maps,
 k=1,
 s=1,
 name=prefix_name+"_merge_h")
 x_now = self._apply_conv(
 x_now,
 self._hg_num_feature_maps,
 k=1,
 s=1,
 name=prefix_name+"_merge_x")
 x_add = Add()([x_prev, x_hmaps])
 x_next = Add()([x_next, x_add])
 return x_next, h
 def _calculate_landmarks(x, beta=5e1):
 def np_softmax(x, axis=1):
 t = np.exp(x)
 a = np.exp(x) / np.sum(t, axis=axis).reshape(-1,1)
 return a

 if len(x.shape) < 4:
 x = x[None, ...]
 h, w = x.shape[1:3]
 ref_xs, ref_ys = np.meshgrid(np.linspace(0, 1.0, num=w, endpoint=True),
 np.linspace(0, 1.0, num=h, endpoint=True),
 indexing='xy')
 ref_xs = np.reshape(ref_xs, [-1, h*w])
 ref_ys = np.reshape(ref_ys, [-1, h*w])
 beta = beta
 x = np.transpose(x, (0, 3, 1, 2))
 x = np.reshape(x, [-1, 18, h*w])
 x = np_softmax(beta * x, axis=-1)
 lmrk_xs = np.sum(ref_xs * x, axis=2)
 lmrk_ys = np.sum(ref_ys * x, axis=2)
 return np.stack([lmrk_xs * (w - 1.0) + 0.5, lmrk_ys * (h - 1.0) + 0.5], axis=2) # N x 18 x 2

import mtcnn_detect_face
import tensorflow as tf

from keras import backend as K
import numpy as np
import cv2
import os
class MTCNNFaceDetector():
 def __init__(self, sess, model_path="./mtcnn_weights/"):
 self.pnet = None
 self.rnet = None
 self.onet = None
 self.create_mtcnn(sess, model_path)
 def create_mtcnn(self, sess, model_path):
 if not model_path:
 model_path, _ = os.path.split(os.path.realpath(__file__))
 with tf.variable_scope('pnet'):

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2022

250

 data = tf.placeholder(tf.float32, (None,None,None,3), 'input')

 pnet = mtcnn_detect_face.PNet({'data':data})
 pnet.load(os.path.join(model_path, 'det1.npy'), sess)
 with tf.variable_scope('rnet'):
 data = tf.placeholder(tf.float32, (None,24,24,3), 'input')
 rnet = mtcnn_detect_face.RNet({'data':data})
 rnet.load(os.path.join(model_path, 'det2.npy'), sess)
 with tf.variable_scope('onet'):
 data = tf.placeholder(tf.float32, (None,48,48,3), 'input')
 onet = mtcnn_detect_face.ONet({'data':data})
 onet.load(os.path.join(model_path, 'det3.npy'), sess)
 self.pnet = K.function([pnet.layers['data']], [pnet.layers['conv4-2'], pnet.layers['prob1']])
 self.rnet = K.function([rnet.layers['data']], [rnet.layers['conv5-2'], rnet.layers['prob1']])
 self.onet = K.function([onet.layers['data']], [onet.layers['conv6-2'], onet.layers['conv6-3'],
onet.layers['prob1']])
 def detect_face(self, image, minsize=20, threshold=0.7, factor=0.709, use_auto_downscaling=True,
min_face_area=25*25):
 if use_auto_downscaling:
 image, scale_factor = self.auto_downscale(image)
 faces, pnts = mtcnn_detect_face.detect_face(
 image, minsize,
 self.pnet, self.rnet, self.onet,
 [0.6, 0.7, threshold],
 factor)
 faces = self.process_mtcnn_bbox(faces, image.shape)
 faces, pnts = self.remove_small_faces(faces, pnts, min_face_area)
 if use_auto_downscaling:
 faces = self.calibrate_coord(faces, scale_factor)

 pnts = self.calibrate_landmarks(pnts, scale_factor)
 return faces, pnts
 def auto_downscale(self, image):
 if self.is_higher_than_1080p(image):
 scale_factor = 4
 resized_image = cv2.resize(image,
 (image.shape[1]//scale_factor,
image.shape[0]//scale_factor))
 elif self.is_higher_than_720p(image):
 scale_factor = 3
 resized_image = cv2.resize(image,
 (image.shape[1]//scale_factor,
image.shape[0]//scale_factor))
 elif self.is_higher_than_480p(image):
 scale_factor = 2
 resized_image = cv2.resize(image,
 (image.shape[1]//scale_factor,
image.shape[0]//scale_factor))
 else:
 scale_factor = 1
 resized_image = image.copy()
 return resized_image, scale_factor

