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ABSTRACT 
Nowadays, deep learning is the most common field in artificial intelligence, it is a technique invented by scientist  trying to 

imitate the way the human mind works. Deep learning tries to simulate the human mind in all its capabilities, which include; 

Seeing, understanding speech, composing it, hearing, and other powerful abilities that our human mind possesses and is not 

rivaled by anything else, or so it was. The matter did not stop at that only, but that scientists have studied the human brain and 

how it works in order to design algorithms and programs capable of simulating it, and for this reason we find that these 

algorithms are inspired by medical and neurological studies of humans and try as much as possible to imitate them, but by 

computer methods. Not biological. In this paper studied and practiced the multi-task deep convolution neural 

network(MTCNN) for face detection after detecting the faces its tries to extract eyes from an image, finally pupil detector works 

by using Keras model in python. The result of this paper shows the power of the deep learning field biologically comparative 

with human thinks. 
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1. Introduction 

Deep learning is a largely new science, but it has roots 

in human knowledge, and it has stages through which 

it has developed from the 1940s to the present day, and 

according to an article on the history of the 

development of deep learning on the popular website 

Towards Data Science, these stages are: 

The stage of cybernetics: which extended from the 

forties of the twentieth century until the nineties. 

The stage of Connectionism, which was in the nineties 

and eighties of the last century. 

The stage of Deep Learning: It is what we now know 

as deep learning, and it started from 2006 and 

extended until now.[1] 

1.1 The First Stage (Nervous Stage) 

It was characterized by an attempt to understand how 

the human mind works, in which computer scientists 

(who were then mathematicians), psychologists and 

neuroscientists participated, who worked together to 

create an equation or a mathematical system that 

simulates the way the brain works, in order to provide 

the same inputs to it, and in return Obtaining the same 

judgments and outputs as what the human mind 

produces. 

The artificial neural unit or perceptron, which we 

talked about a while ago, is one of the most prominent 

discoveries of this stage, and was reached by the 

famous American psychologist Frank Rosenblatt, who 

is considered one of the most prominent scientists who 

contributed to the sciences of artificial intelligence. 

1.2 The Second Stage (Communicative Stage) 

It is the stage that began after the discoveries and 

developments accompanying the increased interest in 

cognitive science, which was carried out by some 

brilliant psychologists to try to understand how the 

mind and senses work in a more abstract way. 

Computer scientists and mathematicians have 

benefited a lot from this stage, and used it to produce 

the first simple forms of what we know today. In the 

name of deep learning. 
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One of the most famous productions of this important 

period in the history of global technology is Artificial 

Neural Networks (ANNs), or Artificial Neural 

Networks. They are neural networks that simulate 

how the natural neural networks that operate in the 

human mind work. Scientists at this stage also came up 

with the back propagation model, which has been used 

a lot in natural language processing, computer vision, 

and many other branches of artificial intelligence. 

1.3 The Third Stage (Deep Learning Stage) 

It was also due to a development made by Canadian 

cognitive psychologist and computer scientist 

Geoffrey Hinton in 2006; Where he did DBN or Deep 

Belief Networks; Which is a neural network that 

contains a lot of hidden layers under it, which works 

without human supervision, and from that time until 

now the era of artificial intelligence and deep learning 

began. 

2. Literature Review 

Initially, the concept of machine learning refers to the 

discipline concerned with the study of algorithms 

based on making a machine learn and evolve on its 

own without the need for specific software commands. 

A "data set" is fed into these algorithms, which they 

analyze, learn from, and then build predictions based 

on what they've learned. The machine learning major 

represents the intersection of computer science and 

statistics.  

A simple example of an application of machine 

learning algorithms is "Suggestions". When you listen 

to music on a popular listening platform, on your next 

visit you will find more similar music and 

recommendations related to your listening history. 

Machine learning algorithms analyze your listening 

history and preference data, find patterns within them 

and then build predictions for many other music that 

suits your taste.[1] 

 

As for the concept of deep learning, it is a specialty of 

machine learning, which in turn is a specialty of 

artificial intelligence. As shown in below figure. 

 

 

 

 

 

 

Fig 1: Concept of Deep Learning 

It is the specialization concerned with the study of 

"artificial neural networks" that simulate the neural 

networks in the human brain. 

3. Artificial Neural Network 

An artificial neural network is an information 

processing system, the concept is taken from biological 

neurons. this is human kind’s best effort to emulate a 

biological network. The computing method is based on 

multiple connected artificial neurons that process 

information in a distributed matter across the 

computing neurons.[1] 

Artificial neural networks are best suited to solve 

complex problems that require generalization and 

pattern recognition. As shown in below figure. 

  

Fig 2: Perceptron Neurons 
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Properties of the Nervous System 

• Parallel, distributed information processing. 

• High degree of connectivity between basic 

processing units. 

• Connections are modified based of experience. 

• Learning is a constant process. 

• Learning is based on local information. 

Biological Neuron 

A biological neuron is most basic information 

processing unit in the nervous system. a biological 

neuron consists of the following parts: 

1. Dendrites (input) 

2. Cell body 

3. Axon (output) 

 

Fig 3: Biological Neuron 

Figure 3 shows an biological neuron takes signals from 

its dendrites and processes the signal and outputs a 

signal from its axon based on the input signal.[2] 

4. Deep Learning 

The discipline of deep learning emerged as an 

extension and evolution of machine learning when 

traditional machine learning algorithms were unable 

to perform some complex tasks. For example, 

traditional machine learning algorithms require a 

simplified and tidy data set to learn from. But it is not 

able to learn from large and complex data sets such as 

different sound waves, image dimensions and the 

number of pixels inside, so deep learning algorithms 

are used to handle such complex data as in the "voice 

recognition" applications that Siri uses to help Google 

recognize The voices of its creators and the "image 

recognition" applications used by Facebook to identify 

people's faces in photos.[3] 

4.1 Configure a Deep Learning Algorithm 

The algorithm consists of a multi-layer structure of 

artificial neural networks. Where the layer on the left 

end is the input layer, the layer on the right is the 

output layer, and in the middle are several hidden 

layers responsible for processing. The architecture of 

stratified deep learning algorithms enables better data 

handling and better performance. As shown in below 

figure.[3] 

 

Fig 4: Multi-Layer ANN 

Accordingly, the deep learning algorithm requires a 

lower level of human intervention in optimizing the 

algorithm's results. The algorithm learns and improves 

from its mistakes on its own. Unlike the traditional 

machine learning algorithm that requires a lot of 

human intervention for modification and 

optimization.[3] 

However, deep learning algorithms are still under 

development. Despite its progress and the remarkable 

improvement in its results and performance, it 

requires a lot of time and high computing power to 

learn from the huge data set and build a viable model. 
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Despite the advancement of algorithms and 

techniques in the world of artificial intelligence and the 

promising results that their applications carry, they are 

still in their early stages, and there are many advances 

and opportunities ahead.[4] 

5. Face Detector 

Speaking of face detection, we first think of using the 

Harr extraction feature and the Adaboost face 

detection classifier, the detection effect is also good, 

but the current application scenarios for face detection 

are gradually developing from Indoor to outdoor, 

from one limited scene to scenes like squares, stations, 

subway entrances, etc. higher and higher. For example, 

faces vary in size, number is large, and poses are 

varied, including top shots of faces, masks wearing 

hats and masks, exaggerated expressions, 

camouflaging makeup, poor lighting conditions, low 

resolution, and even difficult to distinguish with the 

naked eye. In such a complex environment, the 

performance of face detection based on Haar features 

is unsatisfactory. With the development of deep 

learning, face detection technology based on deep 

learning has achieved great success. This section 

introduce the MTCNN algorithm, which is a high-

precision face detection and real-time detection 

algorithm based on convolutional neural networks.[5] 

The first step in building a face recognition system is 

face detection, which is to find the position of the face 

in the image. In this process, the input is an image 

containing human faces, and the output is a 

rectangular frame of all faces. In general, face detection 

should be able to detect all the faces in the image, and 

there should be no missed detections, not to mention 

false detections.[5] 

After getting the face, the second step we need to do is 

align the face. Since the face in the original image may 

have differences in position and position, for 

subsequent unified processing, we have to "straighten" 

the face. To this end, it is necessary to detect the main 

points of the face, such as the position of the eyes, the 

position of the nose, the position of the mouth, and the 

points of the facial contour. According to these key 

points, the affine transformation can be used to 

uniformly calibrate the face to eliminate errors caused 

by different situations.[5]

 

Fig 5: Eye Centre Localization  

5.1 MTCNN Algorithm Structure 

The MTCNN algorithm(multi-task deep convolutional 

neural network) is a deep learning-based face 

detection and face alignment method, which can 

complete face detection and face alignment tasks at the 

same time. Compared with traditional algorithms, it 

has better performance and faster detection speed. 

The MTCNN algorithm contains three subnets: 

Proposal Network (P-Net), Refine Network (R-Net), 
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and Output Network (O-Net). These three grids 

process faces from coarse to fine see figure 5.[8] 

 

Fig 5: MTCNN stages 

6. Keras Model 

Keras is one of the most popular deep learning 

libraries, and its artificial intelligence has made 

significant contributions. It's simple use, just a few 

lines of code can build a powerful neural network. In 

this article, you will learn how to build a neural 

network using KERAS.[9] 

Keras is an open source Python library that allows you 

to easily build a neural network. This library can run 

on Tensorflow, Microsoft Cognitive Toolkit, Theano 

and MXNet. Tensorflow and Theano are the most 

common scientific computing platforms used to build 

deep learning algorithms in Python, but they can 

sometimes be very complex and difficult to use. In 

contrast, Keras provides a simple and convenient way 

to build an in-depth learning model. Its creator, 

Françoischollet, developed it to enable people to build 

a neural network as quickly and easily as possible. 

Focus on scalability, maintenance, simplicity and 

support for the python. Keras can use both the GPU 

and the CPU, which supports Python 2 and 3. Google 

Keras makes great contributions to the field of deep 

learning and artificial intelligence, because it has been 

product-embedded in a modern learning algorithm, 

these algorithms are not only accessible, but also 

unusable. 

In 2017, the TenserFlow team from Google decided to 

add Keras support in the TenserFlow core library. He 

also explained that Keras was designed as a 

programming interface rather than a standalone 

machine learning framework. Keras offers a higher 

and more intuitive set of abstractions that make it easy 

to develop deep learning models regardless of the 

background used to perform the calculations (be it 

Tenserflow or otherwise). Microsoft has also added a 

backend based on Microsoft Cognitive Tools CNTK to 

Keras.[9] 

from __future__ import absolute_import 

from __future__ import division 

from __future__ import print_function 

from six import string_types, 

iteritems 

import numpy as np 

import tensorflow as tf 

import cv2 

import os 

 

def layer(op): 

    """Decorator for composable 

network layers.""" 

 

    def layer_decorated(self, *args, 

**kwargs): 

        name = 

kwargs.setdefault('name', 

self.get_unique_name(op.__name__)) 

        if len(self.terminals) == 0: 

            raise RuntimeError('No 

input variables found for layer %s.' % 

name) 

        elif len(self.terminals) == 1: 

            layer_input = 

self.terminals[0] 

        else: 

            layer_input = 

list(self.terminals) 

        layer_output = op(self, 

layer_input, *args, **kwargs) 

        self.layers[name] = 

layer_output 

        self.feed(layer_output) 

        return self 
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    return layer_decorated 

class PNet(Network): 

    def setup(self): 

        (self.feed('data') 

             .conv(3, 3, 10, 1, 1, 

padding='VALID', relu=False, 

name='conv1') 

             .prelu(name='PReLU1') 

             .max_pool(2, 2, 2, 2, 

name='pool1') 

             .conv(3, 3, 16, 1, 1, 

padding='VALID', relu=False, 

name='conv2') 

             .prelu(name='PReLU2') 

             .conv(3, 3, 32, 1, 1, 

padding='VALID', relu=False, 

name='conv3') 

             .prelu(name='PReLU3') 

             .conv(1, 1, 2, 1, 1, 

relu=False, name='conv4-1') 

             .softmax(3,name='prob1')) 

        (self.feed('PReLU3')  

             .conv(1, 1, 4, 1, 1, 

relu=False, name='conv4-2')) 

class RNet(Network): 

    def setup(self): 

        (self.feed('data')  

             .conv(3, 3, 28, 1, 1, 

padding='VALID', relu=False, 

name='conv1') 

             .prelu(name='prelu1') 

             .max_pool(3, 3, 2, 2, 

name='pool1') 

             .conv(3, 3, 48, 1, 1, 

padding='VALID', relu=False, 

name='conv2') 

             .prelu(name='prelu2') 

             .max_pool(3, 3, 2, 2, 

padding='VALID', name='pool2') 

             .conv(2, 2, 64, 1, 1, 

padding='VALID', relu=False, 

name='conv3') 

             .prelu(name='prelu3') 

             .fc(128, relu=False, 

name='conv4') 

             .prelu(name='prelu4') 

             .fc(2, relu=False, 

name='conv5-1') 

             .softmax(1,name='prob1')) 

 

        (self.feed('prelu4') 

             .fc(4, relu=False, 

name='conv5-2')) 

class ONet(Network): 

    def setup(self): 

        (self.feed('data' 

             .conv(3, 3, 32, 1, 1, 

padding='VALID', relu=False, 

name='conv1') 

             .prelu(name='prelu1') 

             .max_pool(3, 3, 2, 2, 

name='pool1') 

             .conv(3, 3, 64, 1, 1, 

padding='VALID', relu=False, 

name='conv2') 

             .prelu(name='prelu2') 

             .max_pool(3, 3, 2, 2, 

padding='VALID', name='pool2') 

             .conv(3, 3, 64, 1, 1, 

padding='VALID', relu=False, 

name='conv3') 

             .prelu(name='prelu3') 

             .max_pool(2, 2, 2, 2, 

name='pool3') 

             .conv(2, 2, 128, 1, 1, 

padding='VALID', relu=False, 

name='conv4') 

             .prelu(name='prelu4') 

             .fc(256, relu=False, 

name='conv5') 

             .prelu(name='prelu5') 

             .fc(2, relu=False, 

name='conv6-1') 

             .softmax(1, 

name='prob1')) 

 

        (self.feed('prelu5')  

             .fc(4, relu=False, 

name='conv6-2')) 

 

        (self.feed('prelu5' 

             .fc(10, relu=False, 

name='conv6-3')) 

6.Results 

This model groups the layers into an objects with 

training and inference features and contain three 

arguments (Inputs, Outputs and Name): 

• Inputs: The input(s) of the model: 

a keras.Input object. 

• Outputs: The output(s) of the model. See 

Functional API example below. 

• Name: String, the name of the model. 

With the "Functional API", where you start 

from Input, you chain layer calls to specify the model's 

forward pass, and finally you create your model from 

inputs and outputs: 

A new Functional API model can also be created by 

using the intermediate tensors. This enables you to 

quickly extract sub-components of the model. The 

MTCNN algorithm, is a high-precision face detection 

and real-time detection algorithm based on 

convolutional neural networks.  The MTCNN 

algorithm contains three subnets: Proposal Network 

https://keras.io/api/layers/core_layers/input#input-function
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(P-Net), Refine Network (R-Net), and Output Network 

(O-Net). These three grids process faces from coarse to 

fine. Before using these three subnets, you need to use 

the image hierarchy to scale the original image at 

different scales, and then send the images at different 

scales to these three subnets for training. The purpose 

is to detect different sizes of faces • Achieve multi-

band target detection. The finalizing and the outputs 

are plotting eyes, eyes circle and pupil of eyes as 

shown in below figure.  

 

        Fig 6: Three steps of detection

   

   

Fig 7: Results by plotting of pupil detection

7.Conclusion 

In this paper, pupil, iris and eyes detection allows 

researchers to study the movements of a participant's 

eyes during a range of activities. This gives insight into 

the cognitive processes underlying a wide variety of 

human behavior and can reveal things such as learning 

patters and social interaction methods. Big data is 

perhaps the most powerful factor in the process of 

developing deep learning, making it more relevant to 

our lives by providing the large amount of data it 

needs in order to learn and become smart on its own.  

In this paper, keras deep learning technique was used 

to detect the pupil of the human eye. With these 

results, we can in the near future control computers by 

the eye or the pupil of the eye for ease of use or to 

extend artificial intelligence in the field of deep 

learning, and it is also possible for people with special 

needs and with disabilities to benefit from this 

experience.  
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Appendix  

#Keras Model 
from keras.layers import * 
from keras.models import Model 
import tensorflow as tf 
import numpy as np 
class KerasELG(): 
    def __init__(self, first_layer_stride=3, hg_num_feature_maps=64, hg_num_modules=3): 
        self._first_layer_stride = first_layer_stride 
        self._hg_num_feature_maps = hg_num_feature_maps 
        self._hg_num_modules = hg_num_modules 
        self._hg_num_residual_blocks = 1 
        self._hg_num_landmarks = 18 
        self.net = self.build_elg_network() 
    def build_elg_network(self): 

        return self.elg() 
        def elg(self): 
        outputs = {} 
        inp = Input((108, 180, 1)) 
        n = self._hg_num_feature_maps 
        pre_conv1 = self._apply_conv(inp, n, k=7, s=self._first_layer_stride, name="hourglass_pre") 
        pre_conv1 = self._apply_bn(pre_conv1, name="hourglass_pre_BatchNorm")         
        pre_conv1 = Activation('relu')(pre_conv1) 
        pre_res1 = self._build_residual_block(pre_conv1, 2*n, name="hourglass_pre_res1") 
        pre_res2 = self._build_residual_block(pre_res1, n, name="hourglass_pre_res2") 
        x = pre_res2 
        x_prev = pre_res2 
        for i in range(self._hg_num_modules): 
            prefix = f"hourglass_hg_{str(i+1)}" 
            x = self._build_hourglass(x, steps_to_go=4, f=self._hg_num_feature_maps, name=prefix) 
            x, h = self._build_hourglass_after( 
                x_prev,  
                x,  
                do_merge=(i<(self._hg_num_modules-1)),  
                name=prefix) 
            x_prev = x 
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        x = h 

        outputs['heatmaps'] = x 
        return Model(inp, outputs['heatmaps']) 
    def _apply_conv(self, x, f, k=3, s=1, padding='same', name=None): 
        return Conv2D(f, kernel_size=k, strides=s, use_bias=True, padding=padding, name=name)(x) 
    def _apply_bn(self, x, name=None): 
        return BatchNormalization(name=name)(x) 
    def _apply_pool(self, x, k=2, s=2): 
        return MaxPooling2D(pool_size=k, strides=s, padding="same")(x) 
    def _build_residual_block(self, x, f, name="res_block"): 
        num_in = x.shape.as_list()[-1] 
        half_num_out = max(int(f/2), 1) 
        c = x 
        conv1 = self._apply_bn(c, name=name+"_conv1_BatchNorm") 
        conv1 = Activation('relu')(conv1) 
        conv1 = self._apply_conv(conv1, half_num_out, k=1, s=1, name=name+"_conv1") 
        conv2 = self._apply_bn(conv1, name=name+"_conv2_BatchNorm") 
        conv2 = Activation('relu')(conv2) 
        conv2 = self._apply_conv(conv2, half_num_out, k=3, s=1, name=name+"_conv2") 
        conv3 = self._apply_bn(conv2, name=name+"_conv3_BatchNorm") 
        conv3 = Activation('relu')(conv3) 
        conv3 = self._apply_conv(conv3, f, k=1, s=1, name=name+"_conv3") 
        if num_in == f: 
            s = x 
        else: 
            s = self._apply_conv(x, f, k=1, s=1, name=name+"_skip")        
        out = Add()([conv3, s]) 
        return out 

    def _build_hourglass(self, x, steps_to_go, f, depth=1, name=None): 
        prefix_name = name + f"_depth{str(depth)}" 
        up1 = x 
        for i in range(self._hg_num_residual_blocks): 
            up1 = self._build_residual_block(up1, f, name=prefix_name+f"_up1_{str(i+1)}") 
        low1 = self._apply_pool(x, k=2, s=2) 
        for i in range(self._hg_num_residual_blocks): 
            low1 = self._build_residual_block(low1, f, name=prefix_name+f"_low1_{str(i+1)}") 
        low2 = None 
        if steps_to_go > 1: 
            low2 = self._build_hourglass(low1, steps_to_go-1, f, depth=depth+1, name=prefix_name) 
        else: 
            low2 = low1 
            for i in range(self._hg_num_residual_blocks): 
                low2 = self._build_residual_block(low2, f, name=prefix_name+f"_low2_{str(i+1)}") 
        low3 = low2 
        for i in range(self._hg_num_residual_blocks): 
            low3 = self._build_residual_block(low3, f, name=prefix_name+f"_low3_{str(i+1)}") 
        up2 = Lambda( 
            lambda x: tf.image.resize_bicubic( 
                x[0], 
                x[1].shape.as_list()[1:3],  
                align_corners=True))([low3, up1]) # default resize_bilear 
        out = Add()([up1, up2]) 
        return out 
    def _build_hourglass_after(self, x_prev, x_now, do_merge=True, name=None): 
        prefix_name = name+"_after" 
        for j in range(self._hg_num_residual_blocks): 

            x_now = self._build_residual_block( 
                x_now,  
                self._hg_num_feature_maps,  
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                name=prefix_name+f"_after_hg_{str(j+1)}") 

        x_now = self._apply_conv(x_now, self._hg_num_feature_maps, k=1, s=1, name=prefix_name) 
        x_now = self._apply_bn(x_now, name=prefix_name+"_BatchNorm") 
        x_now = Activation('relu')(x_now) 
        h = self._apply_conv(x_now, self._hg_num_landmarks, k=1, s=1, name=prefix_name+"_hmap") 
        x_next = x_now 
        if do_merge: 
            prefix_name = name 
            x_hmaps = self._apply_conv( 
                h,  
                self._hg_num_feature_maps,  
                k=1,  
                s=1,  
                name=prefix_name+"_merge_h") 
            x_now = self._apply_conv( 
                x_now,  
                self._hg_num_feature_maps,  
                k=1,  
                s=1,  
                name=prefix_name+"_merge_x") 
            x_add = Add()([x_prev, x_hmaps]) 
            x_next = Add()([x_next, x_add]) 
        return x_next, h 
    def _calculate_landmarks(x, beta=5e1): 
        def np_softmax(x, axis=1): 
            t = np.exp(x) 
            a = np.exp(x) / np.sum(t, axis=axis).reshape(-1,1) 
            return a 

        if len(x.shape) < 4: 
            x = x[None, ...] 
        h, w = x.shape[1:3] 
        ref_xs, ref_ys = np.meshgrid(np.linspace(0, 1.0, num=w, endpoint=True), 
                                     np.linspace(0, 1.0, num=h, endpoint=True), 
                                     indexing='xy') 
        ref_xs = np.reshape(ref_xs, [-1, h*w]) 
        ref_ys = np.reshape(ref_ys, [-1, h*w]) 
        beta = beta 
        x = np.transpose(x, (0, 3, 1, 2)) 
        x = np.reshape(x, [-1, 18, h*w]) 
        x = np_softmax(beta * x, axis=-1) 
        lmrk_xs = np.sum(ref_xs * x, axis=2) 
        lmrk_ys = np.sum(ref_ys * x, axis=2) 
        return np.stack([lmrk_xs * (w - 1.0) + 0.5, lmrk_ys * (h - 1.0) + 0.5], axis=2)  # N x 18 x 2 

import mtcnn_detect_face 
import tensorflow as tf 

from keras import backend as K 
import numpy as np 
import cv2 
import os 
class MTCNNFaceDetector(): 
    def __init__(self, sess, model_path="./mtcnn_weights/"): 
        self.pnet = None 
        self.rnet = None 
        self.onet = None 
        self.create_mtcnn(sess, model_path) 
            def create_mtcnn(self, sess, model_path): 
        if not model_path: 
            model_path, _ = os.path.split(os.path.realpath(__file__)) 
        with tf.variable_scope('pnet'): 
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            data = tf.placeholder(tf.float32, (None,None,None,3), 'input') 

            pnet = mtcnn_detect_face.PNet({'data':data}) 
            pnet.load(os.path.join(model_path, 'det1.npy'), sess) 
        with tf.variable_scope('rnet'): 
            data = tf.placeholder(tf.float32, (None,24,24,3), 'input') 
            rnet = mtcnn_detect_face.RNet({'data':data}) 
            rnet.load(os.path.join(model_path, 'det2.npy'), sess) 
        with tf.variable_scope('onet'): 
            data = tf.placeholder(tf.float32, (None,48,48,3), 'input') 
            onet = mtcnn_detect_face.ONet({'data':data}) 
            onet.load(os.path.join(model_path, 'det3.npy'), sess) 
        self.pnet = K.function([pnet.layers['data']], [pnet.layers['conv4-2'], pnet.layers['prob1']]) 
        self.rnet = K.function([rnet.layers['data']], [rnet.layers['conv5-2'], rnet.layers['prob1']]) 
        self.onet = K.function([onet.layers['data']], [onet.layers['conv6-2'], onet.layers['conv6-3'], 
onet.layers['prob1']]) 
    def detect_face(self, image, minsize=20, threshold=0.7, factor=0.709, use_auto_downscaling=True, 
min_face_area=25*25): 
        if use_auto_downscaling: 
            image, scale_factor = self.auto_downscale(image) 
                    faces, pnts = mtcnn_detect_face.detect_face( 
            image, minsize,  
            self.pnet, self.rnet, self.onet,  
            [0.6, 0.7, threshold],  
            factor) 
        faces = self.process_mtcnn_bbox(faces, image.shape) 
        faces, pnts = self.remove_small_faces(faces, pnts, min_face_area) 
        if use_auto_downscaling: 
            faces = self.calibrate_coord(faces, scale_factor) 

            pnts = self.calibrate_landmarks(pnts, scale_factor) 
        return faces, pnts 
    def auto_downscale(self, image): 
        if self.is_higher_than_1080p(image): 
            scale_factor = 4 
            resized_image = cv2.resize(image,  
 (image.shape[1]//scale_factor,  
image.shape[0]//scale_factor)) 
        elif self.is_higher_than_720p(image): 
            scale_factor = 3 
            resized_image = cv2.resize(image,  
 (image.shape[1]//scale_factor,  
image.shape[0]//scale_factor)) 
        elif self.is_higher_than_480p(image): 
            scale_factor = 2 
            resized_image = cv2.resize(image,  
 (image.shape[1]//scale_factor,  
image.shape[0]//scale_factor)) 
        else: 
            scale_factor = 1 
            resized_image = image.copy() 
        return resized_image, scale_factor 

 


