

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022 This is an open access article distributed under the Creative Commons Attribution License Copyright ©2017. e-ISSN: 2520-789X https://doi.org/10.25007/ajnu.v11n3a1423

The Effect of the First and Second Stress Invariants (Hydrostatic and

Deviatoric Stresses) on the Compressibility Function

Abdulamir Sahm Resen

Department Computer Engineering and Communication, Nawroz University, Duhok, KRG - Iraq

ABSTRACT

Experimental work was carried out to investigate the separate roles of the hydrostatic and deviatoric components of stress tensor (Using the First and the second invariants I_1 and I_2'). The results were expressed in term of stress dependent shear compliance J and apparent compressibility function B in the time temperature region of the test (up to 10^4 seconds at 30° C the region of the α –relaxation).

The Compressibility Function B showed no significant change, when increasing the hydrostatic stress I_1 and keeping the deviatoric stress I_2' constant, and by varying I_2' and keeping I_1 constant the change is about 10% for the stress combination of tension-torsion.

The volume was found to increase with time when increasing I_2' and keeping I_1 constant.

In the case of J and B the deviatoric stress I_2' played the major role. All these effects could be rationalized by the idea of the time dependent free volume. If the free - volume increases with time by increasing I_2' this could explain the difference in the effect of I_1 and I_2' on B and explain the creep less than recovery.

There is no difference between the compressibility function in creep and recovery (to within the experimental scatter of (12%)).

A small increase in B was detected with time, the maximum difference between the lowest and highest B is 5.9%. **Keywords**: *Stress, Hydrostatic Stress, Deviatoric Stress.*

1. Introduction

Uniaxial and biaxial creep and recovery experiments were carried out on tubular specimens of isotropic PMMA to investigate the separate roles of the hydrostatic and deviatoric components of stress. These experiments were carried out using different stress combinations (tension-torsion) varying the first and second stress invariants I_1 and I_2' and extending the measurements to the non-linear region [1].

The three strains e_1 , e_2 , and γ were needed in order to find the shear compliance J, acompressibility function B. These strains were measured directly, therefor there is no need for any assumption. The theory of linear viscoelastic solids extended to take into the account the non-linear region. For creep experiment in which the stress tensor σ is applied at time equal to zero, defined by the mean stress σ_m , and the deviatoric stress tensor σ' [2].

$$\sigma_{\rm m} = 1/3 \ {\rm tr}\sigma \tag{1.1}$$

$$\sigma' = \sigma -$$

$$\int_{-\infty}^{\infty} \sigma_{m} = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3$$
 (1.2)

From equation (1.1) the deviatoric stress tensor

$$\sigma_{\tilde{}}' = \begin{bmatrix} (\sigma_{11} - \sigma_{m}) & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & (\sigma_{22} - \sigma_{m}) & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & (\sigma_{33} - \sigma_{m}) \end{bmatrix}$$
(1.3)

From equation (1.2) $\sigma_{\rm m} = (\sigma_{11})/3$ (1.4)

Where $\sigma_{22} = \sigma_{33} = 0$

From equations (1.2) and (1.3) the deviatoric stress for combined tension-torsion

$$\sigma'_{\sim} = \begin{bmatrix} (2/3\,\sigma) & \tau & 0\\ \tau & (-1/3\,\sigma) & 0\\ 0 & \sigma_{32} & (-1/3\,\sigma) \end{bmatrix}$$

For an isotropic linear viscoelastic solid with the shear compliance function J(t) and the compressibility function B(t), the deformation at t > 0 with the strain tensor e(t) equation (1.5) is

$$e(t) = \frac{J(t)}{2} \sigma' + \frac{B(t)}{3} \sigma_m I$$
(1.5)

For non-linear viscoelastic solid whose non-linearity is caused only by J(t) and B(t). This is depended upon the dominating stress state which is defined by its invariants I_1 , I_2 , and I_3 equation (1.6) where

$$I_{1} = \sigma_{11} + \sigma_{22} + \sigma_{33}$$

$$I_{2} = -(\sigma_{22}\sigma_{33} + \sigma_{11}\sigma_{33} + \sigma_{11}\sigma_{22}) + \tau_{12}^{2} + \tau_{13}^{2} + \tau_{23}^{2}$$

$$I_{3} = (\sigma_{11}\sigma_{22}\sigma_{33} + \sigma_{11}\sigma_{33} + 2\tau_{12}\tau_{23}\tau_{31} - \sigma_{22}\tau_{13}^{2} - \sigma_{33}\tau_{12}^{2}$$
(1.6)

It is convenient to work with the first and second stress invariant I_1 and I_2' .

 I_1 and I_2' were chosen to describe the two-dimensional stress response because they are independently separate the hydrostatic and deviatoric stresses.

 $I_2{\,}'$ is analogue to I_2 for deviatoric stress $\,\sigma'$.

Where for tension-torsion

 $(\sigma_{22} = \sigma_{33} = 0, \ \sigma_{23} = \sigma_{32} = 0, \ \sigma_{13} = \sigma_{31} = 0$

Assuming that the non-linear case for multiaxial creep response equation should then be

$$e(t) = [J(t, I_1, I_2, I_3)/2]\sigma' + [B(t, I_1, I_2, I_3)/3]\sigma_m I \quad (1.7)$$

A similar equation has been suggested by Sternstein and Ho [3] for stress relaxation of non-linear viscoelastic solids.

From the above in biaxial tension-torsion, the creep can be determined as follows:

Tensile strain equation (1.8)

$$e_{11} = [J(t, I_1, I_2, I_3)/3] + [B(t, I_1, I_2, I_3)/9] \sigma_{11}$$
 (1.8)

Shear strain equation (1.9) $e_{12} = J(t, I_1, I_2, 0) \sigma_{12}$ (1.9)

Mallon and Banham [4] showed that B(t) (when $I_2' = 0$) is independent of I_1 . Buckley and McCrum [5] suggested that B(t) is also independent of I_2' . The lateral contraction equation (1.10) is

$$e_{22} = [-J(t, I_1, I_2, I_3)/3] + [B(t, I_1, I_2, I_3)/9]\sigma$$
 (1.10)
Read and Dean [6] measured the tensile and lateral
strains. The results showed that apparent tensile
compliance increase with increasing tensile load and
time. The lateral contraction ratio appears to be constant
for the first 150 seconds and after that to increase with
increasing load and time. After an increase with time
 $10^{2.5}$ seconds subsequently the variations in volume
strain were small. The apparent compressibility function
B(t) was found to occur a little with stress and decrease
with time. Passion's ratio was found to be 0.37
(at t = 100sec.).

It is conventional to use as invariants of threedimensional stress tensor σ_0 coefficients in the characteristic equation. [2]

$$I_{1} = tr\sigma_{o}, I_{2} = \begin{bmatrix} tr\sigma_{o}^{2} - (tr\sigma_{o})^{2} \end{bmatrix}, I_{3} = det\sigma_{o}$$
(1.11)

The stress was composed into a hydrostatic component and deviatoric component σ_o' equation (1.12)

$$\sigma_o' = \sigma_o - \frac{1}{3} \underset{\sim}{I} tr \sigma_o \tag{1.12}$$

To describe the response to two-dimensional proportional loading history the two invariants I_1 and I_2' were chosen.

Where $I_1 = tr\sigma_o$, $I_2' = \frac{1}{2} tr(\sigma_o')^2$

 I_2' is analogous to I_2 , the deviatoric stress σ_o and σ_o' are stress tensors, although σ_o is confined here to a plane stress. I_1 and I_2' independently characterize the hydrostatic and deviatoric components of the stress.

Consider the response of an isotropic linear viscoelastic material to proportional loading equation (1.13).

$$e(t) = (J/6 - B/9)I_1 I_{-} I_{+} I_{-} \sigma'$$
(1.13)

Where *J* is the shear compliance and *B* is the compressibility function.

In the case of biaxial tension-torsion on a tubular specimen the stress σ and the strain *e* can be written with respect to the axial and lateral axis in the wall of the tubular specimen [2].

$$e = \begin{bmatrix} e_1 & \frac{\gamma}{2} \\ \frac{\gamma}{2} & e_2 \end{bmatrix} \qquad \sigma_o = \begin{bmatrix} \sigma & \tau \\ \tau & \sigma \end{bmatrix}$$
(1.14)

where e_1 is the longitudinal strain, e_2 is the lateral strain, γ is the shear strain σ is the tensile stress and τ is the shear stress.

From equations (1.11) to (1.13) the stress invariants can be written as follows

$$I_1 = \sigma$$
 $I_2' = (\sigma^2/3) + \tau^2$ (1.15)

It has been shown for the plane stress state (e.g., Tensiontorsion stress state) equation (1.13) can be applied even in the non-linear case [7], hence in this situation of the Linear strain equation (16) is used

 $e_{1}(I_{1}, I_{2}', t) = [J(I_{1}, I_{2}', t)/3 + B(I_{1}, I_{2}', t)/9]\sigma$ (1.16)

The lateral strain equation (1.17) is

 $-e_2(I_1, I_2', t) = [J(I_1, I_2', t)/6 - B(I_1, I_2', t)/9]\sigma$ (1.17) and the shear strain equation (1.18) is

$$\gamma(I_1, I_2', t) = J(I_1, I_2', t) \tau$$
(1.18)

The temperature was kept constant at $(30 \pm 0.2^{\circ}C)$ throughout the tests. This was chosen as the beginning of (α) relaxation (primary relaxation) of this material to avoid aging effects and the effect of high temperature on creep of PMMA.

The change in volume was calculated using the

passion's ratio μ and the tensile strain e_1 from the experimental results in tension - torsion (eq.1.19)

$$\Delta V = V e_1 (1 - 2\mu)$$
 (1.19)

The experimental result showed an increase in ΔV with time when the first invariant I_1 kept constant and varying the second invariant I_2' for the time scale 10^4 seconds.

Peyman Nikaeen, et.al [8] studied the effect of the mechanical deformation macro-scale on the nanostructure of glassy polymers by scrutinizing the changing their nanoscale mechanical response. The measurement of the mechanical properties of the polycarbonate poly(methyl methacrylate) and specimens was done by using Nanoindentation technique, which were subjected to a prior plastic deformation in uniaxial tension. The measurements were focused on the inelastically deformed and unloaded specimens. The results show that the shear activation volume decreases with inelastic deformation.

1- Results and Discussion

The Biaxial (tension-torsion) Creep tests were carried out to find the effect of the first invariant I_1 and I_2' , and describe the effect of these invariants on the behavior of the materials.

These experiments were carried out by keeping the first invariant I_1 constant and increasing I_2' . This was done to find the effect of increasing the second invariant I_2' on the tensile strain e_1 and the lateral strain e_2 . The results show that with increasing the second invariants I_2' the tensile and lateral strains were increased, and the effect with the second invariants I_2' increases with increasing time [1].

The passion's ratio μ was found to be constant with changing I_2' when the first invariant I_1 was small, and increasing with time when the first invariant I_1 was larger.

2.1 The effect of I_1 and I_2 'on the apparent compressibility function (*B*)

The effect of increasing I_2 'at different constant I_1 on the apparent compressibility function *B* is shown in Figures (2 to 5). These figures show that with increasing of I_2 ', the apparent compressibility function *B* increases by about 10%. The compressibility function *B* was found to vary with time and stress but this variation is not systemic. (*B*) was found to fall slightly at higher stress over the time scale as shown in figure (2 and 3), when $(I_1 = 5.477MN/m^2)$ and $(I_2' = 300(MN/m^2)^2)$.

Figure (6 to 10) were plotted for the apparent compressibility function *B* versus log time for a constant I_2' and varying I_1 . These figures show no significant change with changing I_1 for the experimental time scale of 10⁴ seconds. This is true for all the experimental stress levels used in this work, where I_2' changed from (50 to $300(MN/m^2)^2$), and kept constant at each I_2' level with increasing I_1 . These experiments were carried out

on different specimens.

An increasing of I_2' was found to enhance the time dependent component of *B*. The compressibility function *B* was plotted versus log time (Fig.1), for pure tensile load application to the specimen. This shows an increase of *B* with increasing the tensile load.

2.2 The effect of I_1 and I_2' on the compressibility function *B* in recovery B_r

The difference between the compressibility function ΔB in creep and recovery was measured using equation 2.1 $\Delta B = B_r - B_c$ (2.1)

Figures (11 to 14) show that there is no difference (to within the experimental scatter of 12%) between the compressibility function in creep and recovery;

neither in varying I_2' and keeping I_1 constant nor in varying I_1 and keeping I_2' for all the stress levels used in these tests.

2.3 The effect of l_1 and l_2' on the compressibility fractional recovery F_B

The compressibility fractional recovery F_B was measured in a similar way to the shear compliance fractional recover F_I equation (2.2)

$$F_B = \frac{B_{max}(I_1, I_2', t) - B(I_1, I_2', t)}{B_{max}(I_1, I_2', t)}$$
(2.2)

Where B_{max} is the maximum apparent compressibility function in creep, and *B* is the compressibility function in recovery (fig. 15).

The compressibility function fractional recovery F_B versus log reduced time (t_R) shown in figures (16 to 19). These curves are for a constant I_1 and increased I_2' . I_1 takes the values of $(4.77, 12.247, 17.32MN/m^2)$, and $(21.213MN/m^2)$, and I_2' increased from $(25 to 300(MN/m^2)^2)$. The curves show that F_B is constant (to within the experimental scatter).

Figures (20 to 25) are for F_B at constant I_2' and varying I_1 . The fractional recovery compressibility function F_B is constant with increasing I_1 for the experimental time.

The effect of non-linearity could be due to I_1 at the beginning of the experimental time, where the effect was due to I_2' at a later time. This means that I_1 affect the volume at short time and I_2' at long time, applying this to the fractional recovery hypotheses it shows that I_2' increases the time dependent component of the volume. This is entirely constant with the effect of I_2' on the compressibility function B (I_2' increasing the time dependent component of the volume, shows that I_2' increasing the time dependent of B). Applying this effect to the free volume, shows that I_2' increasing the time dependent component of the volume. I_2' increases the time dependent component of the volume.

The increase of the tensile stress shows an increase in the compressibility function *B* (Fig. 1). The compressibility function *B* at constant tensile stress (I_1 is constant) and varying I_2' show a small increase with time. This increase drops down at the end of the experimental time (Fig. 2 to 5). The measurement of B is subjected to experimental scatter of 18.6%. The

difference between the lowest and highest values is 18.2%. Measurement pf PMMA was also done by Read and Dean [6]. They found an increase in *B* with an increase in the tensile stress, and after 10^4 seconds *B* start to increase as the time increased. The dependent of *B* on the tensile stress and time has an important meaning for the possible structural change and mechanical aging effects generated by applied stress. Read and Dean [6] attribute the increase of the volume to the hydrostatic component of the stress, when a tensile stress in a linear range was applied to a polymer for a short time compared with α – *retardation* time.

Increasing I_2' and keeping I_1 constant (Fig. 2 to 5) shows that the increase of I_2' increase the compressibility function B by 21% (Fig. 2). A small increase in B was detected with time, the maximum difference between the lowest and highest B is 5.9%.

The increase of I_1 and keeping I_2' constant shows insignificant change in *B* (Fig. 6 to 10). The increase of *B* for anew specimen was mor than would be expected from increasing the stress only (Fig. 1 to 5).

Figures (11 to 14) shows no significant difference (to within the experimental scatter) between the compressibility function and recovery compliance *B* and B_r equation (2.3)

$$B_r - B = 0 \tag{2.3}$$

A similar increase was not detected when torque was applied to the specimens to increase I_2' while keeping I_1 constant at $8.66MN/m^2$, passion's ratio μ seems to be constant under this stress level for the experimental period of time.

2.4 Volume change

To measure the change of the compressibility function in terms of I_1 , and I_2' , the important factor in this measure is the volume change which can be measured from the pure tensile load application and the dilation where $e_2 = e_3$.

From the results of the shear compliance J and the compressibility function B one can predict the strains from equation (2.4) [2].

$$e(t) = \{ [B(I_1, I_2', t)/9] - [J(I_1, I_2', t)/6] \} I_1, I + [J(I_1, I_2', t)/2] \sigma$$
(2.4)

The change of ΔV at long time is due to the effect of the second invariant I_2' (Fig. 26 and Fig. 27).

The non-linearity at the beginning of the experimental time could be due to the first invariant I_1 , where the effect of the second invariant I_2' at a later time. This means that I_1 affect the volume at short time and I_2' at long time [9].

2- Conclusion

The effect of increasing the second invariant I_2' at constant first invariant I_1 on the apparent compressibility function *B* was to increase it by about

(25%). *B* was found to increase with time and stress and to fall slightly at a higher time scale of 10^4 second. With increasing I_1 at constant I_2' , there was no significant variation to within the scatter 12% for time of 10^4 seconds. Increasing I_2' was found to enhance the time dependent component of *B*.

The tow invariants I_1 , and I_2' showed no significant effect on the difference between apparent compressibility function ($\Delta B = B_r - B_c$) in creep and recovery.

The change in the volume ΔV at long time is attributed to the effect of the second invariant I_2' .

The first invariant I_1 could affect the non-linearity at the beginning of the experimental time, where the effect was due to I_2' at a later time. This means that I_1 affect the volume at short time and I_2' at long time .

The fractional recovery compressibility function F_B is constant (to within the scatter limit) with increasing I_1 , and keeping I_2' constant for the experimental time, the same results was found when increasing I_2' and keeping I_1 .

References

[1] Resen A. S. (England, 1988) Biaxial Creep of Plastics, PhD. Thesis, University of

Manchester Inst. of Sci. and Tech.

[2] Buckley C. P. (1987) Multiaxial nonlinear viscoelasticity of solid polymers, Polymer Eng.

Sci. Vol. 27, No. 155

[3] Sternstein, S. S. and HO, T. C. (1972) Biaxial stress relaxation in glassy polymers:

Polymethylmethacrylate, J. of Appl. Physics, 43, 4370 [4] Mallon, P. J. and Benham, P. P. (1972) Anisotropic mechanical behaviour of polymers

J. Plastics and Polymers, 40, 77

[5] Buckley, C. P., McCrum, N. G. (1974. 5.) The relation between linear and non-linear

viscoelasticity of PP, J. Mater. Sci., Vol. 9, PP. 2064-2066,

[6] Read B. E., and Dean G. D. (1984) Time-dependent deformation and craze initiation in

PMMA: Volume effects, J. Polymer, 25, 1679,

[7] Buckley, C. P. and Green, A. E. (1976) Small deformation of nonlinear viscoelastic tube:

Theory and application to Polypropylene, Phil. Trans. Roy. Soc. London, A Math. Phys.

Sci. 281, 543.

[8] Peyman Nikaeen A., Aref Samadi-Dooki B., George Z., Voyiadjis B., Pengfei Zhang A. C.,

William M., Chirdon A., Ahmed Khattab A., (2021) Effect of plastic deformation on the

nanomechanical properties of glassy polymers: An experimental study, Mechanics of

Materials 159, 103900

[9] Struik, L. C. E. (1977). Physical aging in amorphous polymers and other materials.

 $50(X), 100(\cdot), 150(\Delta), 200(\nabla), 250(\Box), 300(\diamond), (MN/m^2)^2$

215

Fig. (11) **Tog** thifts rence between creep and recovery Apparent compressibility functions B_c and B_r as a function of time at constant $I_1 = 27.32, 30.00,$ $34.467 MN/m^2$, and varying $I_2' =$ $250 (a), 300 (b), 400 (c), (MN/m^2)^2$

 $B(t) \ x \ 10^{-11} \ (m^2/N)$

Fig. (12) The diff**logn** (b) tween creep and recovery Apparent compressibility functions B_c and B_r as a function of time at constant $I_1 = 12.247 \ MN/m^2$ and varying $I_2' = 50$ (a), 100 (b), 150 (c), 200 (d) $(MN/m^2)^2$

Fig. (14) The difteence between creep and recovery Apparent compressibility functions B_c and B_r as a function of time at constant $I_1 = 21.213 \text{ MN/m}^2$ and varying $I_2' = 150 \text{ (a)}, 200 \text{ (b)}, 250 \text{ (c)}, 300 \text{ (d)} (\text{MN/m}^2)^2$

Fig. (15) Shear Compliance and Compressibility Function from tensile, lateral and shear strain

221

21.213 (·), 24.495 (\Box), (MN/m^2)

(_),____(),____(),____)