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ABSTRACT 

       Experimental work was carried out to investigate the separate roles of the hydrostatic and deviatoric components 
of stress tensor (Using the First and the second invariants I1 and I2

′). The results were expressed in term of stress 
dependent shear compliance J and apparent compressibility function B in the time temperature region of the test (up 
to 104 seconds at 30℃ the region of the α −relaxation). 
       The Compressibility Function B showed no significant change, when increasing the hydrostatic stress I1 and 
keeping the deviatoric stress I2

′ constant, and by varying I2
′ and keeping  I1 constant the change is about 10% for the 

stress combination of tension-torsion. 
         The volume was found to increase with time when increasing  I2

′ and keeping  I1 constant. 
       In the case of J and B the deviatoric stress I2

′ played the major role. All these effects could be rationalized by the 
idea of the time dependent free volume. If the free - volume increases with time by increasing I2

′ this could explain the 
difference in the effect of I1 and I2

′ on B and explain the creep less than recovery.  

     There is no difference between the compressibility function in creep and recovery (to within the experimental scatter 
of (12%)).  
     A small increase in B was detected with time, the maximum difference between the lowest and highest B is 5.9%. 
Keywords: Stress, Hydrostatic Stress, Deviatoric Stress. 

 

1. Introduction 

      Uniaxial and biaxial creep and recovery experiments 
were carried out on tubular specimens of isotropic 
PMMA to investigate the separate roles of the 
hydrostatic and deviatoric components of stress. These 
experiments were carried out using different stress 
combinations (tension-torsion) varying the first and 
second stress invariants I1  and I2

′ and extending the 
measurements to the non-linear region [1].       
       The three strains e1, e2, and γ were needed in order 
to find the shear compliance J , acompressibility function 
B. These strains were measured directly, therefor there is 
no need for any assumption. The theory of linear 
viscoelastic solids extended to take into the account the 
non-linear region. For creep experiment in which the 
stress tensor σ is applied at time equal to zero, defined 
by the mean stress σm, and the deviatoric stress tensor 
σ′ [2].  
  σm = 1 3 ⁄ trσ                                                                  (1.1) 

              σ′

~
 = σ

~
  −

 I σm
~

                                                                         

σm =  (σ11 + σ22 + σ33)/3                                           (1.2)  

 

        From equation (1.1) the deviatoric stress tensor 
 

σ′

~
 = [

(σ11 − σm) σ12 σ13

σ21 (σ22−σm) σ23

σ31 σ32 (σ33 − σm)

]              (1.3)   

       From equation (1.2) σm =  (σ11)/3        (1.4)    

Where        σ22 = σ33 = 0  

      From equations (1.2) and (1.3) the deviatoric stress 
for combined tension-torsion  

σ′

~
 = [

(2 3⁄ σ) τ 0

τ (−1 3⁄ σ) 0

0 σ32 (−1 3⁄ σ)

]            

      For an isotropic linear viscoelastic solid with the 
shear compliance function  J(t) and the compressibility 
function B(t), the deformation at t > 0 with the strain 
tensor e(t) equation (1.5) is        

e(t)
~ 

 =
J(t) 

2
σ′

~  
 +

B(t)

3
σm I

~ 
                                                                                 (1.5) 
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       For non-linear viscoelastic solid whose non-linearity 
is caused only by J(t) and B(t). This is depended upon 
the dominating stress state which is defined by its 
invariants I1, I2, and I3 equation (1.6) where  

I1 = σ11 + σ22 + σ33 

I2 = −(σ22σ33+σ11σ33 + σ11σ22) + τ12
2 + +τ13

2 + τ23
2 

I3 = (σ11σ22σ33+σ11σ33 + 2τ12τ23τ31 − σ22τ13
2 −

σ33τ12
2                            (1.6)  

It is convenient to work with the first and second stress 
invariant I1 and I2

′.  
I1 and I2

′ were chosen to describe the two-dimensional 
stress response because they are independently separate 
the hydrostatic and deviatoric stresses.  

I2
′ is analogue to I2 for deviatoric stress  σ′

~ 
 . 

Where for tension-torsion 

 (σ22 = σ33 = 0, σ23 = σ32 = 0, σ13 = σ31 = 0                                            

Assuming that the non-linear case for multiaxial creep 
response equation should then be                    

e(t)
~ 

= [J(t, I1, I2, I3) 2⁄ ]σ′

~ 
+ [B(t, I1, I2, I3) 3⁄ ]σm I

~ 
    (1.7) 

A similar equation has been suggested by Sternstein and 
Ho [3] for stress relaxation of non-linear viscoelastic 
solids. 
From the above in biaxial tension-torsion, the creep can 
be determined as follows: 
Tensile strain equation (1.8)  

e11 = [J(t, I1, I2, I3) 3⁄ ] + [B(t, I1, I2, I3) 9⁄ ] σ11             (1.8) 

Shear strain equation (1.9)                                                                                                                                               
 e12 = J(t, I1, I2, 0) σ12                                                    (1.9)  

      Mallon and Banham [4] showed that B(t) (when I2
′ =

0) is independent of I1 . Buckley and McCrum [5] 
suggested that B(t) is also independent of I2

′.  
The lateral contraction equation (1.10) is 

e22 = [− J(t, I1 , I2, I3) 3⁄ ] + [B(t, I1, I2, I3) 9⁄ ]σ        (1.10) 
Read and Dean [6] measured the tensile and lateral 
strains. The results showed that apparent tensile 
compliance increase with increasing tensile load and 
time. The lateral contraction ratio appears to be constant 
for the first 150 seconds and after that to increase with 
increasing load and time. After an increase with time 

102.5 seconds subsequently the variations in volume 
strain were small. The apparent compressibility function 
B(t) was found to occur a little with stress and decrease 
with time. Passion’s ratio was found to be 0.37 
(at t = 100sec. ).    

It is conventional to use as invariants of three-
dimensional stress tensor σo   coefficients in the 
characteristic equation. [2]  

𝐼1 = 𝑡𝑟𝜎𝑜
~ 

,   𝐼2 =  [𝑡𝑟𝜎𝑜
~ 

2 − (𝑡𝑟𝜎𝑜
~ 

)2],    𝐼3= 𝑑𝑒𝑡𝜎𝑜
~ 

                                                 

(1.11) 
The stress was composed into a hydrostatic component 
and deviatoric component 𝜎𝑜

′

~ 
 equation (1.12) 

 

 𝜎𝑜
′

~ 
= 𝜎𝑜

~ 
 − 

1

3
 𝐼

~ 
 𝑡𝑟𝜎𝑜

~ 
                                                 (1.12) 

To describe the response to two-dimensional 
proportional loading history the two invariants  𝐼1 and 
𝐼2

′  were chosen. 

Where     𝐼1 = 𝑡𝑟𝜎𝑜
~ 

 ,          𝐼2
′ =  

1

2
  𝑡𝑟(𝜎𝑜

′

~ 
)2             

         𝐼2
′ is analogous to 𝐼2, the deviatoric stress 𝜎𝑜

~ 
 and 

𝜎𝑜
′

~ 
 are stress tensors, although  𝜎𝑜

~ 
 is confined here to a 

plane stress. 𝐼1 and 𝐼2
′ independently characterize the 

hydrostatic and deviatoric components of the stress. 
          Consider the response of an isotropic linear 
viscoelastic material to proportional loading equation 
(1.13). 

  𝑒(𝑡)
~ 

= (𝐽 6⁄ − 𝐵 9⁄ )𝐼1  𝐼
~ 

+
𝐽

2
 𝜎′

~  
                        (1.13) 

Where  𝐽  is the shear compliance and 𝐵 is the 
compressibility function. 
       In the case of biaxial tension-torsion on a tubular 
specimen the stress 𝜎 and the strain 𝑒 can be written with 
respect to the axial and lateral axis in the wall of the 
tubular specimen [2]. 

        𝑒 = [
𝑒1

𝛾

2
𝛾

2
𝑒2

]           𝜎𝑜 = [
𝜎 𝜏
𝜏 𝜎

]                      (1.14) 

where  𝑒1 is the longitudinal strain, 𝑒2 is the lateral strain, 
𝛾 is the shear strain 𝜎 is the tensile stress and 𝜏 is the 
shear stress. 
From equations (1.11) to (1.13) the stress invariants can 
be written as follows  
𝐼1 =  𝜎             𝐼2

′ =  (𝜎2 3)⁄ + 𝜏2                         (1.15) 
It has been shown for the plane stress state (e.g., Tension-
torsion stress state) equation (1.13) can be applied even 
in the non-linear case [7], hence in this situation of the 
Linear strain equation (16) is used 
𝑒1( 𝐼1, 𝐼2

′, 𝑡) = [𝐽( 𝐼1, 𝐼2
′, 𝑡) 3 + 𝐵( 𝐼1, 𝐼2

′, 𝑡) 9⁄⁄ ]𝜎                                           
(1.16) 
The lateral strain equation (1.17) is  
   −𝑒2( 𝐼1 , 𝐼2

′ , 𝑡) = [𝐽( 𝐼1 , 𝐼2
′, 𝑡) 6 − 𝐵( 𝐼1 , 𝐼2

′, 𝑡) 9⁄⁄ ]𝜎 (1.17) 

and the shear strain equation (1.18) is  
  𝛾( 𝐼1, 𝐼2

′, 𝑡) = 𝐽( 𝐼1, 𝐼2
′, 𝑡) 𝜏                                        (1.18) 

      The temperature was kept constant at (30 ± 0.2℃ ) 
throughout the tests. This was chosen as the beginning 
of (𝛼 ) relaxation (primary relaxation) of this material to 
avoid aging effects and the effect of high temperature on 
creep of PMMA.      
      The change in volume was calculated using the 
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passion’s ratio 𝜇 and the tensile strain 𝑒1 from the 
experimental results in tension - torsion (eq.1.19) 
           ∆𝑉 = 𝑉𝑒1(1 − 2𝜇)                                          (1.19) 
The experimental result showed an increase in ∆𝑉 with 
time when the first invariant  𝐼1 kept constant and 
varying the second invariant 𝐼2

′ for the time scale 
104 seconds. 
 Peyman Nikaeen, et.al [8] studied the effect of the 
macro-scale mechanical deformation on the 
nanostructure of glassy polymers by scrutinizing the 
changing their nanoscale mechanical response. The 
measurement of the mechanical properties of the 

polycarbonate and poly(methyl methacrylate) 
specimens was done by using Nanoindentation 
technique, which were subjected to a prior plastic 
deformation in uniaxial tension. The measurements 
were focused on the inelastically deformed and 
unloaded specimens. The results show that the shear 
activation volume decreases with inelastic deformation.  

1- Results and Discussion 

      The Biaxial (tension-torsion) Creep tests were carried 
out to find the effect of the first invariant 𝐼1 and 𝐼2

′, and 
describe the effect of these invariants on the behavior of 
the materials. 
        These experiments were carried out by keeping the 
first invariant 𝐼1 constant and increasing  𝐼2

′. This was 
done to find the effect of increasing the second invariant 
𝐼2

′ on the tensile strain 𝑒1 and the lateral strain 𝑒2. The 
results show that with increasing the second invariants 
𝐼2

′the tensile and lateral strains were increased, and the 
effect with the second invariants 𝐼2

′ increases with 
increasing time [1].  
      The passion’s ratio 𝜇 was found to be constant with 
changing  𝐼2

′ when the first invariant 𝐼1 was small, and 

increasing with time when the first invariant 𝐼1 was 
larger.  
2.1 The effect of 𝑰𝟏  and 𝑰𝟐

′on the apparent 
compressibility function ( 𝑩) 
The effect of increasing  𝐼2

′at different constant  𝐼1 on the 
apparent compressibility function 𝐵 is shown in Figures 
(2 to 5). These figures show that with increasing of 𝐼2

′, the 
apparent compressibility function 𝐵 increases by about 
10%. The compressibility function 𝐵 was found to vary 
with time and stress but this variation is not systemic. 
(𝐵) was found to fall slightly at higher stress over the 
time scale as shown in figure (2 and 3), when (𝐼1 =

5.477𝑀𝑁/𝑚2) and (𝐼2
′ = 300(𝑀𝑁/𝑚2)2). 

Figure (6 to 10) were plotted for the apparent 
compressibility function 𝐵 versus log time for a constant 

𝐼2
′ and varying 𝐼1. These figures show no significant 

change with changing 𝐼1 for the experimental time scale 
of 104 seconds. This is true for all the experimental stress 
levels used in this work, where 𝐼2

′ changed from 
(50 𝑡𝑜 300(𝑀𝑁/𝑚2)2), and kept constant at each 𝐼2

′ level 
with increasing 𝐼1. These experiments were carried out 

on different specimens.    
       An increasing of 𝐼2

′ was found to enhance the time 
dependent component of 𝐵. The compressibility 
function 𝐵 was plotted versus log time (Fig.1), for pure 
tensile load application to the specimen. This shows an 
increase of 𝐵 with increasing the tensile load.  
2.2 The effect of 𝐼1 and 𝐼2

′ on the compressibility 

function 𝑩 in recovery 𝑩𝒓 

The difference between the compressibility function ∆𝐵 
in creep and recovery was measured using equation 2.1  
    ∆𝐵 = 𝐵𝑟 − 𝐵𝑐                                                  (2.1) 
Figures (11 to 14) show that there is no difference (to 
within the experimental scatter of 12%) between the 
compressibility function in creep and recovery;  
neither in varying 𝐼2

′ and keeping 𝐼1constant nor in 
varying 𝐼1 and keeping 𝐼2

′ for all the stress levels used in 
these tests. 
2.3 The effect of 𝐼1 and  𝐼2

′ on the compressibility 
fractional recovery 𝑭𝑩 
         The compressibility fractional recovery 𝐹𝐵 was 

measured in a similar way to the shear compliance 
fractional recover 𝐹𝐽 equation (2.2) 

       𝐹𝐵 =
𝐵𝑚𝑎𝑥 ( 𝐼1,𝐼2

′,𝑡) − 𝐵( 𝐼1,𝐼2
′,𝑡)

𝐵𝑚𝑎𝑥( 𝐼1,𝐼2
′,𝑡)

                               (2.2) 

Where 𝐵𝑚𝑎𝑥  is the maximum apparent compressibility 
function in creep, and 𝐵 is the compressibility function 
in recovery (fig. 15). 
The compressibility function fractional recovery 𝐹𝐵 
versus log reduced time (𝑡𝑅) shown in figures (16 to 19). 
These curves are for a constant 𝐼1 and increased 𝐼2

′. 
𝐼1 takes the values of (4.77, 12.247, 17.32𝑀𝑁/𝑚2) , and 
(21.213𝑀𝑁/𝑚2), and 𝐼2

′ increased from (25 𝑡𝑜 300(𝑀𝑁/

𝑚2)2). The curves show that 𝐹𝐵 is constant (to within the 
experimental scatter).  
Figures (20 to 25) are for 𝐹𝐵 at constant 𝐼2

′ and varying 
𝐼1. The fractional recovery compressibility function 𝐹𝐵 is 
constant with increasing  𝐼1 for the experimental time. 
    The effect of non-linearity could be due to 𝐼1 at the 
beginning of the experimental time, where the effect was 
due to 𝐼2

′ at a later time. This means that 𝐼1 affect the 
volume at short time and 𝐼2

′ at long time, applying this 
to the fractional recovery hypotheses it shows that 𝐼2

′ 
increases the time dependent component of the volume. 

This is entirely constant with the effect of 𝐼2
′ on the 

compressibility function 𝐵 (𝐼2
′ increasing the time 

dependent of 𝐵). Applying this effect to the free volume, 
shows that 𝐼2

′ increasing the time dependent component 
of the volume where as 𝐼1 simply affect the magnitude of 
the volume. 𝐼2

′ increases the time dependent of 𝐵.  
            The increase of the tensile stress shows an 
increase in the compressibility function 𝐵 (Fig. 1).  The 
compressibility function 𝐵 at constant tensile stress (𝐼1 is 
constant) and varying 𝐼2

′ show a small increase with 
time. This increase drops down at the end of the 
experimental time (Fig. 2 to 5). The measurement of B is 
subjected to experimental scatter of 18.6%. The 
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difference between the lowest and highest values is 
18.2% . Measurement pf PMMA was also done by Read 
and Dean [6] . They found an increase in 𝐵 with an 
increase in the tensile stress, and after 104 seconds 𝐵 start 
to increase as the time increased. The dependent of 𝐵 on 
the tensile stress and time has an important meaning for 
the possible structural change and mechanical aging 
effects generated by applied stress. Read and Dean [6] 
attribute the increase of the volume to the hydrostatic 
component of the stress, when a tensile stress in a linear 
range was applied to a polymer for a short time 
compared with 𝛼 − 𝑟𝑒𝑡𝑎𝑟𝑑𝑎𝑡𝑖𝑜𝑛 time.  

Increasing 𝐼2
′ and keeping 𝐼1 constant (Fig. 2 to 5) shows 

that the increase of 𝐼2
′ increase the compressibility 

function B by 21% (Fig. 2). A small increase in B was 
detected with time, the maximum difference between 
the lowest and highest B is 5.9% . 
The increase of 𝐼1 and keeping 𝐼2

′ constant shows 
insignificant change in 𝐵 (Fig. 6 to 10). The increase of 𝐵 
for anew specimen was mor than would be expected 
from increasing the stress only (Fig. 1 to 5).   
Figures (11 to 14) shows no significant difference (to 
within the experimental scatter) between the 
compressibility function and recovery 
compliance 𝐵 𝑎𝑛𝑑 𝐵𝑟  equation (2.3) 

𝐵𝑟 − 𝐵 = 0                                                              (2.3) 

              A similar increase was not detected when torque 
was applied to the specimens to increase 𝐼2

′ while 
keeping 𝐼1 constant at 8.66𝑀𝑁/𝑚2, passion’s ratio 𝜇 
seems to be constant under this stress level for the 
experimental period of time.  
2.4 Volume change 
         To measure the change of the compressibility 
function in terms of 𝐼1, and 𝐼2

′, the important factor in 
this measure is the volume change which can be 
measured from the pure tensile load application and the 
dilation where 𝑒2 = 𝑒3.  
From the results of the shear compliance 𝐽 and the 
compressibility function 𝐵 one can predict the strains 
from equation (2.4) [2]. 
 
𝑒(𝑡) = {[𝐵( 𝐼1, 𝐼2

′, 𝑡) 9⁄ ] − [𝐽( 𝐼1, 𝐼2
′, 𝑡) 6⁄ ]}𝐼1, 𝐼 +

[𝐽( 𝐼1, 𝐼2
′, 𝑡) 2⁄ ]𝜎                 (2.4)  

      The change of ∆𝑉 at long time is due to the effect of 
the second invariant 𝐼2

′     (Fig. 26 and Fig. 27). 
         The non-linearity at the beginning of the 
experimental time could be due to the first invariant 𝐼1, 
where the effect of the second invariant  𝐼2

′ at a later time. 
This means that 𝐼1 affect the volume at short time and 𝐼2

′ 

at long time [9] . 
2- Conclusion 

          The effect of increasing the second invariant 𝐼2
′ at 

constant first invariant 𝐼1 on the apparent 
compressibility function 𝐵 was to increase it by about 

(25%).     𝐵 was found to increase with time and stress 
and to fall slightly at a higher time scale of 104 second. 
With increasing 𝐼1 at constant 𝐼2

′, there was no 
significant variation to within the scatter 12% for time of 
104 seconds. Increasing 𝐼2

′ was found to enhance the 
time dependent component of 𝐵.  
The tow invariants 𝐼1, and 𝐼2

′ showed no significant 
effect on the difference between apparent 
compressibility function (∆𝐵 = 𝐵𝑟 − 𝐵𝑐 ) in creep and 
recovery. 
The change in the volume ∆𝑉 at long time is attributed 
to the effect of the second invariant 𝐼2

′.  

The first invariant 𝐼1 could affect the non-linearity at the 
beginning of the experimental time, where the effect was 
due to 𝐼2

′ at a later time. This means that 𝐼1 affect the 
volume at short time and 𝐼2

′ at long time . 
The fractional recovery compressibility function 𝐹𝐵 is 
constant (to within the scatter limit) with increasing 𝐼1 , 
and keeping 𝐼2

′ constant for the experimental time, the 
same results was found when increasing 𝐼2

′and keeping 
𝐼1. 
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Appendix 

 
Fig. (1) Apparent compressibility function B as a function of time at 

constant stress 𝜎 = 5.477(+), 8.66(∗), 12.247 (𝑥), 17.32 (∙), 
21.213(∆), 24.2495 (𝛻), 27.386 (□), 30.00(◊),𝑀𝑁/𝑚2  

 

 
 

Fig. (2) Apparent compressibility function B as a function of time at 
constant 𝐼1 = 5.477𝑀𝑁/𝑚2, 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼2

′ = 10(+), 25(∗), 
50(𝑋), 100(∙), 150(∆), 200 (𝛻), 250 (□),300 ( ◊ ), (𝑀𝑁/𝑚2)2 

log 𝑡 (𝑠) 

log 𝑡 (𝑠) 

𝐵
( 𝑡

)  
𝑥

 1
0

−
1

0
 (

𝑚
2

𝑁
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⁄
 

 
𝐵

( 𝑡
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𝑥
 1

0
−

1
0
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𝑚

2
𝑁

)
⁄
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Fig. (3) Apparent compressibility function B as a function of time at 

constant 𝐼1 = 12.247𝑀𝑁/𝑚2 , 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼2
′ = 50(+), 100(∗), 

150(𝑋), 200(∙), 250(∆), 300 (𝛻) (𝑀𝑁/𝑚2)2 
 

 
Fig. (4) Apparent compressibility function B as a function of time at 

constant 𝐼1 = 17.23𝑀𝑁/𝑚2, 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼2
′ = 100(+), 150(∗), 

200(𝑋), 250(∙), (𝑀𝑁/𝑚2)2 
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Fig. (5) Apparent compressibility function B as a function of time at 

Constant  𝐼1 = 21.213 𝑀𝑁/𝑚2 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼2
′ = 150 (+), 200 (∗), 

250 (𝑋), 300 (∙), (𝑀𝑁/𝑚2) 2 
 

 
Fig. (6) Apparent compressibility function B as a function of time at  

                                  𝐼2
′ = 100 (𝑀𝑁/𝑚2) 2  𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼1 = 5.477 (●), 8.66 (◯), 

12.247(∆), 17.32(▽), 𝑀𝑁/𝑚2 
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Fig. (7) Apparent compressibility function B as a function of time at  

                                   constant 𝐼2
′ = 150 (𝑀𝑁/𝑚2) 2  𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼1 = 5.477 (𝑋), 

12.247 (◯), 17.32(∆), 21.213(▽), 𝑀𝑁/𝑚2 
 
 

 
Fig. (8) Apparent compressibility function B as a function of time at constant  

                                     𝐼2
′ = 200 (𝑀𝑁/𝑚2) 2  𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼1 = 8.66 (◯), 12.247 (∆), 17.32(▽), 

21.213(□), 24.495(●) 𝑀𝑁/𝑚2  
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Fig. (9) Apparent compressibility function B as a function of time at constant  

                                     𝐼2
′ = 250 (𝑀𝑁/𝑚2) 2  𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼1 = 8.66 (◯), 12.247 (∆), 17.32(𝑋), 

21.213(▽), 𝑀𝑁/𝑚2  
 

Fig. (10) Apparent compressibility function B as a function of time at  
                                    constant 𝐼2

′ = 300 (𝑀𝑁/𝑚2) 2  𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼1 = 12.247 (◯), 
21.213(𝑋), 30.00(∆), 𝑀𝑁/𝑚2  
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Fig. (11) The difference between creep                  Fig. (12) The difference between creep 

and recovery Apparent compressibility                  and recovery Apparent compressibility 
functions 𝐵𝑐  and 𝐵𝑟  as a function of                       functions 𝐵𝑐  and 𝐵𝑟  as a function of 
time at constant 𝐼1 = 27.32, 30.00,                         time at constant 𝐼1 = 12.247 𝑀𝑁/𝑚2  

34.467 𝑀𝑁/𝑚2, and varying 𝐼2
′ =                         and varying 𝐼2

′ = 50 (𝑎), 100 (𝑏), 
250 (𝑎), 300 (𝑏), 400 (𝑐),  (𝑀𝑁/𝑚2)2                  150 (𝑐), 200 (𝑑) (𝑀𝑁/𝑚2)2 
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Fig. (13) The difference between creep and          Fig. (14) The difference between creep and 

recovery Apparent compressibility        recovery Apparent compressibility 
functions 𝐵𝑐  and 𝐵𝑟  as a function of      functions 𝐵𝑐  and 𝐵𝑟  as a function of 
time at constant 𝐼1 = 17.32 𝑀𝑁/𝑚2    time at constant 𝐼1 = 21.213 𝑀𝑁/𝑚2  
and varying 𝐼2

′ = 100 (𝑎), 150 (𝑏),     and varying 𝐼2
′ = 150 (𝑎), 200 (𝑏), 

200 (𝑐), 250 (𝑑) (𝑀𝑁/𝑚2)2                250 (𝑐), 300 (𝑑) (𝑀𝑁/𝑚2)2 
 

 
Fig. (15) Shear Compliance and Compressibility 

Function from tensile, lateral and shear strain 
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Fig. (16) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅 time at constant 𝐼1 = 5.477𝑀𝑁/𝑚2 
and varying 𝐼2

′ = 25(+), 50 (∗), 100 (𝛻), 150 (𝑋), 200 (▲), 
250 (□) (𝑀𝑁/𝑚2 )2. 

 

 
 
 

Fig. (17) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅time at constant 𝐼1 = 12.247𝑀𝑁/𝑚2 
and varying 𝐼2

′ = 50(+), 100 (∗), 150 (𝛻), 200 (𝑋), 250 (▲), 
300 (∙) (𝑀𝑁/𝑚2 )2 

log 𝑡𝑅 (𝑠) 
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Fig. (18) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅time at constant 𝐼1 = 17.32𝑀𝑁/𝑚2 

and varying 𝐼2
′ = 100(+), 150 (∗), 200 (𝛻), 250 (▲), (𝑀𝑁/𝑚2 )2 

 

 
 

Fig. (19) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅time at constant 𝐼1 = 21.213𝑀𝑁/𝑚2 

and varying 𝐼2
′ = 150(+), 200 (∗), 250 (𝛻), 300 (▲), (𝑀𝑁/𝑚2 )2 
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Fig. (20) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅  time at constant 𝐼2

′ = 25 (𝑀𝑁/𝑚2  )2 
and varying 𝐼1 = 5.477 (∗), 8.66 ( 𝛻), (𝑀𝑁/𝑚2) 

 

 
 

Fig. (21) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅  time at constant 𝐼2

′ = 50 (𝑀𝑁/𝑚2  )2 
and varying 𝐼1 = 5.477 (∗) , 8.66 ( 𝛻), 12.247 ( ▲), (𝑀𝑁/𝑚2) 
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Fig. (22) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅  time at constant 𝐼2

′ = 100 (𝑀𝑁/𝑚2 )2 
and varying 𝐼1 = 5.477 (∗), 8.66 ( 𝛻), 12.247 (▲), 17.32 (𝑋), 

(𝑀𝑁/𝑚2) 
 

 
 

Fig. (23) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅  time at constant 𝐼2

′ = 200 (𝑀𝑁/𝑚2 )2 
and varying 𝐼1 = 5.477(∗), 8.66 (▲), 12.247 ( 𝛻), 17.32 (𝑋), 

21.213 (∙), 24.495 (□), (𝑀𝑁/𝑚2) 
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Fig. (24) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅  time at constant 𝐼2

′ = 250 (𝑀𝑁/𝑚2 )2 
and varying 𝐼1 = 8.66 (∗), 12.247 (▲), 21.213 (𝑋), 30.00 (∙), 

(𝑀𝑁/𝑚2) 
 

 

Fig. (25) Apparent compressibility function Fractional recovery 𝐹𝐵 as a 
function of reduced 𝑡𝑅  time at constant 𝐼2

′ = 300 (𝑀𝑁/𝑚2 )2 
and varying 𝐼1 = 5.477 (∗), 12.247 (▲), 21.213 ( 𝑋), 24.5 (𝛻), 

(𝑀𝑁/𝑚2). 
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Fig. (26) Volume change ∆B as a function of time at Constant 
𝐼1 = 12.247 𝑀𝑁/𝑚2 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼2

′ = 50 ( ◊ ) 100 (●), 
150 (□), 200 (∆), 250 (○) (𝑀𝑁/𝑚2) 2 

 
 

 
 

Fig. (27) Volume change ∆B as a function of time at Constant 
𝐼1 = 17.23 𝑀𝑁/𝑚2 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝐼2

′ = 100 (●), 150 (□), 
200 (∆), 250 (○) (𝑀𝑁/𝑚2) 2 
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