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ABSTRACT 
Metaheuristic algorithms are a collection of sophisticated techniques that mimic natural phenomena and the rational behavior 

of socially intelligent living organisms like insects and animals. These techniques are employed in the fields of computer science 

and engineering to address various optimization problems. In this paper, the vibrating particles system(VPS) which is a recently 

developed metaheuristic algorithm. Generally, an under-damped single degree of freedom (SDOF) free vibration oscillates and 

slowly comes into a resting or equilibrium position, and this is the inspiration idea of VPS. The tensions and compressions 

spring design problematic, which is a famous constrained based optimizations problem in engineering fields have been used 

to evaluate VPS algorithm. The experimental result section shows the result of solving the mentioned problem by VPS with 

various value for variables.  
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1. Introduction

Fundamental frequencies of structures are significant, 

accessible properties that allow the designer to avoid 

the risky resonance phenomenon. These characteristics 

cannot be ignored when dynamic excitations are 

crucial. The search spaces typically contain several 

local minima and demand for a capable optimization 

technique to be effectively addressed Because 

frequency responses are extremely explicit, non-

convex, and non-linear with according to the cross-

section zone in bar elements [1]. Since the 1980s, 

structural optimization has been researched [2]and has 

been approached using meta-heuristic algorithms and 

mathematical programming. 

Constrained optimization is a set of numerical 

methods used to solve issues in which the goal is to 

minimize overall cost based on inputs with unfulfilled 

restrictions or limits.  

Nature-inspired meta-heuristic algorithms have 

grown in popularity since the 1970s. These algorithms 

consist of a set of algorithmic concepts which can be 

used to determine heuristic techniques that are applied 

to a variety of different problems. The possibility of 

quickly solving difficult combinatorial optimization 

problems with high quality increases significantly 

with the introduction of meta-heuristics. Meta-

heuristic algorithms can be consider the best 

techniques for solving constrained based optimization 

problems [3].  

A well-known engineering optimization problem 

called the tension/compression spring design problem 

belongs to Single-Objective Constrained Optimization 

Problems, has been used to evaluate the effectiveness 

of recently developed metaheuristics. 

In this paper, the vibrating particles system (VPS), a 

recently discovered optimization algorithm, is 

proposed to converge the a solution to the 

tension/compression spring design problem (TCSD) 

to an optimal solution. 

In the experimental solution, various value have been 

tested as an initial value for VPS attributes. After 

finding the best values for variable of VPS, The 

minimum, maximum and mean result of the penalized 

objectives functions (𝑃𝐹𝑖𝑡) calculated. 

2. Literature Review  
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Design optimization can be defined as the process of 

finding the optimal parameters, which yield maximum 

or minimum value of an objective function, subject to 

certain set of specified requirements called constraints. 

Such problem of optimization is known as constrained 

optimization problems or nonlinear programming 

problems. Most design optimization problems in 

structural engineering are highly nonlinear, involving 

mixed (discrete and continuous) design variables 

under complex constraints, which cannot be solved by 

traditional calculus - based methods and enumerative 

strategies. Although these numerical optimization 

methods provide a useful strategy to obtain the global 

optimum (or near to it) for simple and ideal models but 

they have some disadvantages to handle engineering 

problems (i.e. complex derivatives, sensitivity to initial 

values, and the large amount of enumeration memory 

required). Many real-world engineering optimization 

problems are highly complex in nature and quite 

difficult to solve using these methods. In order to solve 

these type of problems, several heuristic, global 

optimization as well as meta-heuristic methods exist in 

the literature [4].  

The computational drawbacks of existing numerical 

methods have forced researchers to rely on heuristic 

algorithms . Heuristic methods are quite suitable and 

powerful for obtaining the solution of optimization 

problems. Although these are approximate methods 

(i.e. their solution are good, but not provably optimal), 

they do not require the derivatives of the objective 

function and constraints. Also, they use probabilistic 

transition rules instead of deterministic rules. The 

heuristics technique includes genetic algorithms (GA), 

simulated annealing (SA), tabu search (TS), Harmony 

search (HS), Artificial Bee Colony (ABC), Cat Swarm 

Optimization (CSO), Ant Colony Optimization (ACO), 

Fish Swarm Algorithm (FSA), Lion Algorithm (LA), 

Elephant Search Algorithm (ESA), Grey Wolf 

Optimization (GWO), Particle Swarm Optimization 

(PSO), and other optimization algorithms [5].  

Since the 1980s, many researches adapted 

metaheuristics algorithms for solving constrained-

based problems. In 1986 Deb and Goyal presented a 

combined genetic search technique (GeneAS) which 

combined binary and real-coded GAs to handle mixed 

variables [6]. After that in 2002 Coello [7] applied 

genetic algorithms to solve these mixed-integer 

engineering design optimization problems. Coelho 

and Montes [8] proposed a dominance-based selection 

scheme to incorporate constraints into the fitness 

function of a genetic algorithm used for global 

optimization. In 2005 Tsai [9] proposed a novel method 

to solve nonlinear fractional programming problems 

occurring in engineering design and management. In 

2007 Hsu and Liu [10] developed an optimization 

engine for engineering design optimization problems 

with monotonicity and implicit constraints. In this, 

monotonicity of the design variables and activities of 

the constraints determined by the theory of 

monotonicity analysis are modeled in the fuzzy 

proportional-derivative controller optimization 

engine using generic fuzzy rules. Again in 2007 

Montes et al. [11] presented a modified version of the 

differential evolution algorithm to solve engineering 

design problems in which a criteria based on feasibility 

and a diversity mechanism are used to maintain 

infeasible solution. In 2008 Zhang et al. [12] proposed 

an algorithm for constrained optimization problem 

using differential evolution with dynamic stochastic 

selection. In 2008 Cagnina et al. [13] introduced a 

simple constraints particle swarm optimization (SiC-

PSO) algorithm to solve constrained engineering 

optimization problems. Gandomi et al. [14] used a 

cuckoo search and Firefly algorithm for solving mixed 

continuous/discrete structural optimization 

problems. 

Tension/compression string design problem. Is an 

engineering constrained-based problem described by 

Arora [15] and it consists of minimizing the weight of 

a tension/compression spring (as shown in Fig. 1) 
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subject to constraints on minimum deflection, shear 

stress, surge frequency, limits on outside diameter and 

on design variables. 

In 1982 Tension/compression string design problem 

has been solved by Belegundu [16] using eight 

different mathematical optimization techniques. In 

1989 Arora [15] solved this problem using a numerical 

optimization technique called a constraint correction at 

the constant cost. Coello [7] and Coello and Montes [8] 

solved this problem using GA-based method. Montes 

and Coello used various evolution strategies to solve 

this problem. Additionally, in 2003 He and Wang [17] 

utilized a co-evolutionary particle swarm optimization 

(CPSO). In 2014 [18] Harish solved this problem by 

Artificial Bee Colony Algorithm. 

3. OPTIMIZATION 

Optimization occurs naturally and, obviously, plays a 

significant role in human existence. In the actual 

world, every decision is an attempt to handle a 

situation that is ideal or nearly optimal. The question 

is if there is a better answer from the one have 

discovered by this paper. In theory, any optimization 

task can be viewed as a decision-making problem. 

Commonly, optimizations refers to finding the best 

method for enhancing the functionality of the system 

in question. 

According to Beightler [1], optimizations represents a 

three-step process that entails modelling the problem 

based on the problem's knowledge, selecting 

effectiveness measures or the target function, and 

putting the optimization method or theory into 

practice. The development of computers, which 

started in the middle of the 1940s, has undoubtedly 

benefited the field of optimization in general and the 

last step in particular. 

In recent decades, significant advancements in 

computer performance have led to the capacity for 

modeling, analyzing, and designing real-world 

problems as precisely as seems in a variety of 

disciplines. Almost all real-world issues can be 

categorized as complex optimization issues. 

The increased interests in optimizing the real-world 

optimizations issues by  inspiring natural 

phenomenon  consume major advantages for various 

fields, including engineering, and computer science 

[5]. 

Since 2000, several practical optimization issues have 

been stated, modeled, and optimized, yielding optimal 

solutions. During this time, a large amount of 

advanced literature was developed in fields such 

parallel metaheuristics, constrained optimization, of 

large-scale metaheuristics optimization, synergy 

metaheuristics, and cloud computing metaheuristics. 

Generally, developing new methods for achieving 

more efficient tradeoff among explorations and 

exploitations, had an increasing attention during this 

period, and as a result, many new nature-based 

metaheuristics were developed such as Artificial Bee 

Colony (ABC) [19], Cat Swarm Optimization (CSO) 

[20], teaching learning-based optimization (TLBO) 

[21], Ant Colony Optimization (ACO) [22], Charged 

System Search (CSS) [23], Fish Swarm Algorithm (FSA) 

[24], Big Bang Big Crunch (BB-BC) [25], Lion 

Algorithm (LA) [26], Krill Herd (KH) [27], Elephant 

Search Algorithm (ESA) [28], Grey Wolf Optimization 

(GWO) [29], Colliding Bodies Optimization (CBO) 

[30], Cuckoo Search (CS) [31], Dolphin Echolocation 

(DE) [32], Particle Swarm Optimization (PSO) [33], 

Vibrating Particles System (VPS) [34], and other 

optimization algorithms [35]. 

4. CONSTRAINED OPTIMIZATION PROBLEM 

Constrained optimization is a set of numerical 

methods used to solve issues in which the goal is to 

minimize overall cost based on inputs with unfulfilled 

restrictions or limits. The constrained optimization 

strategy used is determined by the type of problem 

and function to be solved. In a broader sense, such 

methods are connected to constraint fulfillment 

problems, in which the user must satisfy a set of given 

constraints. In contrast, constrained optimization 
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problems require the user to reduce the entire cost of 

the unfulfilled restrictions. 

Metaheuristic Algorithms are the best technique to 

discover a solution that produces the best possible 

performance of the problem under the given 

conditions. 

The performance of the problem is defined by an 

objective function or a set of objective functions. In this 

sense, constrained optimization issues are divided into 

two types:  

• Single-Objectives Constrained Optimizations 

Problems (SOCOP). 

• Multi-Objectives Constrained Optimizations 

Problems (MOCOP). 

These functions can either be maximally or minimally 

optimum. 

In this paper, a Vibrating Particles System (VPS) 

metaheuristic algorithm is used to solve a known 

Single-Objective Constrained Optimization Problems 

called tension/compression spring design problem. 

4.1 Constraints handling 

When applying metaheuristics based approaches to 

the optimization of engineering design problems, a 

key issue is how the algorithm handles constraints 

relating to the problem. The literature proposes several 

methods for constraint handling in evolutionary 

algorithms and swarm intelligence approaches 

[8].These methods can be grouped into categories, 

such as methods that preserve solution feasibility, 

penalty-based methods, methods that clearly 

distinguish between feasible and unfeasible solutions, 

and hybrid methods [36]. It is usual to handle 

constraints in optimization methods based on the 

concept of penalty functions (which penalize 

unfeasible solutions) [36].That is, one attempts to solve 

an unconstrained minimization problem in the search 

space S using a modified fitness function, such as 

Eq(1): 

 
(1) 

where penalty(x) is zero if no constraint is violated, 

and is positive otherwise. Usually, the penalty 

function is based on a distance measure to the nearest 

solution in the feasible region F or on the effort to 

repair the solution. The methodology proposed for 

constraint handling is divided into two steps. The first 

step aims at finding solutions for the decision variables 

that lie within user-defined upper (ub) and lower (lb) 

bounds, that is, x ⋴[Lb, Ub]. Whenever a lower bound 

or an upper bound constraints is not satisfied, a repair 

rule is applied, according to Eqs. (2) and (3), 

respectively: 

 

(2) 

(3) 

where rand[0,1] is a uniformly distributed random 

value between 0 and 1. In the second step decision 

variables are considered inequalities 𝑔(𝑥) ≤ 0. In this 

work a metaheuristic algorithm called Vibrating 

Particles System (VPS) is used for minimizing a 

constrained based engineering problem called 

tension/compression spring design problem. 

4.2 tension/compression spring design problem 

Vibration is a mechanical phenomenon that causes 

oscillations around an equilibrium state. It is one of 

well-known Single-Objective Constrained 

Optimization Problems (SOCOP) in the engineering 

fields. Vibrations are classified into two types: (1) free 

vibration and (2) forced vibration [3]. 

An example of a continuous constrained problem is 

the tension/compression spring design problem 

(TCSD) in Fig. 1. Assuming a constant 

tension/compression load, the challenge is to reduce a 

coil spring's volume V. There are three design 

variables that make up the problem. They are: 

• 𝑃 = 𝑥1 ∈ [2, 15] 

• 𝐷 = 𝑥2 ∈ [0.25, 1.3] 

• 𝑑 = 𝑥3 ∈ [0.05, 2]. 
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Where, P represents the number of spring's active 

coils, D represents the diameter of the winding, and d 

represents the diameter of the wire. which are 

employed to reduce weight while meeting restrictions 

on sheared stress, flow frequencies, and minimum 

deflections [3]. 

 

FIGURE 1: SCHEMATIC OF THE TENSION/COMPRESSION 

SPRING 

The TCSD problem is expressed mathematically by the 

cost functions Eq(4), that is required to be minimized 

with constraints g1,g2,g3, and g4 in Eq(5): 

𝑓(𝑥) = (𝑋3 + 2)𝑋2𝑋1
2 (4) 

The design space is constrained by the 

values𝑋1, 𝑋2, 𝑎𝑛𝑑 𝑋3. The range of designing-variables 

between Lower-Boundary (𝐿𝑏) =  [0.05, 0.25 ,2] and 

Upper-Boundary (𝑈𝑏)  =  [2 ,1.3, 15]. Using the 

descriptions for the modelling of a COP and penalty 

provided in Eq (1). Four constraints are about the shear 

stress, surge frequency, and the minimum deflection. 

One objective function, three designing variables, and 

four constraints are shown in Eq(5) [37]. 

 

𝑔1(𝑥) = 1 −
𝑋2

3𝑋3

72785𝑋1
2        ≤ 0 

𝑔2(𝑥) =
4𝑋2

2 − 𝑋1𝑋2

12566(𝑋2𝑋1
3) − 𝑋1

4 +
1

5108𝑋1
2 − 1 ≤ 0 

𝑔3(𝑥) = 1 −
140.45𝑋1

𝑋2
2𝑋3

       ≤ 0 

𝑔4(𝑥) =
𝑋1 + 𝑋2

1.5
− 1       ≤ 0 

 

(5) 

The tension/compression spring design problem has 

been chosen as a well-known engineering 

optimization problem to test the effectiveness of 

recently developed metaheuristics. In this paper the 

mentioned problem has been used for evaluating the a 

metaheuristic based algorithm called Vibrating 

Particles System (VPS).  

5. VIBRATING PARTICLES SYSTEM (VPS) 

In 2017 Kaveh and Ilchi Ghazaan created the Vibrating 

Particles System (VPS) method [38], an evolutionary 

metaheuristic search technique that stimulate the free 

vibration of single degree of freedom systems with 

viscous dampening. VPS has been utilized to solve 

various structural optimization issues, and the results 

prove its viability in terms of convergence and 

accuracy [34]. 

VPS, Starts with a random collection of initial solutions 

and considers them as free vibrated single degree of 

freedom systems with vibration, similar to previous 

population-based metaheuristics. Any free vibrating 

system oscillates and come back to its equilibriums 

point with a specific formulation when subjected to 

dampening conditions. This is easily demonstrated 

using differential equations. As the optimization 

process moves forward, VPS improves the quality of 

the particles periodically by oscillating them forward 

towards the equilibrium position by using a 

combination of randomness and exploitation of the 

values obtained [19]. 

Consider that each particle's equilibrium position is 

made up of three positions: the best/highest 

position(HP), a good particle (GP), and a bad particle 

(BP). Thus, the essence of VPS is based on three 

fundamental concepts: 

• self-adaptations: particle travels toward HP . 

• cooperation’s: GP and BP, are chosen among 

the particle themselves, can affect the new 

position of particles. 

• Competitions: GP influency becomes higher 

than that of BP. 

Generally VPS corrects the position of particles exiting 

the search space using a memory based on the 

harmony search technique. 

6. Vibrating Particles System Frameworks 
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This section presents the ideas behind the VPS 

algorithm, its pseudocode, and the associated 

flowchart. 

6.1 VPS Formulation  

The formula employed to characterize the free 

vibration of an under-damped single degree of 

freedom (SDOF) system as follows in Eq(6). 

𝑋(𝑡) = 𝜌𝑒−𝜀𝜔𝑛𝑡sin (𝜔𝐷𝑡 + 𝜃) (6) 

where 𝜌 and 𝜃 are constants that are typically derived 

from the vibration's beginning circumstances, 𝜔𝑛 is the 

vibration's natural circular frequency. 𝜔𝐷 and 𝜀 are 

respectively, the damped natural frequency and the 

damping ratio that are shown in Fig 2 , and can be 

calculated by Eq(7) and Eq(8). 

𝜔𝐷 = 𝜔𝑛√1 − 𝜀2 (7) 

𝜀 =
𝑐

2𝑚𝜔𝑛

 (8) 

All particles' initial positions in the search space are 

generated at random by Eq(9): 

𝑋𝑗
𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (9) 

Where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and the 

maximum allowable variables vectors. And rand is a 

random number uniformly distributed in the range of 

[0, 1]. 

 

FIGURE 2. VIBRATING MOTION OF UNDER-DAMPED 

SYSTEM. 

As is evident, an under-damping SDOFs free vibrate 

and slowly comes into a its equilibrium point. And this 

vibrating characteristics is the idea which the VPS is 

inspires. 

similar to other metaheuristics algorithms, VPS begins 

with a set of intrant solutions that are randomly 

produced inside the search space. nVP stands for the 

number of vibrated-particle. The appropriate 

objective-functions (𝐹𝑖𝑡) and its penalized-functions 

(𝑃𝐹𝑖𝑡) are generated once the items are evaluated [34]. 

VPS updates HP, GP, and BP with various weights 

(𝜔1 , 𝜔2,and 𝜔3) for each particle. After the population 

is sorted in ascending order by the values of the 

penalized objective function.For each particle, GP and 

BP are randomly selected from the first and second 

halves of the population, with the exception of itself. 

The damping level has a significant impact on 

vibration. The amplitude of a free damped vibration 

decreases as the damping level increases. To mimic 

this behavior in the VPS, the following descending 

function (D) relative to number of repetitions is 

calculated by Eq(10): 

𝐷 = (
𝑁𝐼𝑇𝑠

𝑚𝑎𝑥𝑁𝐼𝑇𝑠
)

𝛼

 (10) 

𝑚𝑎𝑥𝑁𝐼𝑇𝑠 =
maxNFEs

𝑛𝑉𝑃
 (11) 

where NITs is the algorithm's current iteration 

number, maxNITs is the maximum number of 

algorithm iterations chosen as the halting criterion, 

maxNFEs is the maximum number of function 

evaluation, and is α is a constant It is recommended to 

choose a value of 0.05 [1]. 

According to the above notions, the particles are 

updated by the formula Eq(12,13,14) , which will be 

referred to as the free vibration formula hereafter: 

𝑛𝑒𝑤𝑉𝑃𝑖 = 𝜔1(𝐷 ∗ 𝐴 ∗ 𝑟𝑎𝑛𝑑1 + 𝐻𝑃)

+ 𝜔2(𝐷 ∗ 𝐴 ∗ 𝑟𝑎𝑛𝑑2 + 𝐺𝑃𝑖)

+ 𝜔3(𝐷 ∗ 𝐴 ∗ 𝑟𝑎𝑛𝑑3 + 𝐵𝑃𝑖) 

(12) 

𝐴 = 𝜔1(𝐻𝑃 − 𝑉𝑃𝑖) + 𝜔2(𝐺𝑃𝑖 − 𝑉𝑃𝑖)

+ 𝜔3(𝐵𝑃𝑖 − 𝑉𝑃𝑖) 
(13) 

𝜔1 + 𝜔2 + 𝜔3 = 1 (14) 

where VPi and newVPi are the ith particle's current 

and updated locations, respectively; 𝜔1, 𝜔2 , and  𝜔3  are 

different constant weight used for comparing the 

qualified relevance of the ith particle's good particle, 

bad particle, and algorithm's best-so-far particle; and 
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rand represents a random value uniformly generated 

in [0 − 1] range. 

In Eq(12 and 13), A and D effects on algorithm process  

similar to the effect of 𝜌 and 𝑒−𝜀𝜔𝑛𝑡 in Eq(6). The value 

of  sin (𝜔𝐷 𝑡 + 𝜃) is measured as unity. A parameter 𝑝 

between (0, 1) is initialized, and it specifies the 

influence of BP will/willn’t considers when position 

are updating. p and random are compared as shown in 

Eq(15): 

If P<rand➔ 𝜔3 = 0, 𝜔2 = 1 − 𝜔1 (15) 

VPS takes into account three key concepts: self-

adaptation, cooperation, and competition. As a particle 

travels toward HP, self-adaptation occurs. In VPS Any 

particle has the potential to impact the new position of 

the other, cooperation between particles is provided. 

Because of the p parameter, the influence of the GP 

(good particle) is greater than that of the BP (bad 

particle); hence, competition is created [1]. 

To handle a particle that has violated the variables' 

bounds, VPS employs a harmony search-based 

handling strategy. In tis paper, the nVPs number of the 

highest  vibrating particle, as well as their 

corresponding objective function (𝐹𝑖𝑡𝑀) and its 

penalized (𝑃𝐹𝑖𝑡 − 𝑀) values, are saved in a vibrating-

particle memory (𝑉𝑃 − 𝑀). To achieve this goal, 

vibrating particle memory used to store numbers as 

equal to 𝑛𝑉𝑃. 

Considering memory and utilizing it in various 

techniques can improve metaheuristics efficiency 

without raising computing cost. It can be emphasized 

that VPS only used it to regenerate particles that have 

exited the search space. This method allows any 

element of the solution set that violates the boundaries 

to be renewed from the 𝑉𝑃 − 𝑀 and can be determined 

by Eq(16). 

(16) 

where "w.p." stands for "with the probability," and 

𝑉𝑃(𝑖, 𝑗) is the jth element of the 𝑖𝑡ℎ vibrated particle, 

𝑣𝑝𝑚𝑐𝑟 is the vibrating-particles memory with a rate 

within [0,1] and determines the possibility of selecting 

a value from the historic values saved in 𝑉𝑃 − 𝑀, and 

(1 − 𝑣𝑝𝑚𝑐𝑟) determines the probability randomly 

selecting a values in the possible range. After selecting 

a value from 𝑉𝑃 − 𝑀, the pitch-adjusting process 

begins. The value (1 − 𝑝𝑎𝑟) specifies the neglecting 

rate, and 𝑝𝑎𝑟 specifies the rate of selecting a value from 

the particles bordering the best vibrating particle or 

those preserved in memory. Random generating step 

𝑠𝑖𝑧𝑒 (±𝑏𝑤 ∗ 𝑟𝑎𝑛𝑑) can be used for continuous search 

space to choose a value from particles stored in 

memory or those closest to the best vibrating particle 

[20]. 

6.2 VPS pseudocode 

Figure 4, illustrate the VPS pseudocode. 

 
Figure 3: VPS Pseudocode 

6.3 VPS flowchart  

Figure4, shows the flowchart how the VPS work. 
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FIGURE 4: VPS FLOWCHART 

 

7. EXPERIMENTAL RESULTS  

In this section the results of applying Vibrating 

Particles System (VPS) algorithm for solving 

tension/compression spring design problem (TCSD) 

are illustrated. 

Generally, VPS depend on various constant variable 

that directly affect the convergence of the results to the 

optimal value. This paper testes various values for the 

VPS variables (ε, α, nVP, p) to achieve VPS best 

efficiency.    

Fig. 5., shows of how damping ratio (ε) affects 

vibratory motion of Free vibrating systems based on 

Eq (3, 4, and 5). 

 

FIGURE 3: FREE VIBRATING SYSTEMS WITH SIX LEVELS OF Ε 

(A)5%, (B)10%, (C)15%, (D)30%, (E)50%,AND (F)70% 

 

In Fig 5, six different value for Damping  ratio ε={5%, 

10%, 15%, 30%, 50%, and 70%} are respectively tested 

on a free vibrating system. The results shows that as ε 

increase the damping of system decreases. 

In VPS, the attribute α that effects on the value of 

descending function (D) in Eq(7). Figure 6, shows the 

minimum, maximum, and mean result of 𝑃𝐹𝑖𝑡 based 

on six different values of α ={0.01, 0.05, 0.1, 0.15, 0.2, 

and 0.25} respectively. It can be seen that as the value 

of α increase the PFit minimum, maximum, and the 

mean results increases, that mean the results are in 

divergence, and vice versa the decrease in α value 

outcomes a convergence in PFit results. 

Table 1, shows the minimum values of (minPFit, 

maxPFit, and meanPFit) that are resulted by VPS 

effected by different value of α. 

TABLE 1:EFFECT OF (Α)ON MINIMUM OF VPS PFIT RESULTS 

α MIN(minPFit) MIN(maxPFit) MIN(meanPFit) 

0.01 0.012739 169012.4 32668.91 

0.05 0.012688 994955.5 248757.6 
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0.1 0.012675 4161466 315621 

0.15 0.012671 6794985 1616036 

0.2 0.01269 5111698 680912.7 

0.25 0.012682 7003061 1209539 

Opt. 
result 

α =0.15 α =0.01 α =0.1 

 

 

FIGURE 4:EFFECT OF Α ON CONVERGENT HISTORIES 

OF THE MIN, MAX, AND MEAN FOR VPS 

In Fig 8, six different number of Vibrating Particles  

nVP={10, 20, 30, 40, 50, and 60} are respectively tested 

on a free vibrating system. The results shows that 

number of VPS algorithm iterations decrease by 

increasing the nVP number depending on Eq(8).   

Fig. 7. shows the minimum, maximum, and mean 

result of 𝑃𝐹𝑖𝑡 based on six different values of of nPVs 

={10, 20, 30, 40, 50, and 60} respectively. It can be seen 

that when the PFit result are slightly different when 

nVP equal to 10 or 20 and obtains its best convergency 

results, but in case of nVP=10 VPS have a high number 

of algorithm iteration and high number of Function 

Evaluation, thus it consume much time to get the 

result. That’s why, this paper uses nVP=20, that 

resulting PFit almost equal to the results  of VPS when 

nVP=10 in less time. 

Table 2, shows the minimum values of (minPFit, 

maxPFit, and meanPFit) that are resulted by VPS 

effected by different value of nVP. 

TABLE 2: EFFECT OF (NVP)ON MINIMUM OF VPS PFIT 

RESULTS 

nVPs  MIN(minPFit) MIN(maxPFit) MIN(meanPFit) 

10 0.012669 0.012669 0.012669 

20 0.012688 994955.5 248757.6 

30 0.012674 29090088 3991628 

40 0.012692 19171707 1886142 

50 0.012711 32968057 4582201 

60 0.012694 1.03E+08 12480661 

Opt. 

result 

nVP=10 nVP=10 nVP=10 

 

 

FIGURE 5: EFFECT OF NVPS ON CONVERGENCE HISTORIES 

OF THE MIN, MAX, AND MEAN VALUE  OF VPS 

 

In Fig. 8. six different values have been tested for the 

Probability Variable  P={0.01, 0.05, 0.09, 0.1, 0.5, and 

0.9} that belongs to range [0-1] are respectively tested 

on a free vibrating system. The results shows that VPS 

algorithm results PFit are in best convergency when 
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P=0.05.   

Table 3, shows the minimum values of (minPFit, 

maxPFit, and meanPFit) that are resulted by VPS 

effected by different value of p. 

TABLE 3:EFFECT OF (P)ON MINIMUM OF VPS PFIT RESULTS 

p MIN(minPFit) MIN(maxPFit) MIN(meanPFit) 

0.01 0.012684 1537569 294571.7 

0.05 0.01267 309300.2 63109.82 

0.09 0.012687 1331415 231487.7 

0.1 0.012688 994955.5 248757.6 

0.5 0.012681 6589368 1106855 

0.9 0.012671 1800824 309956.8 

Opt. result p =0.05 α =0.09 α =0.05 

 

 

FIGURE 6: EFFECT OF P ON CONVERGENCE HISTORIES OF 

THE MIN, MAX, AND MEAN VALUE  OF VPS 

Finally, depending on the previous results, the paper 

initialize variable to: 

• maxNEFs=20000 

• p=0.05 

• nVP=20 

• α=0.15 

 

FIGURE 7: VPS RESULTS WITH P=0.05, NVP=20, A=0.15  IN 

1000  ITERATION 

 

TABLE 4: VPS MIN(MINPFIT) MIN(MAXPFIT)

 MIN(MEANPFIT) 

VPS MIN(minP

Fit) 

MIN(maxP

Fit) 

MIN(mean

PFit) 

maxNEFs=2

0000 

p=0.05 

nVP=20 

α=0.15 

0.012673 861911.2 163049.8 

 

Table 5,  compares the experimental results with the 

results of previous studies. It clearly shows that VPS 

result in better solution than 5 of the previous studies 

TABLE 5: EXPERIMENTAL RESULT COMPARISON 

 

8. CONCLUSION 

Metaheuristic Algorithms are a set of algorithms that 

inspired from a natural phenomenon, it widely used to 

solve single objective functions. This paper uses 

Vibrating Particles System (VPS) metaheuristic 

algorithm to solve an engineering single objective 

Constrained Optimization Problems called 

tension/compression spring design problem. 
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VPS depends on various variable to converge the 

result to its optimal solution. In this paper different 

values are tested to conclude the best value for each 

attribute. Then finally all variable are reset to  the 

obtained best value and the final result found that 

result in best (min, max, mean) PFit convergent value. 
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