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ABSTRACT 

The main problem facing autonomous robots is to navigate in an environment with the ability to determine its location and 
simultaneously build a map, SLAM technique can formulate this requirement efficiently. In this paper Filter-based, Graph-
based, and AI-based Visual-SLAM techniques have been reviewed. The review shows that the first method suffers from high 
computations when the number of landmarks increases. The Graph-based algorithms are exposed to drift-error problems 
which cause a delocalization and require optimization. The AI-based vSLAM has the advantage of not-having complicated 
mathematical models in the algorithm, and it shows an efficient performance in various environments. The reviewed 
algorithms utilize different cameras including mono, stereo, and RGB-D cameras. The low-cost RGB-D cameras encourage 
implementation in modern autonomous robots. This work introduces a scientific-based overview of vSLAM to the reader, by 
explaining all phases of SLAM, the state-of-the-art algorithms, highlighting the strengths and weaknesses of each paradigm.   
 

KEY WORDS: VSLAM, Localization, and Mapping, EKF-Based, Graph-Based, and AI-Based vSLAM. 
 

1. Introduction

Robotics can be defined as the field that manipulates 

the surrounding environment physically via 

mechanical devices controlled through a computer. 

At the beginning of the 20th century, the term ‘robot’ 

was presented as science fiction in a play in 1917. 

Several years later it became true and started to take 

significant attention from both the scientific and 

industrial sectors. Currently, it has an essential role in 

the industry and draws a lot of attention from 

researchers in academic institutions. Today, robots 

cover a wide range of devices and systems, starting 

from the simplest manipulator that does basic tasks, 

extending to the most complex autonomous robots 

(Thrun, et al., 2005; Hockstein, et al., 2007).  

The studies related to robots are not totally new 

science, but they can be considered a combination of 

various engineering domains such as; mechanical 

engineering which deals with moving parts, and 

electrical engineering, which is responsible for 

powering the robot and sensing the environment. 

Then, the computer engineering side is the brain that 

analyzes the data and makes decisions that control 

the robot (Wallén, 2008). The early robots were fully 

controlled and programmed to perform specifically 

dedicated tasks. However, in the following decade, 

fundamental steps were taken toward building a 

robot that can analyze data and make decisions based 

on that led to the born of autonomous robots 

(Bensalem, et al., 2008). 

An autonomous robot is defined as a robot that can 

do a specific task(s) based on the decisions it takes 

without the intervention of humans (Khairuddin, et 

al., 2015). The process of ‘self-controlling’ the robot is 

complex and faces several challenges. In a Mobile 

Robot case, the autonomous robot may move in an 

uneven environment with different obstacles that it 

should avoid colliding with. The challenge is more 

complex if the robot needs to move within an 

unknown environment without having any previous 

information. This means that it should be able to 

know its location as well as build its own map that 

will be used to navigate the area, in addition to 

https://doi.org/10.25007/ajnu.v12n3a1500


Academic Journal of Nawroz University (AJNU), Vol.12, No.3, 2023                                               

214 

 

obstacle avoidance task (Thrun, et al., 2005; Siegwart 

and Nourbakhsh, 2004). Figure (1) shows the block 

diagram of a mobile self-exploring robot process 

steps. 

 

 

 

  

Figure (1) Block diagram of autonomous robot 

 

For a self-exploring robot, it’s crucial to ‘know’ its 

location and build an environment map accordingly. 

In order to build a map, the robot needs to identify its 

current location. However, the robot needs a valid 

map its surrounding to relatively identify its location; 

for new environment, this could lead to the dilemma 

of ‘egg or chicken first’ (Birk and Pfingsthorn, 2016). 

The mentioned development takes some time and a 

lot of effort to resolve this problem. Several 

researchers studied this issue and tried to find a 

solution for this issue. The real solution for the ‘map 

or location’ dilemma was presented by Leonard and 

Durrant-Whyte (Leonard and Durrant-Whyte, 1991)  

and finalized in (Smith and Cheeseman, 1986), where 

they build an algorithm that allows the robot to know 

its location and at the same time creates a map for the 

environment that the robot work in it. Their work 

was based on the method presented in (Durrant-

Whyte, et al., 1995) and utilized the Extended Kalman 

Filter (EKF) method. This method can be considered 

as the first Simultaneous Localization and Mapping 

(SLAM) algorithm that solves the problem of building 

a map and defining robot location (Alsadik and  

Karam, 2021). 

After solving the SLAM problem, different 

improvements and new algorithms were proposed to 

overcome some difficulties related to SLAM, such as 

complexity; certainty problem; analysis and action 

time required; accuracy; and so on. From a data-

analysis point of view, SLAM can be categorized into 

three main types: Filter-based, Smoothing technique-

based, and AI-based SLAM (Saeedi, et al., 2016). Each 

one of these methods has its pros and cons; these 

methods will be explained in some detail in section II. 

Also, there is another classification for SLAM based 

on map representation, such as feature-based, view-

based, polygon-based, and appearances-based SLAM. 

Both classification types are known, but the first 

taxonomy is mainly used (Correll, 2016). 

Section II explains the SLAM methodology whereas 

section III presents the implementation of the SLAM 

technique with examples of each method. The 

following section introduces the vSLAM and shows 

some of its virtues and characteristics. While section 

V presents the latest works on vSLAM. Finally, in 

section VI, this work’s conclusion is discussed. 

 

2. Simultaneous Localization and Mapping 

(SLAM) 

SLAM can be defined as the ability of the mobile 

robot to determine its location and at the same time, 

gradually, build the map of the operation area. There 

are different types of SLAM systems, but all of them 

share the same general structure that consists of two 

essential parts: the Front End and the Back End. The 

system collects the data via its sensor(s) in the front-

end phase, extracting features and tracking duly. As 

the robot moves, more data are collected, and the 

successive incoming data (then extracted features 

from it) are gathered and combined with its 

associates, this process is known as Data association 

(Alsadik and  Karam, 2021; Correll, 2016). The 

technique that deals with this issue is explained in 

detail in the coming sections.   
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Figure (2) The general form of the SLAM technique 

 

The back-end refers to the step of building the map 

and pose estimation where these processes are based 

on complex mathematical methods such as filtering, 

like Extended Kalman Filter (EKF) and particle filter, 

or it is based on smoothing technique like Graph-

based SLAM optimization. Recently, the SLAM 

paradigm has been built by utilizing Artificial 

Intelligence (AI). The SLAM process mainly consists 

of estimation and update strides (Jiménez, et al., 

2016). Figure (2) shows the flow chart for the SLAM 

techniques, both front-end and back-end.  

High certainty must be available for SLAM to localize 

the robot accurately and to build the map. In contrast, 

to real-life case, the robot faces high uncertainty in the 

environment and with almost no knowledge about its 

position at the beginning of its operation. To 

overcome this issue, the robot deploys probabilistic 

tools to reduce the uncertainty after each iteration 

(movement) as it sees new landmarks (Mur-Artal, et 

al., 2015). The models that deal with the uncertainty 

problem, in specific, and the SLAM technique, in 

general, are explained in detail in the next section. 

3. Implementing SLAM 

As aforementioned, from a broad point of view, there 

are two types of SLAM techniques: filtering-based 

and smoothing-based. The most popular one is the 

filtering techniques used in conjunction with the 

Extended Kalman Filter (EKF) (Sorenson, 1966) and 

particle filters (Arulampalam, et al., 2002). On the 

other hand, the most common smoothing approach is 

the graph-based SLAM (Grisetti, et al., 2011). Each 

one of the mentioned methods has its advantages and 

disadvantages that will be discussed. 

Suppose that, there is a robot that moves in an 

unknown environment that can observe the 

landmarks via a sensor attached to the robot. The 

following parameters are considered: 

𝑥𝑘: A vector refers to the robot’s pose (location and 

orientation). 

𝑢𝑘: Represent the control vector deployed at the time 

(k-1) to move the robot to state 𝑥𝑘. 

𝑚𝑖: A vector that indicates the location of landmark 

(i). 

start 

The robot sensing the environment via (Camera, Lidar, IMU, GNSS, 
etc.) sensor(s) 

Optimizing (like 
loop closure) 

Front End  
Feature detection, extraction, and tracking 

SLAM approach 
 (EKF, Particle filter, or 
Graphic based SLAM) 

Back End 
Estimating the map & Estimating the 
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𝑧𝑖,𝑘: The observation measured via robot of the 

landmark (i) location at the time (k).  

At the beginning, robot controls (U1:T = 

{u1,u2,u3,…..,uT}) and sensor observations (Z1:T = 

{z1,z2,z3,….,zT}) are known. While the map of the 

environment (m) and robot’s path (X0:T= 

{x0,x1,x2,…..,xT}) should be determined. For the 

probabilistic SLAM, the probability distribution 

needs to be calculated for the robot’s pose and the 

map gave the control, the observation, and the initial 

state of the robot.  

P(𝑥𝑘;m | 𝑧0:𝑘, 𝑢0:𝑘,  𝑥0)          (1) 

The SLAM problem can be solved in iterative ways, 

where the calculation needs that (x_k) and (z_k) are 

known to explain the effect of actual observations and 

incoming control. The probability for the robot to 

sense (perform an observation) is described by the 

model: 

P(𝑧𝑘 | 𝑥𝑘, m)                            (2) 

The robot’s motion can be defined as a probability 

distribution given the previous state and the 

command control only, independent of the map and 

sensor observations. 

P(𝑥𝑘 | 𝑥𝑘−1  𝑢𝑘)                         (3) 

Solving equation (1) leads to the two steps for solving 

the SLAM problem: the prediction step and the 

correction step. The first step is estimated as: 

P(𝑥𝑘,m| 𝑍0:𝑘−1, 𝑈0:𝑘 , 𝑥0) 

=∫ 𝑃(𝑥𝑘  | 𝑥𝑘−1, 𝑢𝑘) * P(𝑥𝑘−1,m| 𝑍0:𝑘−1, 𝑈0:𝑘 , 𝑥0) 

𝑑𝑥𝑘−1             (4) 

While the second step is in the form of: 

P(𝑥𝑘,m| 𝑍0:𝑘, 𝑈0:𝑘 , 𝑥0) 

= 
P(𝑧𝑘 | 𝑥𝑘 ,m) 𝑃(𝑥𝑘 ,𝑚| 𝑍0:𝑘−1 ,𝑈0:𝑘, 𝑥0) 

P(𝑧𝑘 |𝑍0:𝑘−1 , 𝑈0:𝑘 )
                  (5) 

The last two equations show the main iterative 

procedure required to determine the robot’s location 

and the environment’s map by utilizing the sensed 

observations (z_(0:k)) and input control (u_(0:k)). To 

solve equations (4) and (5) efficiently, a suitable 

representation for observation equation (eq. 2) and 

motion equation (eq. 3) are required. In the literature, 

several approaches are proposed; the Extended 

Kalman Filter (EKF), Graph-Based SLAM, and AI-

based SLAM. The mathematical bases for each 

method are explained in detail together with relevant 

SLAM implementation examples. 

 

3.1 Extended Kalman Filter (EKF) SLAM 

The first solution for the SLAM problem was based 

on the Kalman filter technique (Leonard and H. F. 

Durrant-Whyte, 1991). The Kalman filter is a 

recursive Bayes filter that can be split into two steps; 

the prediction step is then followed by the update 

step (Durrant-Whyte, et al., 1995). The Inertial 

Measurement Unit (IMU) is used in the first step to 

predicting the robot’s motion. On the other hand, the 

data collected by the camera, a LiDAR, or other 

sensors are used (after extracting the important 

features) in the prediction step (Mohamed, et al., 

2019; Karam, et al., 2019).  

The EKF SLAM consists of 5 phases: 

➢ State prediction: Apply the control and estimate 

the new position of the robot given the control. 

➢ Measurement prediction: What is expected to be 

observed given the best estimate for the robot. 

➢ Measurement: Take the actual measures. 

➢ Data association: Which landmark does the 

current observation, actually, corresponds to, then 

calculate the difference (deviation) between 

expected observation and obtained ones. 

➢ Update phase: Updates the matrices and repeats 

the process. 

These steps are repeated as a cycle to determine the 
final location and the environment map. The process 
starts by representing the motion of the robot; from 
equation (3), we get: 

𝑥𝑘 = f (𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘              (6) 

Where: f(x) represents the kinematic model of the 

robot, and (w_k) is a Gaussian zero-mean motion 

turmoil additive, which has a covariance (Q_k). Then 

and from equation (2), the observation model can be 

described in the form of: 

z(k) = h (𝑥𝑘, m) + 𝑣𝑘                    (7) 

Where: h(x) represents the observation’s geometry, 
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and (v_k) is a Gaussian uncorrelated error of the 

observation that has a zero mean and covariance 

(R_k). The mean can be calculated by utilizing these 

definitions and applying the standard EKF (Maybeck, 

et al., 1979). The resulting equation will be: 

(
𝑥̂𝑘|𝑘

𝑚̂𝑘
) = 𝐸[  | 𝑍0:𝑘𝑚

𝑥𝑘 ]                                         (8) 

And the covariance matrix will be: 

𝑃𝑘|𝑘 =  [
𝑃𝑥𝑥 𝑃𝑥𝑚

𝑃𝑥𝑚
𝑇 𝑃𝑚𝑚

]
𝑘|𝑘

                                           (9) 

The prediction step can be described in the form of: 

𝑋̂𝑘|𝑘−1 = 𝑓(𝑋̂𝑘−1|𝑘−1 , 𝑈𝑘)                                    (10) 

𝑃𝑥𝑥,𝑘|𝑘−1 =  ▼ f 𝑃𝑥𝑥,𝑘−1|𝑘−1  ▼ f 𝑇 +  𝑄𝑘               (11) 

Where: ▼f is the Jacobian matrix of (f). Applying the 

last two equations will compute the parameters of the 

prediction step, then the robot will update these 

parameters by using: 

(
𝑥̂𝑘|𝑘

𝑚̂𝑘
) =  (

𝑥̂𝑘|𝑘−1

𝑚̂𝑘−1
) +  𝑊𝑘 [𝑧(𝑘) − ℎ(𝑥̂𝑘|𝑘−1 , 𝑚̂𝑘−1)] 

𝑃𝑘|𝑘 =  𝑃𝑘|𝑘−1 −  𝑊𝑘 𝑆𝑘 𝑊𝑘
𝑇 

Where: 

 𝑆𝑘 = ▼ h 𝑃𝑘|𝑘−1  ▼ ℎ𝑇 +  𝑅𝑘 

 𝑆𝑘 =  𝑃𝑘|𝑘−1  ▼ ℎ𝑇  𝑆𝑘
−1 

The results is fed back as (x_(k-1)) to the first step, the 

process is repeated, all over again, until the robot 

navigates the whole environment and reaches the 

beginning ‘point’. Then ‘the loop closure’ technique 

may be required to complete the map building 

process. 

The EKF SLAM technique suffers from some 

shortcomings that make it unsuitable in some 

applications. The high computation burden is clear, 

where it needs to update all covariance matrices each 

time it makes a new observation (Whyte and Bailey, 

2006).  Furthermore, the EKF SLAM deploys a 

linearized scheme of nonlinear models for both 

observation and motion, which could lead to 

conflicting results that affects the whole SLAM 

process (Julier and Uhlmann, 2001). Figure (3) 

demonstrates the entire procedure of EKF SLAM. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3) The steps of EKF SLAM 

 

Figure (3) shows that the EKF SLAM scheme is an 

online SLAM technique, where only the next state is 

estimated, not the whole trajectory (Alsadik and 

Karam, 2021). 

 

 

3.2  Graph-Based SLAM 

The basic form of the graph-based SLAM was first 

presented in 1997 by Lu and Milios (Lu and MILIOS, 

1997).  It took many years before it became popular 

due to its complexity in solving the error-

minimization issue via traditional models. This 
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method is known as a Full SLAM technique, as it 

estimates the whole trajectory of the mobile robot 

based on the available measurements. The graph-

based SLAM scheme is, generally, based on a least-

square error minimization (Dellaert and Kaess, 2006).  

The beginning of solving the SLAM problem via 

graph-based technique is building a graph consisting 

of different connected nodes. These nodes are 

referred to as the sensed (measured) landmarks or 

robot poses, while the edge between two nodes 

represents sensor measurement which constrains 

every two related poses. It’s worth mentioning that 

the constraints may be antithetical due to the noise 

that affects the observations. After building the graph, 

the challenge is to find the optimal configuration of 

the nodes that give the best harmony with the 

available measurements. This means that a large error 

minimization issue needs to be solved. It’s clear now 

that the graph-based SLAM consists of two phases: 

the graph construction phase, then the graph 

optimization phase (Grisetti, et al., 2011; Olson, et al., 

2006).  

To make the process clearer, let x= [ 𝑥1,  𝑥2, .....,  𝑥𝑇]𝑇 

refer to a vector of parameters, where  𝑥𝑖 represents 

the pose of node (i), and  𝑧𝑖,𝑗 describe the mean of the 

measurements between node (i) and node (j). Also, 

 𝑧̂𝑖,𝑗  ( 𝑥𝑖,  𝑥𝑗  ) is describing the prediction 

measurements between node (i) and node (j). Now, 

assume 𝑒𝑖,𝑗( 𝑥𝑖 , 𝑥𝑗) is a function that determines the 

variation between the actual observation sensed by 

the robot and the prediction observation. This means 

that: 

𝑒𝑖,𝑗( 𝑥𝑖  , 𝑥𝑗) =   𝑧𝑖,𝑗 −   𝑧̂𝑖,𝑗  ( 𝑥𝑖,  𝑥𝑗  )                 (12) 

 

The log-likelihood 𝑙𝑖,𝑗 of the the  𝑧𝑖,𝑗 is given by: 

 

𝑙𝑖,𝑗  ∝  [ 𝑧𝑖,𝑗 −   𝑧̂𝑖,𝑗  ( 𝑥𝑖 ,  𝑥𝑗  )]
𝑇

 𝛺𝑖,𝑗   [ 𝑧𝑖,𝑗 −

  𝑧̂𝑖,𝑗  ( 𝑥𝑖 ,  𝑥𝑗  )]             (13) 

 

Where 𝛺𝑖,𝑗 represent the information matrix of the 

measurements between node (i) and node (j). Figure 

(4) shows the parameters that be utilized to define the 

edge of a graph. 

 

 

 

 

 

 

 

Figure (4): Aspects of the graphs’ edge 

 

Equation (13) indicates that a configuration of the 

nodes that minimizes the negative log-likelihood F(x) 

for all observations can be obtained by using the 

maximizing likelihood scheme. 

𝐹(𝑥) = ∑  𝑒𝑖,𝑗
𝑇   𝛺𝑖,𝑗   𝑒𝑖,𝑗

 

<𝑖,𝑗> ∈ 𝐶

                       (14) 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹(𝑥)                             (15) 

Assume that the initial guess pose (x ̆) is known, then 

equation (15) can be solved numerically via standers 

optimization techniques like the Gauss-Newton 

algorithm. From Taylor expansion of the error 

function (equation 12), the solution is approximated 

around the initial guess (x ̆). 

𝑒𝑖,𝑗( 𝑥̆𝑖 + ∆𝑥𝑖  , 𝑥̆𝑗 +  ∆𝑥𝑗)

=  𝑒𝑖,𝑗(𝑥̆ +  ∆𝑥)                       (16) 

                                                  
≈  𝑒𝑖,𝑗 +  𝐽𝑖,𝑗  ∆𝑥                      (17)  

Where, 𝐽𝑖,𝑗 represent the Jacobian of 𝑒𝑖,𝑗(x) vector 

calculated in 𝑥̆. The expression showed in equation 

(14) can be written after substituting equation (17) in 

the error term. 

𝐹𝑖,𝑗(𝑥̆ +  ∆𝑥) =  𝑒𝑖,𝑗(𝑥̆ +  ∆𝑥)𝑇  𝛺𝑖,𝑗  𝑒𝑖,𝑗(𝑥̆ +

 ∆𝑥)              (18) 

≈  (𝑒𝑖,𝑗 +  𝐽𝑖,𝑗  ∆𝑥)  𝛺𝑖,𝑗   (𝑒𝑖,𝑗 +  𝐽𝑖,𝑗  ∆𝑥)                               

(19) 

=  𝑒𝑖,𝑗
𝑇   𝛺𝑖,𝑗   𝑒𝑖,𝑗 + 2𝑒𝑖,𝑗

𝑇   𝛺𝑖,𝑗  𝐽𝑖,𝑗  ∆𝑥

+ ∆𝑥𝑇  𝐽𝑖,𝑗
𝑇𝛺𝑖,𝑗  𝐽𝑖,𝑗  ∆𝑥           (20) 

=  𝑐𝑖,𝑗 + 2𝑏𝑖,𝑗  ∆𝑥 +  ∆𝑥𝑇𝐻𝑖,𝑗∆𝑥                 (21) 

With the previous approximation, equation (14) can 

𝑒𝑖,𝑗( 𝑥𝑖 , 𝑥𝑗) 

 𝑧̂𝑖,𝑗 

𝑥𝑖 
𝑥𝑗 

𝑧𝑖.𝑗 
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be written as: 

𝐹(𝑥̆ +  ∆𝑥) =  ∑  𝐹𝑖,𝑗(𝑥̆ +  ∆𝑥)

 

<𝑖,𝑗> ∈ 𝐶

                (22) 

≈  ∑ 𝑐𝑖,𝑗 + 2𝑏𝑖,𝑗  ∆𝑥 +  ∆𝑥𝑇𝐻𝑖,𝑗∆𝑥               (23)

 

<𝑖,𝑗> ∈ 𝐶

 

= 𝑐 + 2𝑏 ∆𝑥 +  ∆𝑥𝑇𝐻∆𝑥                                          (24) 

Equation (24) can be seen as a quadratic form which 

can be minimized in (∆𝑥) through solving the linear 

system: 

𝐻 ∆𝑥∗ =  −𝑏                                                 (25) 

Where (H) is the information matrix as it was 

acquired through projecting the error via the 

Jacobians. The linear system is shown in equation (25) 

can be solved via sparse Cholesky factorization 

(Grisetti, et al., 2011; Davis, 2006). Finally, the initial 

guess is added to the calculated increments to 

determine the linearized solution: 

𝑥∗  =  𝑥̆ +  ∆𝑥                                         (26) 

The well-known Gauss-Newton iterative algorithm is 

used to perform the linearization in equation (24), 

finding the results from equation (25), and update 

step in equation (26). 

After showing the details of both types, it’s clear that 

these methods have complex computations that 

require high computational devices such as parallel 

processing devices or multi-core CPUs. This is 

considered a shortcoming in the robotics field, as hese 

devices are expensive, and most microcomputers do 

not support such high-performance equipment. That 

will affect calculation time and the accuracy of the 

SLAM (MathWorks, 2021). 

3.3 AI-Based SLAM 

In the last few years, Artificial Intelligence (AI) has 

been used to solve the full SLAM problems to replace 

the conventional odometry paradigm. At the 

beginning of applying deep learning in solving the 

SLAM problem, it was focused on localization only 

via visual odometry, without considering the 

mapping issue. Then it was developed to solve the 

full SLAM problem. The main benefit of utilizing AI 

in SLAM is preserving the system’s high performance 

in complex environments and reducing the 

percentage of the wrong estimation in visual SLAM 

(Khairuddin, et al., 2015; Alsadik and S. Karam, 2021). 

AI-based visual SLAM can extract the inter-frame 

pose of two successive captured images from a 

mobile robot. Also, AI-based SLAM can efficiently 

estimate the rotation and translation of the camera 

(six degrees of freedom 6DoF), and it can predict the 

depth distance of the objects in an image captured by 

a single camera. Both Supervised and Unsupervised 

methods are used in the SLAM problem for the mono 

camera, RGB-D camera, and stereo cameras based 

robots (Khairuddin, et al., 2015; Saeedi,et, al., 2016). 

Table (1) shows a general comparison among the 

mentioned three ways, indicating the virtues and 

short-comes of each type. 

 

Table (1): Different SLAM method comparison 

4. Visual Simultaneously Localization and 
Mapping (vSLAM) 

The visual SLAM system refers to the mobile robot 

that uses an optical sensor (camera) to sense the 

environment, and the incoming data for the SLAM 

# Method Explanation Pros Cons 

1 
EKF-Based 

SLAM 

Utilizing the idea of the 
Kalman filter to solve the 

SLAM problem. 

• Good performance if features 
are distinct. 

• Efficient online and full SLAM. 

• Parametrization is not required. 

• Unable to identify the absence of the 
feature. 

• The processing time will 
quadratically increase as a new 
feature is added to the state space. 

2 
Graph-
Based 
SLAM 

The smoothing paradigm is 
utilized in map and 

trajectory estimation. 

• Complete trajectory is updated. 

• Appropriate for large-scale 
environments 

• Created map needs to be adjusted. 

• Need high computation cost. 

3 
AI-Based 

SLAM 
Based on artificial 

intelligence 

• Mathematical models were not 
required. 

• Efficient performance. 

• Need parameter tuning and training. 

• Time-consuming during the training 
process. 
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technology (the input data) is the taken images 

(Alsadik and S. Karam, 2021). There are different 

types of visual-based SLAM that have a variety of 

characteristics related to each class. For instance, the 

Feature-based vSLAM, the Direct vSLAM, and the 

RGB-D camera vSLAM scheme (Taketomi et al., 

2017).  

One of the Feature-based vSLAM techniques is 

MonoSLAM, presented by Davison et al. in 2003 

(Davison, 2003). They used the EKF paradigm to 

localize a robot and build a 3D map using a single 

camera with a 6 Degree of freedom (DoF) attached to 

the robot. On the other hand, the DTAM scheme was 

proposed by (Newcombe et al., 2011) as a realization 

of the Direct vSLAM method. At the same time, the 

RGB-D-based vSLAM robots use (usually) one 

camera that provides information of the fourth matrix 

(the depth matrix D) to estimate the distance of the 

near obstacles. But, this type uses techniques and 

algorithms different from Feature-based vSLAM, 

which will be clear in the next section (Taketomi et al., 

2017). 

Overall, the vSLAM faces more technical difficulties 

than other input sensors (such as 360° laser sensor) 

because of the limited field of view and higher 

computational cost required, making it slower. In 

addition, the vSLAM is sensitive to the variance in the 

light in the operation environment, which may affect 

the robot’s performance accuracy in the case of 

significant illuminance change. Nevertheless, the 

vSLAM technique is preferred to be used due to its 

low cost, and this technique is also required in 

applications that need passive sensing (Alsadik and S. 

Karam, 2021; Muhammed, et al., 2009).   

 

5. RELATED WORKS 
Since the first SLAM algorithm was presented, 

several researchers have tried to improve the 

standards paradigm and propose new and more 

efficient algorithms. After showing the idea of the 

vSLAM and explaining the mathematics behind it, 

some works related to this topic will now be 

displayed. Nevertheless, the strengths and 

weaknesses of each proposed method is discussed 

with summaries in table (2). 

(Jajulwar and Deshmukh, 2013) proposed an 

algorithm that tries to improve the performance of 

standard EKF SLAM by using two encoders and an 

image correlation method. The system has three 

phases: capturing the images; calculating robot 

location via the two encoders; and utilizing the image 

correlation paradigm to implement the map used in 

pose estimation, and combining all that via 

distribution filter to reduce the noise and complete 

the SLAM operation. The authors claimed that their 

algorithm improves the overall performance of robot 

navigation tasks. 

(Makhubela et al., 2019) presented a framework for 

implementing vSLAM to solve the environment’s 

light intensity issue by using an image filtering 

algorithm. The proposed scheme consists of five 

layers: Capturing the images; Pre-processing; 

Applying a Light Filtering Algorithm; positioning the 

robot and building the map; and navigating the robot. 

The image filtering reduces the effect of light intensity 

noise coming from the input image and allows the 

robot to operate in noisy environments. The proposed 

framework is built over the EKF SLAM for 

localization and mapping, jointly, with the A* 

algorithm to support robot’s navigation. Simulated 

results showed that this paradigm reduced the Root 

Mean Squared Error (RMSE) to 0.13, and the robot 

could navigate in a noisy workplace. 

(Dib et al., 2014) built a new algorithm for the vSLAM 

technique. The paradigm utilized the Chamfer 

distance approach to estimate the pose and used the 

occupancy grid to help in creating the map. The 

proposed method did deploy feature matching but, it 

minimizes the space between the occupancy grid and 

the feature points via distance map. This means that 
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this approach overcomes the high computation issue 

of feature matching and the wrong matching problem 

that impacts the motion accuracy. The presented 

algorithm is designed, mainly, for the RGB-D camera; 

nevertheless, due to the use of the occupancy grid, 

this method can be deployed for other sensor types as 

well, such as telemeter sensors.  

(Benavidez et al., 2014) introduced in the same year a 

scheme that also tries to reduce the memory 

requirement and computation time in vSLAM by 

avoiding feature matching. To achieve these goals, 

the proposed algorithm deploys the rg-Chromaticity 

paradigm, which depends on the RGB concentrations 

for the feature detection step. Then the extracted 

features will be matched with the available dataset 

before it goes to the parallel processing system that 

utilizes a voting mechanism for matching. 

Experiments results show that the proposed model 

can identify the matching for a cropped image of size 

equal to ¼ of the original image size, which means a 

reduction in storing space reaches 75% of the original 

size. The smaller image and dataset size lead to faster 

matching and drop in the required time. 

(Alismail, et al., 2016) worked on improving the 

Bundle Adjustment (BA) to improve the accuracy in 

the vSLAM application. The presented paradigm was 

based on maximizing the photometric consistency 

instead of minimizing the reprojection error via 

tracked feature to compute the optimal parameters. 

Results show an increase in navigation accuracy 

through minimizing photometric error via different 

scenes, compared to the results obtained from 

minimizing the reprojection error. The presented 

model is correspondence’s independent, which makes 

it applicable in any non-vanishing gradient pixel 

image, and it is appropriate for both; indoor and 

outdoor environments. 

(Artal, et al., 2015) merged several techniques to build 

a novel feature-based monocular vSLAM algorithm 

named ORB-SLAM. The proposed system consists of 

Place recognition, loop closing via scale-aware, and 

utilizing the co-visibility data for large operation 

environments. The main idea behind the ORB SLAM 

is that the feature used for loop closing and place 

recognition to determine localization are the same 

features used by the tracking and mapping technique. 

Experimental results showed that the ROB SLAM 

could operate in a large environment in real-time and 

perform a real-time loop closing via pose graph 

optimization. The results, also, shows the ability of 

the system to automatically and robustly complete 

the initialization process.   

(Artal, et al. 2017) introduced ORB-SLAM2, the 

improved version of the previously presented ORB-

SLAM. The main update is that the new version can 

use not only the monocular camera but also supports 

stereo and RGB-D cameras. The proposed system is a 

feature-based algorithm, where it will pre-process the 

incoming data (input images) to extract the features 

related to the prominent key-point places. Then, the 

input images will be deleted, and the model will 

utilize the extracted features for the remaining 

operations. That is why the proposed system is 

independent of the input vision sensor type. The 

ORB-SLAM2 as a feature-based method showed 

better results than a Direct mode and required less 

computation cost. Nevertheless, the proposed 

algorithm has a lightweight localization model that 

provides a robust localization with zero drift in 

known places. 

(Campos, et al., 2021) investigated ORB-SLAM, ORB-

SLAM2, and ORBSLAM Visual-Inertial to build a new 

system named ORB-SLAM3. The presented system 

was the first system capable of taking complete 

advantage of short-term, mid-term, and long-term 

data association that leads to zero drift for the known 

places. The created map is used whenever needed to 

perform precise localization; this can be done by 

utilizing multi-map association performed that help 

the system to match the Bundle Adjustment elements 
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from old mapping tour. Experimental results showed 

that the proposed method overcomes the previously 

presented algorithms in accuracy, robustness, and 

multi-mapping.  

(Pumarola, et al., 2017) try to solve the problem of 

low texture related to the SLAM technique in 

environments via presenting the PL-SLAM approach. 

They proposed an algorithm based on line 

correspondences and built over ORB-SLAM, where 

the system will modify the ORB-SLAM pipeline to 

perform three steps: Tracking, Local mapping, and 

Loop closing. The Pl-SLAM can operate efficiently 

when the larger amount of the points of the incoming 

image are died out, and it will be initialized by 

utilizing the line correspondences detection from 

three sequential frames. The proposed method can 

also perform line-based map initialization that uses 

five-line correspondences from the sequential three 

images to predict a 3D map of the environment. The 

authors claim that their paradigm overcomes the 

performance of ORB-SLAM in low-textured 

environments in terms of accuracy and efficiency. 

(Wang, 2018) proposed an algorithm using a 

Convolutional Neural Network (CNN) to build a 

SLAM system based on Artificial Intelligent (AI). The 

presented model utilizes parallel multi convolutional 

layers instead of using a single layer, and it also 

deploys a parallel pooling method to reduce the size 

of the model parameter. Then, the fully connected 

layer will process the coming signal (after filtering 

and pooling) to build a global map that will pass to 

the robot’s navigation. The results of testing this 

algorithm indicate the superior of this method over 

the traditional CNN method in reducing the overall 

error. 

(Vincent, et al., 2020) combined the Extended Kalman 

filter and Deep Learning to present a fast model for 

improving the vSLAM in dynamic environments. 

After getting the input images, the model will 

identify the observed objects based on the prior 

information about the dynamic objects. The trained 

neural network will perform paradigm segmentation 

to define the class of the observed object. Each 

identified dynamic object instance has a Dynamic 

Object State (DOS) containing its bounding box, 

binary mask, and object type. Then, the Masked 

Depth Image (MDI) is built by applying the DOS to 

the original RGB-D image. The tracking module can 

estimate the speed of each object after determining 

the masked object’s 3D centroid. Finally, the Moving 

Object Classification Module (MOC) identifies the 

objects as dynamic or idle depending on their class 

and predicts shape deformation and the object’s 

speed. Testing results of the proposed algorithm 

showed the prior of the algorithm compared to the 

available paradigms. Also, it indicates the fast 

operations of this algorithm and that it can be 

executed on a robot moving at a medium velocity. 

(Ai, et al., 2020) provide a new scheme for vSLAM in 

dynamic environments the operate efficiently and 

solve the outlier problem. The proposed system 

consists of five main steps. In the first step, the 

incoming row image will be processed, then in the 

tracking (second step), keyframes from the 

consecutive images will be extracted. The object 

detection step will feed the keyframes to a 

convolutional neural network that will detect the 

object based on its training (“understanding” is has). 

In the fourth step, the Dynamic Object Probability 

(DOP) will be used to recognize the static and 

dynamic areas and the motion of dynamic probability 

via point matching expansion and feature matching. 

The map will be built at the last step, loop closing will 

be determined, and a full BA deployed. Results 

showed that the proposed system has high accuracy 

and high stability in dynamic environments. As well 

as, it decreases the drift and tracking error and 

improves the robustness compared to ORB-SLAM2. 

(Bruno and Colombini, 2021) merged the Deep 

Neural Network (DNN) feature extracting technique 



Academic Journal of Nawroz University (AJNU), Vol.12, No.3, 2023                                               

223 

 

known as the Learned Invariant Feature Transform 

(LIFT) with the traditional geometry-based SLAM 

(ORB-SLAM) to build a new monocular vSLAM 

named LEFT-SLAM. The supervised DNN will go 

throw three steps to perform a robust feature 

detection: local feature detection step, orientation 

estimation, and the description step. The gotten data 

will be feed to the geometry-based SLAM for 

completing the localization and map building. Unlike 

traditional ORB-SLAM, our algorithm performs the 

map building step in a sequential way after the 

tracking phase rather than parallel, while the loop 

closing task remains to be done in parallel. The 

system will construct two types of maps: a keyframe-

based map and a graph-based map, which help 

deploy the bundle adjustment optimization to predict 

the poses. Experimental results showed that using 

DNN improves the performance of vSLAM and 

makes it more robust than traditional techniques, and 

it can work in indoor and outdoor environments. 

(Li, et al.,2021) introduced a new real-time vSLAM 

algorithm based on deep learning and deployed a 

multi-task feature extraction network with 

unsupervised feature points. The system utilizes a 

CNN to discover feature points and a descriptor 

instead of a conventional feature extractor. The 

algorithm is based on ORB-SLAM2, but the original 

matching paradigm is disabled and uses the nearest 

neighbor matching technique. After that, the 

reprojection error is minimized via nonlinear 

optimization to compute the pose of the camera. 

Results indicate that this method can work in low 

texture environments without an efficient drop, and 

both stability and precision of the system were 

improved. 

(Maxime, et al., 2021)present the OV2 SLAM a totally 

online algorithm. The proposed system can work 

with both monocular and stereo cameras; it covers a 

wide range of frame rates and builds different map 

sizes. It’s based on the idea of the multi-layer 

structure, considering the critical and non-critical 

tasks. The introduced method started with improving 

the contract of the incoming image via the CLAHE 

technique as pre-processing image phase. The second 

phase will utilize the guided coarse-to-fine optical 

flow model as a key-point tracking. Then the outliers 

will be eliminated by applying the RANSAC method. 

In the fourth phase, the pose estimation process will 

be obtained, where the 3D key-points projection error 

will be minimized via the Huber coast model. In the 

end, new keyframes will be created by the front-end- 

thread. OV2 SLAM shows better results in real-time 

operation and accuracy than several other algorithms 

in their literature. Also, it indicates that the proposed 

paradigm can be applied in the ground and aerial 

robots for indoor and outdoor environments.  

(Chen, et al., 2021) utilized the concepts of Deep 

Learning to introduce a new visual place recognition 

and feature detection algorithm. Considering the 

Euclidean space, the distance constrain is optimized 

via a multi-constrain loss function. This can be done 

by thoroughly analyzing multiple constraints related 

to the spacing rapport in the visual spot recognition 

issue. The proposed algorithm makes the overall 

calculation burden depend on the training places 

instead of the number of images used in the training 

phase. The proposed algorithm supports all types of 

CNN to extract the required features. The authors 

claim that their system outperforms better than other 

traditional algorithms from efficiency and 

effectiveness points of view. It is worth mentioning 

that the presented method can work in complex 

environments with dynamic changes. 

(Zhou, et al., 2021) worked on improving the 

standard ORB-SLAM by combining point and line 

features with it. The proposed method was based on 

the idea of using points and lines features to increase 

the accuracy of the extracted features. The system 

consists of three steps: Tracking, Local mapping, and 

Loop closing. In the first step and via line and points 
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processing, the features will be extracted, followed by 

pose estimation and local map tracking. In a second 

step, the map will be built and then updated in points 

and lines terms, then a BA optimization through lines 

and points will be performed. In the third step, loop 

closing will be done in three threads: loop closure 

detection, loop closure correction, and global BA 

optimization. Testing the proposed algorithm shows 

that it can compete with the available algorithms, 

indicating accurate and robust operation and 

decreasing drift and losses. 

(Liu and Miura, 2021) introduced a novel vSLAM 

method named RDMO-SLAM that benefits from 

semantic information more efficiently while keeping 

the real-time operation by utilizing dense optical flow 

via inserting semantic label estimation. The presented 

scheme uses a modified version of RDS-SLAM and 

ORB-SLAM3 and adds two additional steps, optical 

flow and velocity prediction. This will make the 

proposed algorithm work efficiently in a dynamic 

environment with the real-time process and overcome 

the slow speed of Mask R-CNN segmentation. Also, 

velocity constrain was added via predicting 

landmarks’ velocity by utilizing optical flow, which 

will decrease the effect of dynamic objects. The 

landmarks are classified into three classes, dynamic, 

static, and unknowns, depending on movements 

probability calculated previously. The results indicate 

that the proposed method effectively works in a 

dynamic environment while keeping the real-time 

operation with heavy segmentation ways. 

(Liu and Miura, 2021) proposed a KMOP-SLAM 

algorithm that neglects the outliers of the dynamic 

obstacles during the tracking process, which will 

make the vSLAM more robust in dynamic 

environments. By utilizing the power of human 

detection and unsupervised learning, the drift error of 

tracking is reduced. The presented system consists of 

a person detection model, unsupervised learning 

segmentation, geometric check, and dynamic object 

detection algorithm based on probability. Feature 

detection, human detection, and segmentation 

modules are working in parallel. The RGB image goes 

through the human detection system for human 

finding. Then it is fed to feature detection for ORB 

feature extraction used in moving object detection 

and pose prediction. At the same time, k-means will 

be applied to the depth image to calculate the pixel 

label. Now, dynamic obstacles are defined via the 

human detection module and geometric constraints. 

In the end, the camera’s pose will be estimated via 

rigid features after outliers have been removed. 

Examining the presented algorithm shows that the 

outliers features related to dynamic obstacles were 

detected and eliminated efficiently, resulting in more 

robust vSLAM with minor drift error and good 

tracking performance. 

(Zhang, et al., 2021) combined the deep learning 

technique with the geometry constraints of the 

traditional stereo Visual Odometry (VO) system to 

implement unsupervised pose correction for stereo 

VO-based vSLAM paradigms. The proposed module 

process the output of the conventional VO via CNN, 

where the images from both cameras are analyzed 

through an encoder-decoder network paradigm. The 

pose correction step didn’t rely on the six-DoF dataset 

ground of the truth. The system will create an 

explainability mask and a depth map. The introduced 

network retracts a pose correction, leading to 

positioning error due to the violation of modeling 

assumptions to make the traditional stereo VO 

precise. Experimental results indicate the accuracy of 

the proposed method in terms of positioning 

accuracy, reducing the error drift. 

Table (2): Related works summary 

Ref. Method Based on: Camera Used Contribution Advantages Disadvantages 

Jajulwar 
and 

Distributed filter Mono-Camera Sensor errors and 
estimating the pose were 

• Improve the navigation 
The map constructed 

matched the 
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Deshmukh, 
2013 

performed by utilizing 
distributed filter approach 

on “image matching 
points”. 

performance of the robot. 

The model is applicable for 
linear and nonlinear 

measurements. 

environment by a ratio 
of 28.74, which is a 

low ratio. 

Makhubela 
et al., 2019 

Filtering technique 
combined with A* 

algorithm 
Mono-Camera 

The Light Filtering 
Algorithm was deployed 

to address the light 
intensity challenge. 

• Work in noisy 
environments. 

Reduced the RMSE to a 
minimum of 0.13 

• Suitable for static 
environments only. 

As it combines EKF 
and A*, it suffers from 
high computation cost. 

Dib et al., 
2014 

Chamfer Distance 
and Occupancy Grid 

RGB-D camera, 
but can be 

applied to other 
sensors like 

telemeter 

Avoid feature matching, 
and instead, it minimizes 
the space between the 
occupancy grid and the 

feature points via a 
distance map. 

• Avoid expensive operations 
(which make it fast) 

It applies to different types 
of sensors. 

As it uses the distance 
between feature 

points, it is suitable for 
static environments 

only 

Benavidez 
et al., 2014 

rg-Chromaticity 
paradigm and 

parallel processing  
RGB-D camera 

Eschew a full feature 
matching, and deploy the 
rg-Chromaticity algorithm 
via parallel processing on 

the cropped image. 

• Reduce the storage 
memory required. 

Minimize the processing 
time needs. 

It can be deployed for 
static environments 

only 

Alismail et 
al., 2016 

Bundle Adjustment 
(BA) without 

correspondences 
Mono-Camera 

maximizing the 
photometric consistency 
and assessing the posts 

implicitly. 

• It is applicable in indoor 
and outdoor environments. 

Showed better accuracy 
compared to traditional BA. 

The initial guess of the 
camera pose is 

needed by geometric 

Artal, et al., 
2015 

Merging bundle 
adjustment,  place 
recognition, loop 
closing via scale-

aware, and utilizing 
the co-visibility data  

Mono-Camera  

The feature used for loop 
closing and place 

recognition is the same 
feature used by the 

tracking and mapping 
tasks. 

• Operate in a large 
environment in real-time. 

• It can perform a real-time 
loop closing via pose graph 
optimization. 

Ability to robustly do the 
initialization process. 

It does not apply to 
Stereo and RGB-D 

cameras  

Artal, et al. 
2017 

Bundle adjustment,  
place recognition, 
loop closing, and 
utilizing the co-
visibility data 

Monocular, 
stereo, and 

RGB-D cameras 

The pre-processing 
feature-based allowed the 

system to apply to 
different types of 

cameras. 

• Efficient for indoor and 
outdoor environments. 

• Low computation cost, 
which makes it a fast 
algorithm. 

Zero drift and robust 
localization with a 
lightweight model. 

Suffer from motion blur 
issue. 

Campos, 
et al., 2021 

Relay on bundle 
adjustment and 

place recognition 
technique 

Monocular, 
stereo, and 

RGB-D cameras 

Precise IMU initialization 
scheme and multi-map 

merging. 

It’s able to utilize the old 
information in all model 

phases  

• Taking complete advantage 
of short-term, mid-term, 
and long-term data 
association that leads to 
zero drift. 

• Efficient for indoor and 
outdoor environments. 

Multi-mapping. 

It fails to perform well 
in low-texture 
environments. 

Pumarola, 
et al., 2017 

Built over ORB-
SLAM and based on 

Line 
Correspondences 

RGB-D camera 
Solve the problem of low 

texture 
More accurate and efficient 

than ORB-SLAM. 

The performance of 
PL-SLAM will be 

affected by the inter-
frame rotation in the 

three images. 

Wang, 
2018 

Using Convolutional 
Neural Network 

(CNN) 
RGB-D camera 

Decreases the gradient 
disappearance of the 

system and carry on in 
the training of deeper 

networks 

Reducing the overall error 
compared to traditional 

CNN 

System efficiency 
drops if the place or 

shape of objects 
changes.  

Vincent, et 
al., 2020 

Combining 
Extended Kalman 

filter and Deep 
Learning 

RGB-D camera 
Solve the issue of 
operating dynamic 

environments 

• Fast operations. 

• It can be executed on a 
robot moving at a medium 
velocity. 

Operate in dynamic 
environments. 

Unable to detect 
outliers segmentation 

which affects 
paradigm robustness. 

Bruno and 
Colombini, 

2021 

Merging deep 
learning with a 
dynamic object 

probability model 

Stereo camera 
and RGB-D 

camera 

Present an efficient real-
time vSLAM system for 
dynamic environments 

• Has high accuracy and 
high stability in dynamic 
environments. 

Minimum drift and tracking 
error compared to ORB-

The detection scheme 
can’t accurately 

estimate when the 
operating area is 

highly different from 
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SLAM2. the training area. 

Bruno and 
Colombini, 

2021 

A hybrid system that 
utilizes deep 

learning with a 
modified version of 

geometry-based 
SLAM 

Monocular 
camera 

Introduced a system that 
can work efficiently in a 

highly dynamic 
environment. 

• Robust without affecting 
the accuracy of the system. 

Work in both indoor and 
outdoor environments. 

Not selecting the best 
features instead of 
using all extracted 

features.  

Li, et 
al.,2021 

Combining Deep 
Learning and ORB-

SLAM2 

Monocular and 
RGB-D cameras 

Using multi-task feature 
extraction network with 
unsupervised feature 

points 

• Can work in low texture 
environments without an 
efficient drop. 

The stability and accuracy 
of the system were 

improved 

There is a hole 
compared to the 

conventional vSLAM 
from a real-time 

performance point of 
view 

Maxime, et 
al., 2021 

Key-point tracking 
via inverse Lucas-

Kanade (LK) 
algorithm and pose 
estimation using the 
Huber coast model. 

Monocular and 
stereo cameras 

Present a system that is 
accurate, robust, and has 

a real-time operation   

• Fill the gap of robustness, 
real-time operation, and 
accuracy. 

It can be applied in the 
ground and aerial robots for 

indoor and outdoor 
environments. 

The algorithm deal 
with calibrated optical 
systems, can’t perform 

calibration. 

It needs higher 
storage as it takes the 

whole image.  

Chen, et 
al., 2021 

Deep Learning, 
precisely 

Convolutional 
Neural Network 

(CNN). 

Monocular 
camera 

 

Presented a multi-
constraint deep distance 
learning that can be used 

vSLAM 

• Outperforms other 
traditional algorithms in 
terms of efficiency and 
effectiveness. 

Work in complex 
environments with dynamic 

changes. 

Requires more 
geometric check or 

false-positive rejection 
ways.  

Zhou, et 
al., 2021 

Line and Points 
features operation 
with ORB-SLAM 

Monocular 
camera 

Solving the issue of 
operating in complex and 

weak textures 
environments with 
obvious brightness 

changes 

• Robust and accurate 
operation. 

Decrease the drift and the 
loss. 

Require longer 
processing time than 

ORB-SLAM 

Liu and 
Miura, 
2021 

RDS-SLAM, Mask 
R-CNN, and dense 

optical flow 
RGB-D camera 

Overcome the slow speed 
of Mask R-CNN while 

preserving a high-
performance operation. 

• Effectively work in a 
dynamic environment. 

Keep the real-time 
operation with heavy 
segmentation ways. 

Can’t operate in an 
outdoor environment 

Liu and 
Miura, 
2021 

Human detection, 
Unsupervised 

learning 
segmentation, and 

geometric 
constraints 

RGB-D camera 

Detecting and removing 
outliers of moving 
obstacles from the 
tracking process. 

• More robust vSLAM. 

• Has a minor drift error. 

Archives good tracking 
performance 

The initial value of K-
means should be 
given manually. 

Zhang, et 
al., 2021 

Deep learning 
technique and 

geometry 
constraints of the 

traditional stereo VO 

Stereo cameras 

Improve the traditional 
VO, reduce the relative 

pose error and root-
mean-square drift 

• Increase positioning 
accuracy. 

Reduced the error drift 

Didn’t optimize the 
map points. 

 

The presented methods here are a collection of the 

most successful and recent algorithms in the vSLAM 

field. Table (2) shows introduces a summary of these 

methods. The mentioned algorithms may be 

deployed to different mobile robots, including aircraft 

robots, land robots, and underwater mobile robots. 

Also, the table indicates that different camera types 

were utilized in vSLAM technology, such as 

monocular, stereo, and RGB-D cameras. It’s worth 

mentioning that the current researches orientation is 

toward the AI-based vSLAM as it can provide more 

robust and less computation complexity algorithms 

(Duan, et al., 2010). 

 

6. CONCLUSION  

In the last decades, autonomous robots have obtained 

significant attention in both military and civil sectors, 

this lead to a kind of standardization of algorithms 

that are used for self-driving robots. An essential task 

for autonomous robots is locating themselves in the 
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operating environment and building up the map for 

the surrounding area. Simultaneous Localization and 

Mapping (SLAM) is the leading key solution to this 

problem. This paper presents a detailed review of the 

state-of-the-art SLAM algorithms for the visual-based 

robots known as vSLAM Algorithms. Three different 

categories of vSLAM have been shown in this review 

study; Kalman filter-based, Graph-based, and AI-

based vSLAM. In this scientific review the recent 

ideas and solutions for the vSLAM problem is shown. 

This comparative study shows the superiority of AI 

techniques coupled with RGB-D cameras over other 

systems in terms of accuracy and adaptability to 

different environments. Future works are intended to 

build an entirely autonomous system that can 

conduct security patrolling. The built system will be 

based on depth cameras (RGB-D) coupled with AI 

technique in conjunction with a state-space matrix 

that governs the priority of some landmarks during 

the patrolling tours. 
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