
Academic Journal of Nawroz University (AJNU), Vol.12, No.1, 2023

This is an open access article distributed under the Creative Commons Attribution License

 Copyright ©2017. e-ISSN: 2520-789X

https://doi.org/10.25007/ajnu.v12n1a1660

1. NTRODUCTION

This In metaheuristic algorithms, the term meta- signifies
"beyond" or "higher level." In general, they outperform
simple heuristics. All metaheuristic algorithms employ a
compromise between local search and global exploration.
Frequently, the diversity of answers is achieved through
randomness. Despite the prevalence of metaheuristics,
the literature does not have an agreement meaning of
heuristics and metaheuristics. Some researchers confuse
the terms 'heuristics' and 'metaheuristics.
However, current agreement has it that any stochastic
algorithm that uses randomization and global
exploration is a metaheuristic. Transitioning from local
search to global search can be accomplished by
randomization [5].
As a result, nonlinear modeling and global optimization
can benefit from the use of virtually any meta heuristic
technique. Both metaheuristic and developmental
calculations are general-purpose methods applicable to a
wide variety of problems. In computing, the term
"algorithm" is used to refer to a specific sequence of steps

taken to solve a problem [2]. The iterative processes or
steps in the calculations are completed once an expression
is reached, as illustrated in Figure1.

Fig. 1. General diagram of a simple meta heuristics, the

variable K represents the counter of iterations.

A NEW PERSPECTIVE OF
METAHEURISTIC ALGORITHMS

Pawan Shivan Othman1, Rasheed Rebar Ihsan2 and Reving Masoud Abdulhakeem3

1,3Department of Computer Science, Nawroz University, Duhok, KRG -Iraq

2Department of Computer Engineering and Communication, Nawroz University, Duhok, KRG -Iraq

__

ABSTRACT

Optimization is the art of modeling in order to produce the optimal outcome under the given conditions. The objective
of optimization is to maximize or decrease the consequences that best satisfy technological and management
procedures. In view of the findings, this paper provides a brief survey of methods for examining the optimization
problem space, illustrates the mechanics of metaheuristic and developmental calculations, and defines their connection
to constructing optimization problems. In addition to covering the encoding of metaheuristic and developmental
calculations and the management of constraints, this paper also delves into the periods of introductory or provisional
arrangements, the iterative determination of arrangements, and the assessment of the execution of metaheuristic and
developmental calculations. All meta-heuristic and developmental calculations are shown to share a single calculation
with their respective phases highlighted.

KEY WORDS: Optimization, Metaheuristics, Local search, Evolutionary Algorithms, New Solutions.

__

Academic Journal of Nawroz University (AJNU), Vol.12, No.1, 2023

138

The search strategy is necessity to address numerous
problems with their respective decision spaces has
controlled to the creation of algorithms encouraged by
natural events or emulating human intellect.
Some critics have contended that some newly produced
algorithms, despite being inspired by novel events, are in
fact repeats of algorithms that have been invented
previously (e.g.: S rensen, 2013). Other researchers,
however, have proven distinctions between newly
designed and older algorithms (e.g. Saka et al., 2016). All
meta-heuristic and evolutionary algorithms share
properties with the generic method presented in this
investigation.
However, there are substantial variations between the
two, such as the invention of new and original ideas and
the selection of new solutions. Each algorithm examines
the decision space in a unique manner, and their efficacy
in solving certain issues differs. Single-modal decision
spaces can be efficiently searched by algorithms
employing strong selection pressure in their selection
step and emphasizing close search for the best solutions
discovered.
Nevertheless, their efficiency falls when locating
multimodal decision spaces with several local optimal
due to the possibility of becoming entrapped in the local
optimal [3].
The algorithms, on the other hand, use a low-pressure
selection strategy and randomly explore the decision
space, thereby conducting deep searches throughout the
whole choice space and lowering the danger of near-
trapping. optima, enhancing their problem-solving
efficiency in multimodal decision environments [1].
To handle problems with unary decision spaces where
there is no risk of getting trapped around the local
optimal point, these algorithms conduct a huge number
of calculations [12]. In addition, the majority of meta-
heuristic and evolutionary algorithms have performance-
tuning parameters. The selection of these criteria impacts
their search technique. Other algorithms automatically
set their parameters. For these reasons, it is necessary for
users to understand the operational principles of each
algorithm, since they must select a suitable algorithm to
address specific optimization problems.

2. CLASSIFICATION OF METAHEURISTICS

A classification of metaheuristics Metaheuristic
algorithms seek to identify the optimal (feasible) answer
to an optimization issue among all conceivable
alternatives. In order to achieve this, they analyze
probable solutions and apply a series of operations to
them in order to discover other, superior answers.
Metaheuristics act on a representation or encoding of a
solution, an object that can be kept in computer memory
and is easily manipulable by the metaheuristic's different

operators. On the basis of how solutions are altered, three
major categories of metaheuristics can be separated. Local
search metaheuristics make incremental modifications to
a single solution. Constructive metaheuristics assemble
solutions from their constituent components. Population-
based metaheuristics repeatedly combine existing
solutions to create new ones. Nevertheless, these groups
are not mutually exclusive, and numerous metaheuristic
algorithms integrate concepts from multiple classes.
These techniques are known as hybrid metaheuristics [7].

2.1 Local search

Number Local search techniques (which terminate at a
local optimum) and associated meta heuristic strategies
(which alter and direct local procedures to explore the
solution space more completely) have been the subject of
extensive scientific research over the past decade. For
more than two decades, there have been two dominant
"meta models" for heuristic techniques: those based on
"single stream" trajectories and those based on "multiple
stream" trajectories, the latter of which seeks to produce
new solutions from a collection (or population) of
solutions [11].
The contrast is fundamentally identical to that between
serial and parallel algorithms, with the exception that
population-based methods can also be employed in a
serial fashion, as in the case of a serial simulation of a
parallel approach. As expected, there are some overlaps
between the best processes of these two categories.
Traditional population-based methods, however, have
frequently been designed from a narrower perspective
that excludes strategies typically applied with single
stream methods [10] . Consequently, hybrid techniques
are frequently used to describe more contemporary
systems that combine elements of both methods.

2.2 Constructive metaheuristics

Constructive techniques develop one or more
combinations incrementally, beginning with an empty
combination and progressively adding components until
the combination is full. These approaches are referred
regarded as model-based in [Zlochin et al, 2004] because
they employ a model (typically stochastic) to select the
next component to be added to the partial combination at
each iteration. GRASP, an acronym for greedy
randomized adaptive search process (Feo and Resende,
1995), mitigates the greediness of a constructive
metaheuristic through the use of randomization [4].
A greedy algorithm constructs a combination slowly,
beginning with an empty combination and gradually
completing it by adding components. At each stage, the
component to be added is selected in a greedy manner,
i.e., by selecting the component that maximizes a
problem-dependent heuristic function that locally

Academic Journal of Nawroz University (AJNU), Vol.12, No.1, 2023

139

evaluates the benefit of adding the component in terms of
the objective function. Typically, a greedy algorithm has a

very low time complexity since it never returns to a previous

decision. The final combination's quality is determined by
the heuristic [3].

2.3 Population-based metaheuristics

The population-based method can finish the search

process in parallel using numerous initial points

(Beheshti, Mariyam, & Shamsuddin, 2013). The

advantage of the population-based algorithm is that it

effectively provides the search space for exploration. This

approach is appropriate for global searches since it is

capable of both global exploration and local exploitation.

Ant colony optimization (ACO), particle swarm

optimization (PSO), genetic algorithm (GA), evolution

strategies (ES), intelligent water drop algorithm, and

artificial bee colony are examples of population-based

algorithms) [12].

2.4 “Hybrid” metaheuristics

The concept of hybrid metaheuristics has only lately been

generally accepted, despite the fact that the idea of

merging different metaheuristic approaches and

algorithms dates back to the 1980s. Today, there is general

acceptance on the benefits of mixing components from

several search methodologies, and the trend of designing

hybrid algorithms is ubiquitous in the disciplines of

operations research and artificial intelligence [6].

3. TAXANOMY OF METAHEURISTIC AND

EVOLUTIONARY ALGORITHMS

Categorization of Heuristics and Shortcuts When

presented with an optimization problem, metaheuristic

algorithms attempt to find the best possible solution by

comparing and contrasting all of the possible ones. They

accomplish this by examining likely solutions and

performing a series of operations on them in an effort to

unearth new, superior answers. Metaheuristics perform

their tasks by manipulating a representation or encoding

of a solution, an item that can be stored in computer

memory and is amenable to the various operators that

make up the metaheuristic. Three broad classes of

metaheuristics can be distinguished according on the

methods they use to modify solutions. Metaheuristics

that perform local searches iteratively improve upon an

existing answer. Solutions are pieced together using

constructive metaheuristics. Metaheuristics based on

sampling a population iteratively combine and provide

new solutions. Still, the categories are not exclusive, and

many metaheuristic algorithms combine ideas from

several of them. Hybrid metaheuristics are the name

given to these methods [11].

3.1 Initial State

A large number of variables is used as a starting point by both

metaheuristics and evolutionary algorithms. This starting point

could be manually entered, randomly generated, or calculated

using algorithms and equations. This initial state might be

specified, randomly generated, or derived

deterministically using equations and algorithms.

3.2 Iterations

Computation executes actions iteratively during the

search for a structure. The emphasis of developmental or

metaheuristic computations begins with one or more

introductions to the optimization problem. The

subsequent sequence of activities produces an unused

solution (s). A focus concludes when a feasible modern

layout is produced. The unused created solution(s) are

considered as an introduction solution(s) for the next

computation cycle.

3.3 Final State

After satisfying the selected end criterion, the calculation

ceases and reports the leading or most recently developed

solution(s) to an optimization problem. The end criterion

is specified in three unique forms:

(1) the number of cycles,

(2) the improvement edge of the approval of arrangement

between continuous cycles, and

(3) the calculation time for optimization. The primary

measure specifies a specified maximum number of cycles

that the calculation may execute. The instant measure

establishes a limit for advancing the arrangement

between successive stages. The third criterion terminates

the calculation after a specified runtime and writes the

leading arrangement available at that time.

3.4 Initial Data (Information)

Two forms of initial input are distinguished:

First one the knowledge on the optimization problem,

which is required for reenactment;

And the other are the parameters of the calculation, which

are required for its execution and may need to be

calibrated.

The second type of preliminary information is required to

calibrate the layout computation in order to solve an

optimization problem. Almost all metaheuristic and

Academic Journal of Nawroz University (AJNU), Vol.12, No.1, 2023

140

developmental computations need adjusting parameters.

To realize its effective implementation, it is necessary to

select the calculation's parameters properly. The

terminating criterion, for instance, is a user-specific

algorithmic parameter. If the terminating measure is not

chosen appropriately, the calculation may not focus on

the global answer. On the other side, the calculation may

take an abnormally lengthy time to complete [10].

3.5 Decision Variables

Choice factors are those whose values are computed at

the conclusion of the computation, and whose values are

detailed as an arrangement of an optimization problem

upon reaching the stopping point. Metaheuristic and

developmental computations begin with the initialization

of choice factors and the recalculation of their values

during calculation execution [1].

3.6 State Variables

The state factors have a relationship with the selection

factors. In actuality, the values of the state factors vary

based on the selection criteria.

3.7 Constraints

Obligations limit the space of possible solutions to an

optimization problem and are addressed in metaheuristic

and evolutionary computations. In actuality, these factors

affect the attractiveness of every possible arrangement.

After assessing the objective task and state factors

associated with each arrangement, the constraints are

calculated and indicate the criteria that must be met for

every conceivable arrangement to be possible. If the

prerequisites are met, the arrangement is acknowledged

and referred to as a feasible arrangement; otherwise, the

arrangement is discarded or changed.

3.8 Fitness Function

The value of an objective work is not always the level of

desirable quality chosen for a composition. For example,

the computation may scan a changed shape of the goal

work by the expansion of penances that keep a strategic

distance from the violation of constraints; in this case, the

altered work is referred to as the fitness function. The

fitness function is then used to evaluate the desirability of

potential configurations.

3.9 Selection of Solutions in Each Iteration

The term "selection" is used to refer to the process of

picking one or more solutions from a pool of possible

ones during an algorithmic calculation. While many

meta-simulation and evolution algorithms make use of

previously found solutions to develop new ones, some do

not. Many already-existing solutions are disregarded by

the selection operators. Selecting solutions from the

existing set might be random or deterministic depending

on the algorithm being used.

Some algorithms use all previously found solutions to

develop new solutions, but only some of these solutions

are ultimately accepted. When doing the search, only

candidates with a decent level of accomplishments will be

evaluated.

Some of the newly developed solutions can be chosen at

random or according to some specified criteria. In most

cases, the algorithm's current answers (the decision

variables) are used as the basis for such a conclusion. This

means that in random selection processes, better

solutions have a better chance of being chosen. The best

solution (or solutions) in a set is often chosen using

deterministic selection processes.

One of the most important factors in arriving at the best

solution is the choosing of existing solutions to generate

new solutions during algorithm iterations. Selection

pressure is essential in meta-simulation and evolution

methods.

The high-selection-pressure selection strategy is more

likely to pick the best answers and ignore the bad ones at

each search step. In contrast, a selection method with very

little selection pressure will treat all solutions with

matching values equally and select based on nothing

more than whether or not they happen to be the best fit.

difference.

In figure 2 shows a set of solutions to a made-up

maximizing issue, with each solution's fit value and the

probability of being chosen as an example under high or

low selective pressure displayed in a descending order

[1].

Academic Journal of Nawroz University (AJNU), Vol.12, No.1, 2023

141

Fig. 2. Selection possibility for a set of hypothetical

maximizing problem solutions 1–10.

In contrast, selective pressure boosts the odds that the

best (largest) solutions will be chosen. Keep in mind that

the homogeneous distribution gives each option an equal

chance of being picked on each iteration. When no

selective pressure is applied, the selection mechanism

picks solutions at random from a given distribution [1].

In contradiction of definite selection and uniform

distribution, other selection methods either allow the user

to modify the selection pressure or automatically adjust

the selection pressure based on the criteria being used.

An important distinction between meta-heuristics and

evolutionary algorithms is how they choose among

potential solutions. There are algorithms that skip the

selection step entirely, while others might be quite

detailed in this regard. Many popular methods of

choosing include the Boltzmann distribution, a roulette

wheel, and a tournament.

3.10 Generating New Solutions

At each iteration, meta-empirical and evolutionary

algorithms develop new solutions based on the current

result. The algorithm completes each iteration by

producing new solutions. Each algorithm generates novel

answers that are distinct from those generated by other

algorithms. To develop new solutions, however, all

algorithms rely on preexisting ones. In reality, new

answers are frequently similar to an earlier solution, a

combination of two or more previous solutions, or

randomly generated solutions whose adoption

contributes to the search process. determined by

comparing to past solutions. This article describes the

techniques employed by the most prominent

evolutionary and meta-empirical algorithms to develop

new solutions iteratively.

3.11 The Best Solution in Each Algorithmic Iteration

For some algorithms, the best possible outcome is flagged

after each cycle. It is the practice of some algorithms to

carry on the best solution from one iteration unmodified

to the next iteration, in search of a better one, at which

time the best solution is replaced with the new one. The

ideal answer from each iteration is saved and given more

weight by other algorithms like HBMO when coming up

with fresh solutions. Each algorithm has its own unique

name for the best response of each iteration, such as "base

point" in pattern search (PS) or "queen" in the HBMO

algorithm.

3.12 Termination Criteria

The algorithm generates new solutions at the conclusion

of each iteration. Each solution's fit function is calculated,

and either the algorithm continues to the next iteration or

stops. There were three main measures of success: total

reps, the rate at which fitness function improved between

sets, and total exercise time. With the initial criterion in

place, the algorithm will run for a certain amount of time.

For instance, the algorithm can be programmed to run for

no more than 106 iterations.

The fundamental drawback of this criterion is that the

analyst is in the dark as to how many iterations are

necessary. As a result, the method may be terminated too

soon if the present solution is suboptimal, or it may obtain

a near-optimal solution too rapidly and then keep

reproducing this solution without further improvement,

resulting in an excessive computing burden.

When the difference between solutions from two or more

successive iterations is less than a user-specified

threshold, the method is terminated according to the

second criterion. An issue with this strategy is that it may

only produce a solution that is optimal in a very narrow

context. Some empirical and evolutionary algorithms, if

allowed to keep searching after hitting a threshold

between multiple consecutive iterations, will use

randomness or other methods to eliminate local

solutions.

In contrast to other evaluation criteria, which take into

account both the number of iterations and the rate at

which the solution improves, the maximum runtime

criterion simply terminates the algorithm after a

predetermined amount of time has elapsed and reports

the best solution obtained up to that point. In general, it

is difficult to predict how long it will take to arrive to a

near-optimal solution, which is the same problem that

applies to this criterion and to finding the maximum

number of iterations.

4. CONCLUSION

This work provides an introduction to meta-simulation

and evolution algorithms by elaborating on the many

techniques utilized to explore the choice space. In

describing the characteristics of a variety of technical

optimization problems, emphasis was placed on the

mechanisms of meta-heuristic and evolutionary

Academic Journal of Nawroz University (AJNU), Vol.12, No.1, 2023

142

algorithms. This paper also introduces coding meta-

empirical and evolutionary algorithms, dealing with

limitations, and selecting solutions, among other subjects.

A general algorithm comprising the most prevalent

characteristics of meta-simulation and evolution

algorithms has been described. This broad method will

serve as a good comparison standard for other

algorithms. This study concludes by reviewing the

performance evaluation techniques for meta-simulation

and evolution algorithms.

REFERENCES

Saka, M. P., Hasançebi, O. Ğ. U. Z. H. A. N., & Geem, Z.
W. (2016). Metaheuristics in structural optimization and
discussions on harmony search algorithm. Swarm and
Evolutionary Computation, 28, 88-97.

Sörensen, K. (2015). Metaheuristics—the metaphor
exposed. International Transactions in Operational
Research, 22(1), 3-18.

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A.
(2019). A survey on new generation metaheuristic
algorithms. Computers & Industrial Engineering, 137,
106040.

Kondamadugula, S., & Naidu, S. R. (2016, October).
Accelerated evolutionary algorithms with
parameterimportance based population initialization for
variation-aware analog yield optimization. In 2016 IEEE
59th International Midwest Symposium on Circuits and
Systems (MWSCAS) (pp. 1-4). IEEE

Battiti, R., Brunato, M., & Mascia, F. (2008). Reactive search
and intelligent optimization (Vol. 45). Springer Science &
Business Media.

Hinterding, R., Michalewicz, Z., & Eiben, A. E. (1997,
April). Adaptation in evolutionary computation: A
survey. In Proceedings of 1997 Ieee International Conference
on Evolutionary Computation (Icec'97) (pp. 65-69). IEEE.

Eiben, A. E., & Smith, J. E. (2003). Gray coding.
In Introduction to Evolutionary Computing (pp. 265-265).
Springer, Berlin, Heidelberg.

Gent, I. P., & Walsh, T. (1993, July). Towards an
understanding of hill-climbing procedures for SAT.
In AAAI (Vol. 93, No. Citeseer, pp. 28-33)

Reeves, C. R. (Ed.). (1993). Modern heuristic techniques for
combinatorial problems. John Wiley & Sons, Inc..

Larrañaga, P., & Lozano, J. A. (Eds.). (2001). Estimation of
distribution algorithms: A new tool for evolutionary
computation (Vol. 2). Springer Science & Business Media.

Marchiori, E., & Rossi, C. (1999). A flipping genetic
algorithm for hard 3-SAT problems.

