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1. INTRODUCTION 

The fundamental prerequisites for statistical 

inference in the estimation and testing of the 

Multiple Linear Regression (MLR) model 

encompass the normality and constancy of variance 

in the estimated model errors [1]. Consequently, 

techniques for data transformation, especially those 

within the domain of power transformations, have 

been harnessed to significantly amplify the 

effectiveness of statistical modeling and achieve an 

improved overall fit. The approach of employing 

the Box-Cox Transformation (BCT) was dedicated to 

meeting the modeling prerequisites of the MLR 

Model by applying parametric power 

transformations [2]. In 1955, Tukey introduced a set 

of power transformations in which the transformed 

values displayed a monotonic relationship with the 

observations across a permissible range [3]. In 1974, 

Box and Hill unveiled their approach involving 

power transformations and specialized weights, 

designed to attain homogenous variance 

properties—a technique they termed the "weighted 

power transformation" [4]. In 1983, Atkinson 

proposed a transformation method that addresses 

anomalies in data post-transformation [5]. Sakia's 

1992 study revisited BCT, aiming to simplify the 

model and align the theoretical assumptions with 

more satisfactory analyses [6]. Cook and Weisberg's 

1994 method aimed to find a linear and monotonic 

transformation of the response variable based on the 

BCT model [7]. Yeo and Johnson, in 2000, 

introduced a distribution family that retained the 

beneficial properties of BCT while removing 

constraints on its usage, including the handling of 

positive and negative values [8]. Hossain, M. Z., in 

2011, provided an analytical review of BCT's 

significant role across various statistical domains, 

including estimation, testing, inference, and model 

selection [9]. Al-Yousef and Abduahad, in 2014, 
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developed a technique using power transformations 

to describe Bayesian conditional expectation 

probability distributions within a nonlinear 

regression framework [10]. Fischer, in 2016, 

proposed logarithmic transformations and tree 

growth models for left-skewed variable 

transformation, catering to regression analysis 

assumptions [11]. Soleymani's 2018 modification of 

BCT aimed to enhance estimation accuracy, 

particularly in econometrics and time series 

applications [12]. In 2021, Atkinson, Riani, & 

Corbellini extended BCT to non-negative responses 

in linear regression models, encompassing both-

sided transformations and the Yeo-Johnson 

transformation for observations with positive or 

negative values [13]. 

This article's objective is to present an algorithm 

that leverages BCT to construct a nonlinear multiple 

regression model when the prerequisites for MLR 

analysis are not satisfied. The algorithm takes into 

account the multitude of criteria for estimating the 

optimal power parameter value. The subsequent 

sections are structured as follows: The second 

section delves into theoretical facets of BCT. The 

third section outlines the algorithm proposed for 

developing a nonlinear regression model through 

BCT. The fourth section focuses on practical 

implementation. The fifth and final section 

encompasses the concluding remarks.  

2. BOX-COX TRANSFORMATION 
In 1964, Box and Cox introduced a transformation 
model of significant importance within the realm of 
statistics [2]. They put forth a pair of techniques for 
estimating the power parameter in the Tukey 
transformation model. The primary approach 
involves Maximum Likelihood Estimation (MLE), 
while the secondary method adopts a Bayesian 
perspective. The overarching objective of the BCT is 
to mitigate anomalies in data, address nonlinearity, 
rectify errors' non-normality, and manage 
heteroscedasticity [2]. BCT is given by,  
 

ψ(y) = {
  yλ−1   

λ
                     if λ ≠ 0

ln(y)                       if λ = 0
                                  (1)   

                                                        
Where Y is the response variable and λ is the power 
parameter. However, the most common 
transformations of BCT are described in Table 1.  
 
 
 

Table 1: The most common transformations of BCT 
 

λ Transformation 

-2 1/y2 

-1 1/y 

-0.5 1/√y 

0 ln (y) 

0.5 √y 

1 Y 

2 y2 

  
In the case of one-dimensional data, the 
methodology  assumes for any random variable Y, if  
Z = ψ(y) represent the transformed variable of Y 
such that  Z~N(μ, σ2), then the probability density 
function (PDF) of the random variable Y is given by 
fY(y; λ, μ, σ2) = fZ(ψ

−1(y); λ, μ, σ2) . J(λ, y). Thus, the 
criteria for choosing the optimal estimator of λ is to 
maximize the log likelihood of the PDF of the 
original observations except for a constant, 
 

Lmax(λ, y) = − (n 2⁄ )log 𝜎2 (λ) + log  J(λ, y)               (2) 

 
Where 𝜎̂2  (𝛌) is the variance estimator of Z. In the 
case of the MLR model defined as, 
 
𝐙 = 𝐗𝛃 +  𝐞                                                                           (𝟑) 

 

Where, 𝐙 = 𝛙(𝐲) represents the (nx1) column vector 
of the transformed values of the response variable 
vector, 𝐗 is the (nxp) known information matrix, 𝛃 is 
the (px1) unknown parameters vector and 𝐞 
represent the (nx1) column vector of random errors 
and distributed according to the normal distribution 
with means vector equal to (nx1) zero vector and 
identity variances matrix equal to σ2𝐈n. The 
assumption of errors normality feature leads to the 
fulfillment of a normality too in transformed 
response data vector  𝐙 according to the following 
joint PDF, 
 
  f𝐙(𝐳; λ, 𝐗𝛃,  σ2) =

          (2ππσ2)−n 2⁄ . exp { 
−(𝐙−𝐗𝛃)T(𝐙−𝐗𝛃)

2σ2  }   , 𝐙 ϵ R          (4)            

 

Using the change of variables technique, the 

following equations system represents the joint PDF 

of original response data vector, 

 

f𝐘(𝐲) =

 (2πσ2)−n 2⁄ . exp {  
−(𝛙−𝟏(𝐲)−𝐗𝛃)T(𝛙−𝟏(𝐲)−𝐗𝛃)

2σ2   } . | 
dψ(𝐲)

d𝐲
 |   (5)      
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Similarly, in the scenario involving a single variable, 

the criterion for selecting the optimal estimator for 𝜆 

aims to maximize the log-likelihood of the joint 

probability density function of the original 

observations, excluding a constant term,                                  

 

Lmax(λ, y) = − (n 2⁄ ) log 𝜎̂2(λ) + log J(λ, y)                (6) 

                                                   

When Y is replaced by ψ(𝐲) for some λ, the  back 
transformation of BCT is of the form [12], 
 

𝐘 = {
(λ ψ(𝐲) + 1)1/λ     if           λ ≠ 0

exp(ψ(𝐲))              if           λ = 0
                           (7) 

                                                   

Hence, upon estimating the MLR using the 
transformed data, we can deduce an estimation of 
the original data's nonlinear model through the 
subsequent equation for estimated back 
transformation,  

 

𝐲̂ =  {
(λ 𝐗𝛃ˆ + 1)1/λ     if           λ ≠ 0

exp(𝐗𝛃ˆ)              if           λ = 0
                              (8)                                                         

 

3. ALGORITHM 
This article presents a novel application algorithm 
that leverages the BCT model alongside parametric 
estimation to construct a nonlinear multiple 
regression model. The process of determining the 
optimal power parameter 𝜆 within this algorithm 
rests upon three distinct criteria: 
First, the algorithm considers Lmax(λ, 𝐲), which 
involves the MLE of the PDF for the original 
random variable 𝑌 as defined in Eq. 6 [2]. 
The second criterion revolves around maximizing 
explanatory model efficiency, specifically by aiming 
for the highest Coefficient of Determination R2 
value within the estimated MLR applied to the 
transformed random variable 𝑍, according to Eq. 3. 
For a more comprehensive understanding of the 
array of criteria for optimal power parameter 
selection, refer to [14] and [15]. 
The third criterion involves selecting the highest p-
value from the Shapiro-Wilk test for the errors' 
normality resulting from the estimated nonlinear 
regression model of the original data vector, as 
specified by Eq. 8 [16]. 
Consequently, the proposed application algorithm 
for implementing the BCT model and parametric 
estimation to construct a nonlinear multiple 
regression model is structured as follows: 
 
Step 1: Estimate the MLR model of Y X1, X2,⁄ … , Xk .  
Step 2: Fix λ ∈ Λ, where Λ =  {−2,−1.9, … ,0 , … ,1.9 ,2}  

Step 3: Transform Y to Z = ψ(y) using BCT 
according to Eq. 1. 
Step 4: Estimate MLR model of the transformed data 
vector Z X1⁄ , X2, … , Xk according to Eq. 3 and the 
coefficient of determination R2 for all λ ∈  Λ.  
Step 5: Estimate the values of MLE according to Eq. 
6 for all λ ∈  Λ. 
Step 6: Estimate the nonlinear multiple regression 
model for the original data vector according to back 
transform Eq. 8. 
Step 7: Calculate the P-value of Shapiro-Wilk test of 
the errors vector normality of the estimated 
nonlinear model of the original data vector resulting 
from step 6.  
Step 8: Repeat all the steps from 3 to 7 for all values 
of λ in   Λ. 
 
4. APPLICATION 
The BCT was applied to the cellphone dataset, and 
an R program was used to analyze the data. The 
data can be found at 
(https://www.kaggle.com/datasets/mohannapd/
mobile-price-prediction). The Cellphone dataset has 
a size of 161 observations which contains one 
dependent variable Y representing the price and the 
following twelve independent variables; sale, 
weight, resolution, pixels per inch, central 
processing unit core (CPU core), central processing 
unit frequency (CPU freq.), internal memory, the 
random access memory (RAM), rear camera, front 
camera, charge and battery, and the thickness.  
Through the utilization of the presented algorithm, 
we achieved the generation of a convex curve 
representing the MLE function employing equation 
(6). The peak value of this curve corresponds to the 
most advantageous power parameter value. As 
illustrated in Figure 1, the calculated power 
parameter value stood at 0.8. In Table 2 and Figures 
2 and 3, can observe the estimations and patterns of 
the Coefficient of Determination R2 in accordance 
with Step 4, along with the P-value stemming from 
the Shapiro-Wilk test evaluating the normality of 
the errors vector, as outlined in Step 7. 

 

Figure 1:  Log-likelihood plot according to the step 5 
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Table 2: The estimates of R2 according to Step 1,  p-
value of Shapiro-Wilk test of the errors vector 

normality according to Step 7 

 

 

 

Figure 2:  The plot of the Coefficient of 
Determination R2 according to step 4 

 

Figure 3: The plot of the p-value of Shapiro-Wilk 
test of the errors vector normality according to 

 Step 7 

 

Within our algorithm, we have derived three 
distinct criteria for the selection of the most suitable 
transformation parameter value. It became evident 

to the authors that achieving a single optimal value 
that aligns with the requirements of all three criteria 
– the maximum MLE function value, R^2, and the 
p-value from the Shapiro-Wilk test assessing the 
normality of the errors vector – is improbable. 
Frequently, a reassessment of outcomes becomes 
necessary, considering the significance and 
precedence of particular criteria and how other 
criteria might contribute to reinforcing these 
priorities. The estimations of the optimal power 
parameter, as per the three criteria, were tabulated 
in Table 3. 

Table 3: The estimates of the optimal power 
parameter according to the three criteria 

 

Optimum 
λ  

Criteria values 

Lmax R2 p-value 

0.8 0 0.96 0.2048 

0.6 -5 0.96 0.2365 

1.1 -5 0.95 0.2885 

1.0 -7 0.95 0.2336 

 

From table 3, a feasible solution of the optimal value 
of the power parameter can be deduced in the 
ranges of Lmax(λ, 𝐲) 𝜖 (−7,0), R2𝜖(0.95, 0.96) and 
p − value 𝜖 (0.2048, 0.2885). If we consider that Lmax 
the MLE value of PDF of the original random 
variable Y according to Eq. 6, represents the basis 
for estimating the optimum power parameter, then 
the optimal value is 0.8 because it fulfills at least one 
of the other two criteria  . 
 

𝑦̂ = (0.8 𝐗𝛃̂ + 1)1/0.8                                         (9)                                                                  
 
Where X is the (nxp) known information matrix and 
𝛽 is the following (px1) parameters estimates vector, 
 

𝜷̂ =

[
 
 
 
 
 
 
 
 
 
 
 
 

  

465.56
−0.001
−0.17
−8.48
0.21
11.28
31.58
1.22
19.59
1.26
1.94
0.03

−16.37

  

]
 
 
 
 
 
 
 
 
 
 
 
 

 

0.8

0.85

0.9

0.95

1

-3 -2 -1 0 1 2 3

λ -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 

R2 0.84 0.85 0.86 0.86 0.87 0.88 0.89 0.89 0.90 0.90 

P-

value 
0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 

λ -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 

R2 0.91 0.92 0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.95 

P-

value 
0.00 0.14 0.00 0.21 0.21 0.01 0.04 0.23 0.01 0.01 

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

R2 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

P-

value 
0.01 0.10 0.01 0.23 0.09 0.17 0.24 0.23 0.20 0.16 

λ 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

R2 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.93 0.92 

P-

value 
0.29 0.27 0.21 0.14 0.08 0.16 0.01 0.00 0.23 0.09 
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5. CONCLUSION 

Applying power transformation to reshape the 
response variable in regression contexts offers a 
pathway to constructing a nonlinear model when 
the prerequisites of linear regression analysis fall 
short. Various methodologies exist for selecting the 
most appropriate power parameter, organized into 
two categories: the first involves well-established 
estimation techniques like the MLE approach, while 
the second employs efficiency criteria within 
regression modeling as decision-making guidelines 
for power parameter determination. 
This article embarked on the task of defining a 
workable range where multiple estimation 
techniques and decision rules converge, enabling 
the identification of the optimal parameter that best 
satisfies a multitude of efficiency-enhancing 
requirements in regression modeling. If we consider  
the MLE value Lmax(λ, 𝐲) related to the original 
random variable Y, as depicted in Eq. 6, it forms the 
basis for deriving the optimal power factor, then, 
the other criteria can then function as assisting 
factors in the selection of the optimal power 
parameter. 
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