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ABSTRACT 

By a subuniverse, we mean a sublattice or the empty- set. We prove that the sixth largest number of subuniverses of 
an n-element lattice is 21.125 · 2n−5 and the seventh largest number is 20.75 · 2n−5. Also, we describe the n-element lattices 
with exactly 21.125 · 2n−5 and 20.75 · 2n−5 subuniverses.  
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1. INTRODUCTION 

Let L be finite lattice, Sub(L) will denote its sublattice 
lattice; Sub(L) consists of all subuniverses of L. A subset X 
of L is in Sub(L) if and only if X is closed with respect to 
join and meet. Note that ∅ ∈ Sub(L); moreover for X ∈ 
Sub(L), X is a sublattice of L iff X is nonempty. This work 
is a natural continuation of (Ahmed et al, 2019) and (Cz´edli 

and Horv´ath, 2019), where the first fifth largest numbers 
of subuniverses have been determined. To read more on 
similar work see the bibliography indicated in (Cz´edli, 
2018; Cz´edli, 2019a; Cz´edli, 2019b; Cz´edli, 2019c; Cz´edli 
and Horv´ath, 2019; Kulin and Muresan (2018) and Freese 
(1997). 

For basic lattice theory see e.g. Gr¨atzer (2011), We 
recall some notions and tools from [4] and [6]. An element 
u ∈ L isolated if u ∈ L \ {0, 1} has a unique lower cover and 
a unique upper cover, and, in addition, x ∥ u holds for no 
x ∈ L. An interval [u, v] will be called an isolated edge if u 
≺ v, and L = ↓u ∪ ↑v. The next lemma is from [6], and we 
will use it very often in this paper. 

Lemma 1.1. (Cz´edli and Horv´ath, 2019) If K is a sublattice 

and H is a subset of a finite lattice 

L, then the following three assertions hold. 

i) With the notation t := |{H ∩ S : S ∈ Sub(L)}|, we have 
that| Sub(L)| ≤ t · 2|L|−|H|. 

ii) | Sub(L)| ≤ | Sub(K)| · 2|L|−|K|. 

iii) Assume, in addition, that K has neither an isolated 
element, nor an isolated edge. Then | Sub(L)| = | 
Sub(K)|·2|L|−|K| if and only if L is (isomorphic to) C0 +glu 
K +glu C1 for some chains C0 and C1. 

Let S = (S; ∨S, ∧S) be a partial lattice; we use this term here 
to mean that S is a partial algebra with two binary 
operations. A sub- universe of S is a subset Y of S such 
that whenever a, b ∈ Y and a ∨S b is defined in S, then a ∨S 
b ∈ Y, and the same is true for ∧S. 

We say that the partial lattice S is a partial sublattice of 
the lattice L = (L; ∨L, ∧L), if S is a subposet of L and 
whenever a ∥ b for a, b ∈ S and their join a ∨S b exists, then 
a ∨S b = a ∨L b, and the same is true for 

∧S. Without any danger of confusion, from now on we use 
the notation L for a lattice (and S for a partial lattice) 
again. In order to give an example for a partial lattice we 
define H1 which will be used latter, it is the seven-element 
partial lattice {o, i, a, b, c, v, d} with the condition 

{o, i, a, b, c} ∥ d, a ∨ b = c ∨ b = i, a ∧ b = c ∧ b = o and d ∨ i = 
v. See Fig. 1.  
We need to recall the follwoing Lemma 3.3 from [6]; and 

lemma 1.3 from [1]; we wrote it down here in row: 

Lemma 1.2. (Cz´edli and Horv´ath, 2019) If an n-element 
lattice L has a 3-antichain, then we have that | Sub(S)| ≤ 20 
· 2n−5. 
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Lemma 1.3. [1] If |L| = n for the lattice L and S is a partial 
sublattice of L with |S| = k and with | Sub(S)| = m, then | 
Sub(L)| ≤ m · 2n−k. 

2. A PREPARATORY LEMMA 

Lemma 2.1. For the lattices and a partial lattice given in 

Figs. 1-5, the following assertions hold. 

(i) | Sub(B4 +glu C(2) +glu B4)|= 169  

               = 21.125 · 28−5, 

(ii) | Sub(N5B4)| = 69 = 17.25 · 27−5, 

(iii) | Sub(C(2) × C(3))| = 38 = 19 · 26−5, 

(iv) | Sub(H1)| = 79 = 19.75 · 28−5, 

(v) | Sub(H2)| = 38 = 19 · 26−5, 

(vi) | Sub(H3)| = 142 = 17.75 · 28−5,  

(vii) | Sub(N7)| = 83 = 20.75 · 27−5, 

(viii) | Sub(N6B4)| = 132 = 16.5 · 28−5, 

(ix) | Sub(N6)| = 43 = 21.5 · 26−5, 

(x) | Sub(N ′)| = 37 = 18.5 · 26−5, 

(xi) |Sub(B4)| = 13 = 26 · 24−5, 

(xii) |Sub(N ′)| = 65 = 16.25 · 27−5, 

(xiii) |Sub(N7B4)| = 255 = 15.93 · 29−5, 

(xiv) |Sub(N ′B4)| = 1185 = 11.56 · 29−5. 

 

 

 

 

 
                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. N ′, N7 and B4 +glu C(2) +glu B4 

 
 

Fig. 4. H2 and H3 

 

 

 

 

 

 

 

 

 
Fig. 5. N6B4 

 

Proof. The notation given by Figs. 1-5, will be used. For 

the later reference, note that if L is a chain, then |Sub(L)| 

= 2|L|. 

For (i), observe that 

|{S ∈ Sub(B4 +glu C(2) +glu B4) : d ̸∈ S}| = 104,

 by (2.1)(iii)and (2.2)(i) of [6], 

|{S ∈ Sub(B4 +glu C(2) +glu B4) : d ∈ S, {a, b, c, e, f } ∩ S 

= ∅}| = 4, and 

|{S ∈ Sub(B4 +glu C(2) +glu B4) : d ∈ S, {a, b, c, e, f } ∩ S 

̸= ∅}| = 61, whereby | Sub(B4 +glu C(2) +glu B4)| = 104 

+ 4 + 61 = 169 proves (i). 

For (ii), observe that 

|{S ∈ Sub(N5B4) : d ̸∈ S}| = 46, by 2.1 (iii) and 

2.2 (ii) of [6], 

|{S ∈ Sub(N5B4) : d ∈ S, b ̸∈ S}| = 20, and 

|{S ∈ Sub(N5B4) : d ∈ S, b ∈ S}| = 3, 

whereby | Sub(N5B4)| = 46 + 20 + 3 = 69 proves (ii). 

For (iii), observe that 

|{S ∈ Sub(C(2) × C(3)) : d ̸∈ S}| = 26, by 2.1 (iii) and 

2.2 (ii) of [6], 

|{S ∈ Sub(C(2) × C(3)) : d ∈ S, {a, b, c} ∩ S ̸= ∅}| = 8, and 

|{S ∈ Sub(C(2) × C(3)) : {a, b} ∩ S = ∅}| = 4, 

whereby | Sub(C(2) × C(3))| = 26 + 4 + 8 = 38 proves 

(iii). 

For (iv), notice that H1 is a partial lattice, but not a 

lattice, so subuniverses are those subsets that are closed 

with respect to all partial operations, see also [4]. Observe 

that 

|{S ∈ Sub(H1) : d ̸∈ S}| = 46, by 2.1 (iii) and 2.2 (ii) of 

[6], 

|{S ∈ Sub(H1) : {d, v} ⊆ S}| = 23, and 

the remaining subuniverses are the following: {b, d}, {o, 

b, d}, and all the elements of P ({o, a, c}) with d, 

whereby | Sub(H1)| = 46 + 23 + 2 + 8 = 79 proves (iv). 

For (viii), notice that 

|{S ∈ Sub(H2) : c ̸∈ S}| = 26, by 2.1 (iii) and 2.2 (ii) of 

[6], 

|{S ∈ Sub(H2) : {c} ⊆ S}| = 12,  

 

whereby | Sub(H2)| = 12 + 26 = 38 proves (viii). 

For (vi), notice that 

|{S ∈ Sub(H3) : f ̸∈ S}| = 76, by 2.1 (iii) and 2.2 (ii) of 

  

 

Fig. 1. N ′, C(2) × C(3) and H1  

 

 

 

Fig. 2. B4, N5B4 and N6 
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[6], 

|{S ∈ Sub(H3) : {f } ⊆ S}| = 67, 

whereby | Sub(H3)| = 76 + 67 = 142 proves (vi). 

For (vii), observe that 

|{S ∈ Sub(N7) : d ̸∈ S}| = 64, by (2.4) of [6], 

|{S ∈ Sub(N7) : d ∈ S, {a, b, b′, c} ∩ S = ∅}| = 4, and 

|{S ∈ Sub(N7) : d ∈ S, {a, b, b′, c} ∩ S ̸= ∅}| = 15, 

whereby | Sub(N7)| = 64 + 4 + 15 = 83 proves (vii). 

For (viii), observe that 

|{S ∈ Sub(N6B4) : a ̸∈ S}| = 86, by lemma 2.1 (i) 

of [1], and 2.1(iii) of [6] 

|{S ∈ Sub(N6B4) : a ∈ S, {b, c, e, d, f } ∩ S = ∅}| = 4, and 

|{S ∈ Sub(N6B4) : a ∈ S, {b, c, e, d, f } ∩ S ̸= ∅}| = 42, 

whereby | Sub(N6B4)| = 86 + 4 + 42 = 132 proves (viii). 

For (ix), observe that 

|{S ∈ Sub(N6) : d ̸∈ S}| = 32, by (2.4) of [6], 

|{S ∈ Sub(N6) : d ∈ S, {a, b, c} ∩ S = ∅}| = 4, and 

|{S ∈ Sub(N6) : d ∈ S, {a, b, c} ∩ S ̸= ∅}| = 7, 

whereby | Sub(N6)| = 32 + 4 + 7 = 43 proves (ix). 

For (x), observe that 

|{S ∈ Sub(N ′) : c ̸∈ S}| = 23, by 2.1 (i) and 2.2 (ii) of 

[6], 

|{S ∈ Sub(N ′) : d ∈ S, {a, b} ∩ S ̸= ∅}| = 6, and 

|{S ∈ Sub(N ′) : {a, b} ∩ S = ∅}| = 8, 

whereby | Sub(N ′)| = 23 + 6 + 8 = 37 proves (x). 

For (xi), observe that 

|{S ∈ Sub(B4) : b ̸∈ S}| = 8, (S is chain), 

|{S ∈ Sub(B4) : b ∈ S, {a} ∩ S = ∅}| = 4, and 

|{S ∈ Sub(B4) : b ∈ S, {a} ∩ S̸= ∅}| = 1, 

whereby | Sub(B4)| = 8 + 4 + 1 = 13 = 26 · 24−5 proves 

(xi). 

For (xii), observe that 

|{S ∈ Sub(N ′) : d ̸∈ S}| = 43, by 2.1 (ix), 

|{S ∈ Sub(N ′) : d ∈ S, {a, b, c, f } ∩ S ̸= ∅}| = 18, and 

|{S ∈ Sub(N ′) : d ∈ S, {a, b, c, f } ∩ S = ∅}| = 4, whereby 

| Sub(N7)| = 43 + 18 + 4 = 65 proves (xii).  

 

For (xiii), observe that 

|{S ∈ Sub(N7B4) : d ̸∈ S}| = 208, by 2.1 (iii) and 

2.2 (ii) of [6], 

|{S ∈ Sub(N7B4) : d ∈ S, {a, b, c, e, f, g} ∩ S ̸= ∅}| = 43, 

and 

|{S ∈ Sub(N7B4) : d ∈ S, {a, b, c, e, f, g} ∩ S = ∅}| = 4, 

whereby | Sub(N7B4)| = 208 + 43 + 4 = 255 proves 

(xiii). 

For (xiv), observe that 

|{S ∈ Sub(N ′B4) : f ̸∈ S}| = 132, by lemma 2.1 

(viii) 

|{S ∈ Sub(N ′B4) : f ∈ S, {a, b, c, e, d, g} ∩ S ̸= ∅}| = 49, 

and 

|{S ∈ Sub(N ′B4) : f ∈ S, {a, b, c, e, d, g} ∩ S = ∅}| = 4, 

whereby | Sub(N ′B4)| = 132 + 49 + 4 = 185 proves (xiv). 

Remark 2.2. A computer program is available for 

counting subuni- verses (and to prove the above Lemma) 

on the webpage of G. Cz´edli: http://www.math.u-

szeged.hu/˜czedli/ 

 

3. THE MAIN RESULT 

Following Cz´edli and Horv´ath (2019), for a natural 

number n ∈ N+ := {1, 2, 3, . . . }, let NS(n) := {| Sub(L)| : 

L is a lattice of size |L| = n}. 

For further notions and notations see [4] and [6]. For 

the lattice N7, 

see Figure 3. Our main result is the following 

Theorem 3.1. If 6 ≤ n ∈ N+, then the following 

assertions hold. 

(i) The sixth largest number in NS(n) is 

21.125·2n−5. Furthermore, an n-element lattice L has 

exactly 21.125 · 2n−5 subuniverses if and only if L ∼= C0 

+glu B4 +glu C2 +glu B4 +glu C1,where C0 , C1 

and C2 are chains 

(ii) The seventh largest number in NS(n) is 20.75 · 

2n−5. Further- more, an n-element lattice L has exactly 

20.75 · 2n−5 subuni- verses if and only if L ∼= C0 +glu 

N7 +glu C1, where C0 and C1 

are chains. 

A k-element antichain will be called a k-antichain, as 

in [6]. We also need the following well-known facts from 

the folklore. 

Lemma 3.2. For every join-semilattice S generated by 

{a, b, c}, there is a unique surjective homomorphism φ 

from the free join-semilattice Fjsl(a˜, ˜b, c˜), given in Fig. 

6, onto S such that φ(a˜) = a, φ(˜b) = b, and φ(c˜) = c. 

 

 

 

 

 

 

 

 
            Fig. 6. Fjsl(a˜, ˜b, c˜) and Flat(a˜, ˜b, c˜) 

 

Lemma 3.3 (Rival and Wille [10, Figure 2]). For every 

lattice K generated by {a, b, c} such that a < c, there is a 

unique surjective ho- momorphism φ from the finitely 

presented lattice Flat(a˜, ˜b, c˜), given in Figure 6, onto K 

such that φ(a˜) = a, φ(˜b) = b, and φ(c˜) = c. 

Proof of Theorem 3.1. We prove part (i); 

Let L be an n-element lattice. We obtain from Lemma 

1.1 (iii) and from 2.1(i) that if 

L ∼= C0 +glu B4 +glu C2 +glu B4 +glu C1 for finite 

chains C0 and C1,                                                               (3.1) 
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then | Sub(L)| = 21.125 · 2n−5. We know from [1] that 

the fifth largest number in NS(n) is 21.25 · 2n−5. Hence, 

in order to complete the proof of Theorem 3.1 (i), it 

suffices to exclude the existence of a lattice L such that 

|L| = n, 21.125 · 2n−5 ≤ | Sub(L)| < 21.25 · 

2n−5, but L is not of the form given in (3.1).       (3.2) 

Suppose, for a contradiction, that L is a lattice satisfying 

(3.2). Then, by Theorem 1.1 of [6] and Lemma 3.3 of [6], 

L has at least two 2-antichains but it has no 3-antichain.

                                                                               (3.3)  

We state that 

L cannot have two non-disjoint 2-antichains.       (3.4) 

Suppose to the contrary that {a, b} and {c, b} are two 

distinct 2- antichains in L. Since there is no 3-antichain in 

L, we can assume that a < c. With K := [{a, b, c}], let φ : 

Flat(a˜, ˜b, c˜) → K be the unique lattice homomorphism 

from Lemma 3.3, and let Θ be the kernel of φ. We follow 

the notations of Figure 6. If Θ does not collapse e1 and at 

least one of e4 or e6, then | Sub(L)| ≤ 17.25 · 2n−5 by 

Lemma 1.1 (ii) 

and by Lemma 2.1(ii). 

So, if Θ does not collapse e1, then it collapses both e4 

and e6. Since in this case e1 also generates the monolith 

congruence of the N5 sub- lattice of Flat(a˜, ˜b, c˜), no 

other edge of this N5 sublattice is collapsed. Hence, N5 is 

a sublattice of L. Clearly, {a, b, c} generates a pentagon  

 

N5. Keeping (3.2) in mind and applying Lemma 1.1 (iii) 

for K := N5, we obtain that L cannot be of form C0 +glu 

N5 +glu C1. 

Let o and i stand for the least and the largest elements 

of the men- tioned N5 sublattice, respectively. By Lemma 

2.1(iii), we can exclude that 

↓o is a chain, ↑i is a chain, and [o, i] = N5.       (3.5) 

Thus, at least one of the three parts of (3.5) fails. 

If ↓o is not a chain, then we would have a sublattice of 

form either 

B4 +glu B4 or B4 +glu C1 +glu B4, but then the number 

of subuniverses could be at most 21.25 · 2n−5. By Lemma 

1.1 (ii), moreover 21.25 · 2n−5 can appear only in case that 

L is of form C0 +glu B4 +glu B4 +glu C1. Hence, ↓o is a 

chain. We obtain, by duality, for later reference that 

↓o and ↑i are chains.                                                  (3.6) 

So there exists an element d ∈ L\ N5 such that d is 

neither above the top of this N5, nor below the bottom of 

this N5. If we suppose i ∥ d; in this case the number of 

subuniverses is at most 19.75 · 2n−5 by Lemma 2.1(iv) and 

Lemma 1.3. The case o ∥ d is the same by duality. Since 

neither {a, b, d}, nor {c, b, d} is a 3-antichain       (3.7) 

by (3.3), it follows that d is comparable to a or b and, 

also, d is compa- rable to c or b. We claim that d ∥ b. 

Suppose, for a contradiction, that d ̸ ∥ b. (Note, for later 

reference, that the only assumption on d is that d ∈ L \ 

(N5 ∪ ↓o ∪ ↑i). By duality, we can assume that d < b. 

Consider 

the element v := a ∨ b. If we had v = i, then {o, i, a, b, c, 

d} ∼= N ′ would 

easily lead to | Sub(L)| ≤ 18.5 · 2n−5 via Lemmas 1.1 

and 2.1, whereby v < i. We have that v ̸≤ b, because 

otherwise we would obtain that a ≤ b. Since v ≥ b would 

lead to v = b ∨ v ≥ a ∨ b = i, it follows that v ∥ b. Now if v 

̸= c, then we have that 

a ∨ b = i, a ∧ b = o, c ∨ b = i, c ∧ b = o, a ∨ d = v, and v ∨ 

b = i.                                                                                                (3.8) 

The seven-element partial lattice {o, i, a, b, c, d, v} 

defined by these equal- ities has 19.5 · 27−5 subuniverses, 

whence | Sub(L) ≤ 19.5 · 2n−5 by Lemma 1.3. So, this case 

cannot occur. On the other hand, if v = c, then the six-

element partial lattice {o, i, a, b, c, d} defined by the equal- 

ities 

a ∨ b = i, a ∧ b = o, c ∨ b = i, c ∧ b = o, a ∨ d = i         (3.9)  

has 21 · 26−5 subuniverses, whence | Sub(L)| ≤ 21 · 

2n−5 by Lemma 1.3, and this case is excluded again. Now, 

we can conclude that d ∥ b. In 

fact, taking the assumptions on d into account and 

using that i ∥ d has 

previously been excluded , we have proved that 

if x ∈ L \ N5 is not in ↓o ∪ ↑i, then x ∥ b and  

o < x < i.                                                                           (3.10) 

Next, armed with d ∥ b, (3.7) implies that {a, c, d} is a 

chain. There are two subcases depending on d ∈ [a, c] or 

d ∈/ [a, c].  

 

If a < d < c, then {o, i, a, b, c, d} forms a sublattice 

isomorphic to N6. To ease the notation, we write N6 = {o, 

i, a, b, c, d}. Using equation 3.2 from [1] , the equality | 

Sub(N6)| = 21.5 · 26−5 from Lemma 2.1, and Lemma 1.1 

(iii), we get that L is not of the form C0 +glu N6 +glu C1 

with C0 and C1 being chains. Hence, there is an element 

e ∈ L \ N6 violating this form. If e ∈ ↓o, then ↓o is not a 

chain, whence B4 +glu N6 or B4 +glu C(2) +glu N6 is a 

sublattice of L. But it is straight- forward to compute that 

| Sub(B4 +glu N6)| = 17.6875·2|B4 +glu N6|−5 and 

| Sub(B +  C(2) +  N )| = 17.46875·2|B4 +glu C(2) +glu 

N6|−5, whence we can use Lemma 1.1 to exclude that ↓o 

is not a chain. So, by duality, 

both ↓o and ↑i are chains.                                  (3.11)  

In particular, e ∈/ ↓o ∪ ↑i, and we obtain from (3.10) 

that e ∥ b. But 

{b, d, e} is not a 3-antichain, so we can assume that e < d. 

No if a < e, then we have a sublattice {o < a < e < d < c < i, 

o < b < i} such that b is the complement of each of a, e, d, 

and c. This seven-element sublattice has only 20.75 · 27−5 

subuniverses, which excludes the case 

a < e in the usual way. So, a ∥ e. Then 

b ∧ x = o for every x ∈ {a, e, d, c} and b ∨ y = i for every 
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y ∈ {a, d, c},                                                                       (3.12) 

and either a ∨ e = d, or a ∨ e =: u < d, u ∧ b = o, and u ∨ 

b = i. At the first alternative, (3.12) together with a ∨ e = d 

defines a seven-element partial sublattices {o, i, a, b, c, d, 

e} with only 18.5 · 27−5 subuniverses, which is excluded 

in the usual way. At the second alternative, (3.12) together 

with a ∨ e =: u < d, u ∧ b = o, and u ∨ b = i defines an eight-

element partial sublattice {o, i, a, b, c, d, e, u} with only 18 

· 27−5 subuniverses, which is excluded again. We have 

just excluded that a < d < c. 

Now that d is not in [a, c], duality allows us to assume 

that o < d < a < c. Let u := d ∨ b. We can assume that u < 

i, since otherwise d ∨ b = i and after interchanging a and 

d, we are in the previous case. Clearly,  

b ∨ d = u, b ∨ a = i, b ∨ c = i, a ∨ u = i, 

c ∨ u = i, b ∧ d = o, b ∧ a = o, and b ∧ c = o,             (3.13)  

and these equations define a seven-element partial 

sublattice {o, i, a, b, c, d, u} with 17.75 · 27−5, 

subuniverses, whereby this case is excluded. 

In the case that Θ does collapse two upper edges, We 

get H2 = 

{a, b, c, d, u, i}, where u := a ∧ b, see Figure 4. The total 

number of subuniverses is 19·26−5 by lemma 2.1(v). 

Whereby this case is excluded The eight-element partial 

lattice H1 := {o, 1, a, b, c, d, e, f } see Figure 

2 has 19.75 · 28−5 subuniverses, by Lemma 2.1(iv), this 

case is excluded. After excluding all these cases, we have 

shown the validity of (3.4). To provide a convenient toll 

to exploit (3.3) and (3.4), we claim that  

if x, y, z ∈ L such that |{x, y, z}| = 3 and x ∥ y, then 

either {x, y} ⊆ ↓z, or {x, y} ⊆ ↑z,                                    (3.14)  

 

To see this, assume the premise. Since L has no 3-

antichain, z is comparable to one of x and y. By duality 

and symmetry, we can assume that x < z. Since z < y 

would imply x < y and z ∥ y together with x ∥ y would 

contradict (3.18), we have that y < z. This proves (3.14). 

Next, by (3.3) and (3.4), we have a four-element subset 

{a, b, c, d} of 

L such that a ∥ b and c ∥ d. By duality and (3.14), we can 

assume that 

{a, b} ⊆ ↓c. Applying (3.14) also to {a, b, d}, we obtain 

that {a, b} is included either in ↑d, or in ↓d. Since the first 

alternative would lead to d < a < c and so it would 

contradict c ∥ d, we have that 

{a, b} ⊆ ↓d. Thus, {a, b} ⊆ ↓c ∩ ↓d = ↓(c ∧ d), and we 

obtain that u := a ∨ b ≤ c ∧ d =: v. Let S := {a ∧ b, a, b, u, v, 

c, d, c ∨ d}. Depending on u = v or u < v, S is a sublattice 

isomorphic to B4 +glu B4 or B4 +glu C(2) +glu B4. But in 

the case, it isomorphic to B4 +glu B4 we have | Sub(L)| = 

21.25 · 2n−5, which is excluded in our claim. Using 

Lemma 1.1 together with (i) and (xi) of Lemma 2.1, we 

obtain that 

| Sub(L)| ≤ 21.125 · 2n−5 and | Sub(L)| = 21.125 · 2n−5 

holds only when 

L is of form (3.1). 

We prove part (ii). 

Let L be an n-element lattice. We obtain from Lemma 

1.1 (iii) and from 2.1(vii) that if 

L ∼= C0 +glu N7 +glu C1 for finite chains C0 and C1,

 (3.15) 

then | Sub(L)| = 20.75 · 2n−5. In order to complete the 

proof of The- orem 3.1 (ii), it suffices to exclude the 

existence of a lattice L such that 

|L| = n, 20.75 · 2n−5 ≤ | Sub(L)| < 21.125 · 

2n−5, but L is not of the form given in (3.15). (3.16) 

Suppose, for a contradiction, that L is a lattice satisfying 

(3.16). Then, by Theorem 1.1 of [6] and Lemma 3.3 of [6], 

L has at least two 2-antichains but it has no 3-antichain.

 (3.17)  

We prove that 

L cannot have two non-disjoint 2-antichains. (3.18) 

Suppose to the contrary that {a, b} and {c, b} are two 

distinct 2- antichains in L. Since there is no 3-antichain in 

L, we can assume that a < c. With K := [{a, b, c}], let φ : 

Flat(a˜, ˜b, c˜) → K be the unique lattice homomorphism 

from Lemma 3.3, and let Θ be the kernel of φ. 

We follow the notations of Figure 6. 

First, we investigate the case when Θ does not collapse 

e1 and at least one of e4 or e6. By duality, we can assume 

that e4 is not collapsed. Since e1 generates the monolith 

congruence, i.e., the smallest nontrivial congruence of the 

N5 sublattice of Flat (a˜, ˜b, c˜), no other edge of the N5 

sublattice is collapsed. Now, e4 is perspective to e5, e9 is 

perspective to  

 

e8. Hence, N5B4 is a sublattice of L and we conclude 

that | Sub(L)| ≤ 

17.25 · 2n−5 by Lemma 1.1 (ii) and by Lemma 2.1 (ii). 

So, if Θ does not collapse e1, then it collapses both e4 

and e6. Since in this case e1 also generates the monolith 

congruence of the N5 sublattice of Flat(a˜, ˜b, c˜), no other 

edge of this N5 sublattice is collapsed. Hence 

{a, b, c} generates a pentagon sublattice N5 of L. We 

know from [6] that 

| Sub(N5)| = 23, and we also have assumed in (3.16) 

that | Sub(L)| < 23 · 2n−5. Thus, it follows from Lemma 

1.1 (iii) that L cannot be of form (3.16) Similarly to case (i), 

again, if ↓o is not a chain, then we would have a sublattice 

of form either B4 +glu B4 or B4 +glu C1 +glu B4, but then 

the number of subuniverses could be at most 21.25 · 2n−5. 

By Lemma 1.1 (ii), moreover 21.25 · 2n−5 can appear only 

in case that L is of form C0 +glu B4 +glu B4 +glu C1 as 

proved in [1] . Hence, ↓o is a chain. We obtain, by duality, 

for later reference that 

↓o and ↑i are chains. (3.19) 
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The situation that there exists an element d ∈ [o, i] \ N5 

together with the absence of 3-antichains imply that d 

must be comparable either with b or with a and c. But 

then L has either N6 or N ′ as a sublattice and Lemma 1.1 

and Lemma 2.1(ix) and (x) yields that L has either at most 

21.5 · 2n−5 or at most 18.5 · 2n−5 sublattices. In case L has 

N6 sublattice, by Lemma 1.1 (iii), 21.5 · 2n−5 but this has 

been excluded in (3.16). By duality, we are left with the 

case when there exists an element d ∈ L \ N5 such that d 

is neither above i nor below o and i ∥ d then the number 

of subuniverses is at most 19.75 · 2n−5 by Lemma 2.1(iv) 

and Lemma 1.3. 

The case Θ does collapse e2 or e3, Then N6B4 is 

sublattice of L and 

we conclude that | Sub(L)| ≤ 16.5 · 2n−5 by lemma 

2.1(viii) that case also excluded. 

Second, we investigate the case when Θ does collapse 

e1. Since a ∥ b and c ∥ b, none of the thick edges e8, . . . , 

e11 is collapsed by Θ. Observe that at least one of e4 and 

e6 is not collapsed by Θ, since otherwise 

⟨a˜, c˜⟩ would belong to Θ = ker(φ) by transitivity and a 

= c would be a contradiction. By duality, we can assume 

that e4 is not collapsed by Θ. Since e2, e3, and e5 are 

perspective to e10, e9, and e4, respectively, these edges 

are not collapsed either. So, with the exception of e1, no 

edge among the elements denoted by big circles in Figure 

6 is collapsed. Thus, the φ-images of the “big” elements 

form a sublattice (isomorphic to) C(2) × C(3) in L. Hence, 

| Sub(L)| ≤ 19 · 2n−5 by Lemma 1.1 (ii) and 2.1(iii), which 

contradicts our assumption that L satisfies (3.16). This 

proves (3.18). 

Similarly, to (3.14), the same claim here also holds 

(because of (3.17) and (3.18)), namely  

if x, y, z ∈ L such that |{x, y, z}| = 3 and x ∥ y, then 

either {x, y} ⊆ ↓z, or {x, y} ⊆ ↑z,                                    (3.20)  

 

and its proof is also the same. 

Next, by (3.17) and (3.18), we have a four-element 

subset {a, b, c, d} of L such that a ∥ b and c ∥ d. By duality 

and (3.20), we can assume that {a, b} ⊆ ↓c. Applying (3.20) 

also to {a, b, d}, we obtain that 

{a, b} is included either in ↑d, or in ↓d. Since the first 

alternative would lead to d < a < c and so it would 

contradict c ∥ d, we have that 

{a, b} ⊆ ↓d. Thus, {a, b} ⊆ ↓c ∩ ↓d = ↓(c ∧ d), and we 

obtain that u := a ∨ b ≤ c ∧ d =: v. Let S := {a ∧ b, a, b, u, v, 

c, d, c ∨ d}. Depending on u = v or u < v, S is a sublattice 

isomorphic to B4 +glu B4 or B4 +glu C(2) +glu B4. Using 

Lemma 1.2 of together with (i) and (ix) of Lemma 2.1, we 

obtain that | Sub(L)| ≤ 21.25 · 2n−5. This inequality 

contradicts (3.16) and completes the proof of part(ii) of 

Theorem 3.1. 

 

4. CONCLUSION 

We proved that the sixth largest number of 

subuniverses of an n- element lattice is 21.125 · 2n−5 and 

the seventh largest number is 20.75 · 2n−5. Also, we 

described the n-element lattices with exactly 21.125·2n−5 

which is L ∼= C0 +glu B4 +glu C2 +glu B4 +glu C1 and 

20.75 · 2n−5 subuni- 

verses which is L ∼= C0 +glu N7 +glu C1. One of the 

most important 

applications of this result is in road systems with traffic 

lights. 
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