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1. INTRODUCTION  
Time series forecasting plays a pivotal role, involving the 
collection and analysis of historical data related to a 
singular variable. This data is then leveraged to construct 
a model that captures the inherent relationships. 
Projecting this time series into the future is made possible 
through this model. Forecasting techniques serve as vital 
tools in decision-making across diverse domains, such as 
finance, management, the environment, and economics 
(Lima et al., 2019). Even after more than five decades of 
consistent application, exponential smoothing remains 
among the most practically valuable forecasting methods 
(Goodwin, 2010). The primary goal of transformation is 
to enhance the statistical analysis of time series data by 
identifying an appropriate model. In instances where the 
variance fluctuates alongside the mean measurement 
level, a straightforward and established class 
transformation is employed to stabilize the variance 
(Bartlett, 1947). In 1957, Tukey introduced the power 
transformer as a means to achieve distribution normality 
or at the very least, symmetrize error distribution (Tukey, 
1957). By 1962, Box and Tidwell had developed the 
practice of back-transforming data into its original 
domain. Their focus was on normalizing error 
distribution and transforming independent variables 

without compromising homoscedasticity (Box and 
Tidwell, 1962). Addressing anomalies such as non-
additivity, non-normality, and heteroscedasticity, Box 
and Cox presented a parametric power transformation 
approach in 1964 (Box and Cox, 1964). In 1969, Draper 
and Cox demonstrated that a power transformation 
satisfying non-normality would yield an approximately 
robust estimation of the power parameter, corresponding 
to a reasonably symmetrical distribution (Draper and 
Cox, 1969). Poirier's 1978 statement highlighted the 
challenge of assessing the insignificance of truncation 
impact, given its dependence on unknown distributional 
factors (Poirier, 1978). In 1980, Carroll proposed an 
alternative method for obtaining a robust estimator, 
distinct from the likelihood method, while also delving 
into the theoretical exploration of approximate normality 
(Carroll, 1980). The year 2000 saw Yeo and Johnson 
introduce a new family of distributions, unrestricted in 
application, possessing several desirable properties of the 
Box-Cox transformation (BCT). This new family allowed 
for use with both positive and negative variable values 
(Yeo and Johnson, 2000). Adrian, in 2014, combined 
transforms with exponential smoothing methods in the 
pursuit of enhanced forecasts. Two transform types were 
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investigated: the first applied directly to time series data, 
and the second indirectly to prediction errors. Results 
indicated that non-transformed time series were notably 
inferior to some transformed counterparts (Beaumont, 
2014). In 2016, Bergmeir et al. utilized bagging 
exponential smoothing methods coupled with Seasonal, 
Trend Level (STL) decomposition and BCT. A technique 
was presented involving components' packing for 
exponential smoothing methods. This technique 
employed BCT followed by STL analysis to break down 
the time series into trend, seasonal components, and 
residuals. A new sequence was formed using 
bootstrapped residuals after smoothing the remaining 
data with an animation block (Bergmeir et al., 2016). In 
2019, Voulgaraki applied BCT to sales forecasting. Using 
historical monthly sales data from Greece's new car retail 
industry, several time series models were compared for 
estimation and forecasting. The findings highlighted 
significantly superior predictions from Box-Cox 
transformed data compared to untransformed data 
(Voulgaraki, 2019). In 2021, Aytaç utilized BCT in 
conjunction with the Prophet algorithm for forecasting 
Turkey's hazelnut export quantities. The primary goal 
was to estimate hazelnut export volumes from Turkey 
over the subsequent 36 months, starting from June 2020. 
The Prophet algorithm facilitated the forecasts, with 
adjustments made to enhance prediction accuracy. A 
booster file was employed to establish data set stability 
and frequency. The time series data underwent the 
Shapiro-Wilk test. The Prophet algorithm, aided by BCT, 
revealed the data set's seasonality, showing monthly 
oscillations in export volumes. Given that Turkey's 
hazelnut harvest occurs in August, monthly export 
figures started climbing, peaking in October (Aytaç, 
2021). 
The focal point of this paper revolves around leveraging 
power transformations to enhance the predictive capacity 
of time series models. The application of BCT within 
exponential smoothing, particularly the Holt-Winters 
method, was undertaken. The remaining sections of the 
paper are structured as follows: The subsequent segment 
delves into the theoretical underpinnings of exponential 
smoothing. Following that, the third section explores the 
theoretical foundations of the BCT. The fourth section 
outlines the proposed algorithm for the development of a 
Holt-Winters exponential smoothing model using the 
BCT. Moving forward, the fifth section provides a 
practical dimension to the study. Concurrently, the sixth 
section outlines the conclusions. 
 
2.1 EXPONENTIAL SMOOTHING 
The foundational research conducted by Brown (1959, 
1962) and Holt (1960), aimed at creating forecasting 
models for inventory management systems, marked the 
inception of exponential smoothing techniques in the 

1950s (Fomby, 2008). These smoothing methodologies 
find application in both seasonal and non-seasonal time 
series analyses, enabling the estimation and provision of 
reasonably accurate short-term forecasts. One of the most 
prevalent predictive approaches, exponential smoothing 
equations for parameter estimation and prediction 
generation possess an intuitive and easily 
comprehensible nature, making them widely employed 
in business contexts. When applying smoothing 
techniques to data, observed values are utilized to derive 
smoothed values for the time series. These smoothed 
values are then employed to predict future time series 
values, forming the fundamental concept of exponential 
smoothing (Washington et al., 2003). The term 
"Exponential Smoothing" itself underscores the 
exponential decline of weights as observations age 
(Hyndman et al., 2008). Smoothing is a mechanism to 
minimize deviations among string values around the 
curve representing the overall pattern of the string. 
During data smoothing, previous values are employed to 
generate a smoothed value for the time series, which is 
subsequently extended; this process can be seen as the 
transformation of unruly data into a smoother form, 
rendering it more manageable. Moving averages and 
smoothing constitute pivotal tools in the exponential 
smoothing process (Yaffee and McGee, 2000). This 
technique is especially suitable for forecasting series that 
exhibit trends, seasonality, or both (Shastri et al., 2018). 
Seasonal behavior in a time series denotes its inclination 
to exhibit recurrent patterns at regular intervals. The term 
"season" denotes the period preceding the repetition of 
the behavior. Figure (1) illustrates various non-seasonal 
and seasonal curves. For added seasonality, the series 
demonstrates consistent seasonal fluctuations 
irrespective of its overall level, while for multiplicative 
seasonality, the extent of seasonal fluctuations varies in 
relation to the general series level. These characteristics 
are visually evident in the series graphs themselves 
(Hyndman et al., 2008). In 1969, Pagels classified 
exponential smoothing methods as suitable for series 
featuring constant level or direction (additive or 
multiplicative), with both non-seasonal and seasonal 
attributes (Pagels, 1969). In 2002, Hyndman, Rob J, et al. 
provided a taxonomy for these methods, within which 
the well-known Holt-Winters Exponential Smoothing 
(HWES) method emerged. This method is particularly 
designed for seasonal time series manifesting uniform 
seasonal patterns. It has even been adapted to 
accommodate multiple seasonality recently (Hyndman et 
al., 2002).  
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Figure 1: Trend types and seasonal indicators  Additive 
and Multiplicative (Gardner, 1985). 

In 1960, Winters extended the double exponential 
smoothing technique, leading to its recognition as the 
HWES method. This specific smoothing technique is 
tailored exclusively for seasonal time series, ideally suited 
for those exhibiting a single seasonal pattern. Widely 
employed for forecasting within seasonal time series 
data, this method is structured around three foundational 
equations: one for level, another for trend, and a third for 
seasonality. Much like the Holt method, HWES 
incorporates an additional equation to handle 
seasonality, contingent upon whether the seasonality is 
multiplicative or additive (Taylor and Snyder, 2012). The 
additive approach of HWES is particularly appropriate 
for time series data where the amplitude of the seasonal 
effect remains consistent, independent of the mean level 
of the series. Expressing the h-step-ahead forecasting for 
a time series at period 𝑡 with seasonality 𝑠, the additive 
approach of HWES can be formulated (Setiawan et al., 
2017),  

ŷ𝑡+ℎ = 𝜇𝑡 + 𝑏𝑡ℎ + 𝐼𝑡+ℎ+𝑠          , ℎ
= 1,2, . . .                             (1) 

 
Where ŷ𝑡+ℎ  denotes the forecasted value at period 𝑡 + ℎ, 
and,     
 
𝜇 = 𝛼(𝑌𝑡 − 𝐼𝑡−𝑠 ) + (1 − 𝛼)(𝜇𝑡 + 𝑏𝑡−1)                                  (2) 
𝑏𝑡 = 𝛽(𝜇𝑡 − 𝜇𝑡−1) + (1 − 𝛽)𝑏𝑡−1                                            (3) 
𝐼𝑡 = 𝛿(𝑌𝑡 − 𝜇𝑡) + (1 − 𝛿)𝐼𝑡−𝑠                                                     (4) 
 
Where 𝛼, 𝛽, and 𝛿 are constants. They need to be 
estimated in order to minimize the Mean Square Error 
(MSE), 
 

𝑀𝑆𝐸 =  
∑(𝑦𝑡 − ŷ𝑡)

2

𝑛
                                                                    (5) 

 

and the Mean Absolute Error (MAE), 
 

𝑀𝐴𝐸 =  
∑|𝑦𝑡 − ŷ𝑡|

𝑛
                                                                       (6) 

 

In this context, 𝑦𝑡 represents the observed value, ŷ𝑡 
signifies the predicted value, and 𝑛 stands for the number 

of data points. 𝜇𝑡 signifies the smoothed local level at time 
t after accounting for seasonality and trend. 𝑏𝑡  represents 
the smoothed local seasonal trend at time 𝑡, while 𝑠𝑡 
indicates the smoothed local seasonal index at time 𝑡. The 
variable ℎ denotes the forecast horizon, and 𝑌𝑡 refers to 
the observation at time t, serving as an index for a given 
period. 
For the initial estimation of seasonal indices, it is 
imperative to employ data spanning at least one complete 
season (i.e., a set of periods). Consequently, the 
initialization of trends and levels takes place at specific 
periods. The initialization of the level involves computing 
the average of the first season's data (Nuurhamidah et al., 
2020). 
 

𝜇𝑠  =
1

𝑠
(𝑌1 + 𝑌2+. . . . . +𝑌𝑆)                                                         (7) 

 

Note that this is the average of orders and will eliminate 
the data's seasonality. To initialize the trend, it is 
convenient to use two complete seasons (i.e , 2s periods) 
as follows, 

 

𝑏𝑡 =
1

𝑠
(
𝑌𝑠+1 − 𝑌1

𝑠
+

𝑌𝑠+2 − 𝑌2

𝑠
+. . . . .

𝑌𝑠+𝑠 − 𝑌𝑠

𝑠
  )                  (8) 

 
Each of these terms is an estimate of the trend over one 
complete season and the initial estimate (Nuurhamidah, 
et al, 2020), 

  
𝐼𝑡 = 𝑌1 − 𝜇𝑠  𝐼2 = 𝑌2 − 𝜇𝑠 ,……, 𝐼𝑡 =  𝑌𝑠 − 𝜇𝑠.                        (9) 
 

Finding the 𝛼, 𝛽 and 𝛿 parameters value improves the 
model's performance (Mi et al., 2018). 
 

2.2 BOX-COX TRANSFORMATION 
A set of operations referred to as power transformation is 
utilized to monotonically alter data through power 
functions. This technique proves effective in reducing 
variance, rendering data more akin to a normal 
distribution, and enhancing the validity of association 
metrics such as the Pearson correlation between variables 
when compared to other data stabilization approaches. 
Among the most frequently employed transformations in 
this domain is the BCT method, which was introduced in 
1964 (Sakia, 1992). The foundations of this method are 
built upon the premise of normalizing the response 
variable's data through transformation and subsequently 
determining the distribution of the original data. In this 
section of the article, we have also reexamined the 
scenario of the univariate normal random variable, 
adjusting certain aspects to align with the article's 
objectives. 
Assuming that z1, z2, … … , zn represents the observations 
of the transformed data of the random variable Y . let Z be 
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distributed according to the normal distribution with 
mean μ and variance σ2 and has the following equation, 
 

𝑓𝑍(𝑧) = (2П𝜎2)−1 2⁄  . 𝑒𝑥𝑝 {
−1

2𝜎2
(𝑧 − 𝜇)2}            , 𝑍𝜖 𝑅     (10) 

               
and suppose that the original data 𝑦1, 𝑦2, … … , 𝑦𝑛 have 
been transformed using BCT model, 
 

𝑍 = 𝑌(𝜆) = {

𝑦𝜆 − 1

𝜆
                    , 𝜆 ≠ 0     

                
  𝑙𝑛 𝑦                        , 𝜆 = 0     

                           (11) 

Through the derivation of the inverse function of Eq. (11) 
obtained,  

 

 𝑦 = 𝑔(𝑧) = {
(𝑧𝜆 + 1)1 𝜆⁄                          , 𝜆 ≠ 0  

                
   𝑒𝑥𝑝 (𝑧)                              , 𝜆 = 0  

               (12) 

 
It means that the transformation is from Z to g(z). Using 
the Change-of-Variables Technique, the following 
equation represents the probability density function of 
the random variable 𝑌, which represents the original data 
𝑦1, 𝑦2, … … , 𝑦𝑛, 

 

𝑓𝑌(𝑦) = (2П𝜎2)−1 2⁄  . 𝑒𝑥𝑝 {
−[𝑔−1(𝑧) − 𝜇]2

2𝜎2
 } . 𝐽(𝜆; 𝑦) 

, 𝑦𝜖 𝑅+   (13) 

 
where 𝑔−1(𝑧 ) represents the inverse function of  Eq. (12).  
              

𝑓𝑌(𝑦) = (2П𝜎2)−1 2⁄  𝑦𝜆−1 . 𝑒𝑥𝑝 {
−1

2𝜎2
(
𝑦𝜆 − 1

𝜆
 – 𝜇)2}      (14) 

 
As for the methods of estimating the power parameter λ, 
one of the criteria is to choose the estimator that 
maximizes the following log-likelihood function of the 
PDF of the original variable y, 
 

𝐿𝑀𝑎𝑥(𝜆, 𝑦) =
−1

2
𝑙𝑜𝑔 2𝜋𝜎2 −

1

2𝜎2
(𝑧 − 𝜇)2) + 𝑙𝑜𝑔 𝐽(𝜆, 𝑦) 

(15) 

Where 𝜎^2
(𝜆) is the variance estimator of 𝑦. 

 
 

3. COMPUTATIONAL ALGORITHM 
In this part of the article, the following proposed 
computational algorithm was developed in estimation to 
develop HWES using the BCT on the original data and 
then to deal with the transformed data. The choice of 
optimum power parameter 𝜆 in this algorithm is based on 
the three following different criteria; The first is 𝐿𝑀𝑎𝑥(𝜆, 𝑦) 
the MLE value of the original random variable 𝑌 
according to Eq. 15. The second is the Select the value of  
𝜆 , which corresponds to the largest value of the log-

likelihood function random variable 𝑍 according to Eq.10. 
The third is to use various test statistics such as the 
significant or highest p-value of the Shapiro-Wilk test of 
fit test statistic of original data normality. Therefore, the 
proposed application algorithm for using the of BCT 
model to develop a HWES model was as follows: 
 
Step 1: Estimate the HWES of Eq. 1  
Step 2: Fix 𝜆 ∈  𝛬, where  𝛬 =  {−2, −1.9, … ,0 , … ,1.9 ,2}  

Step 3: Transform  𝑌 to 𝑍 = 𝑌(𝜆) using BCT according to 
Eq  11. 
Step 4: Calculate LMax(λ, y). 
Step 5: Estimate the values of HWES model using the 
inverse transdorm of 𝑧 according to Eq. 12 . 
Step 6: Calculate the p-value of the Shapiro-Wilk  test of 
the original data resulting from step 5.  
Step 7: Repeat all the steps from 3 to 7 for all values of  λ in 
Λ . 
 
4.  APPLICATION 
BCT was applied to the time series dataset of monthly 
Electric and Gas Utilities. The time series includes 972 
observations in the United States (TSU.S) from 1940 to 
2020. We use data on the Industrial production of electric 
and gas utilities in the United States from 1985–2022. 
Except for those in U.S. territories, this data measures the 
actual production of all pertinent facilities in the United 
States, irrespective of who owns them. Electric and gas 
utilities industrial production [IPG2211A2N], as 
downloaded from FRED by the Federal  Reserve Bank of 
St. Louis; 
https://fred.stlouisfed.org/series/IPG2211A2N, AICS= 
2211,2, Source Code: IP.G2211A2.N This data will be 
processed using R Software [Figure 2] 
 

 
Figure 2: The monthly Electric and Gas average series 

(TSU.S) 

Figure 3: The curve of MLE according Eq. 15 
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The outcomes of the algorithm's application to time series 
data are presented in Table 1. The table encompasses the 
forecasting results for the three evaluation criteria 
utilized in determining the optimal parameter value, 
namely: MSE and MAE values constitute the first and 
second criteria. The guiding principle here is that the 
optimal power parameter value corresponds to the 
lowest values of these criteria. The third criterion involves 
the p-value derived from the Shapiro-Wilk statistic for 
testing data normality. The guiding principle here is that 
the optimal power parameter value corresponds to the 
highest value of this indicator. A higher p-value indicates 
stronger evidence of data closely resembling a normal 
distribution. Observing Table 1, it becomes evident that 
the optimal power parameter value is 0.6, aligning with 
the minimum values of the first and second criteria and 
the maximum value of the third criterion. 
Figure 3 depicts the curve of MLE as per Eq. 15. The peak 
of the curve corresponds to the optimal power parameter 
value. This visualization underscores that the three 
criteria outlined in Table 1 have effectively led to the 
selection of the optimal parameter, in alignment with the 
traditional MLE approach. 

Table 1: The values of MSE, MAE, and p-value 
corresponding to all values of  λ ∈  Λ 

Figure 4:  MLE plot according to the dataset (TSU.S) 

 

Figure 5: The plot of MAE 
 

 
         Figure 6: The plot of the p-value of the SWT 

 
 

Table 2: The estimates of the optimal power parameter 
according to the three criteria 

 
 
6. CONCLUSION  
Numerous time series exhibit non-stationary variances, 
necessitating an appropriate variance-stabilizing 
transformation to address this concern. The utilization of 
power transformation offers a means to reduce variance. 
In many instances, this transformation fosters increased 
normality and variance stabilization. Several techniques 
exist for selecting the optimal power parameter, 
categorized into two types: the first involves established 
estimation methods such as MLE. The second approach 
employs efficiency criteria within time series modeling as 
decision guidelines for power parameter estimation. This 
article endeavors to derive a viable solution by 
considering various estimation methods and decision 
rules to identify the optimal parameter, consequently 
attaining the utmost efficiency improvement for the Holt-
Winters' method with additive seasonality in forecasting.  
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