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Abstract: This paper introduces a novel approach to tackle the Welded Beam Design Problem through the application of the Water 
Evaporation Optimization Algorithm (WEOA), a nature-inspired metaheuristic. The problem involves finding the optimal 
dimensions of a welded beam that can support a given load while minimizing its weight. The Water Evaporation Optimization 
Algorithm draws inspiration from the evaporation process and water droplet movement in nature. The design is formulated as 
an optimization challenge with beam dimensions as variables and incorporate constraints such as allowable stress and geometric 
limitations. The fitness function is tailored to evaluate each candidate solution based on load-bearing capacity and weight. To 
demonstrate the efficacy of the proposed method, extensive experimental evaluations are conducted. Comparisons with 
traditional optimization techniques highlight the WEOA's superior convergence and global search capabilities. Real-world case 
studies further illustrate the practical applicability of the optimized welded beam designs, showcasing their cost-effectiveness and 
high-performance characteristics. The results underscore the potential of the Water Evaporation Optimization Algorithm as a 
robust and efficient tool for tackling the welded beam design problem. The approach provides engineers with valuable support 
in achieving optimized beam designs, leading to improved structural performance and material utilization.  
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1. 
Introduction 

Swarm Intelligence (SI) is the term used to describe 
the collective behavior seen in natural systems. In this 
phenomenon, decentralized people interact locally to 
generate multifaceted and intelligent global patterns. 
SI draws inspiration from social insects, flocking 
birds, and schooling fish to use the collective abilities 
of individual agents in order to tackle intricate issues. 
These creatures, often represented as particles, ants, 
bees, or other entities, engage in communication and 
adaptation via local interactions and shared 
knowledge, resulting in emergent behaviors that 
surpass individual skills. SI methods, like as Ant 
Colony Optimization (ACO), Particle Swarm 
Optimization (PSO), and others, are used in several 
domains including optimization, machine learning, 
telecommunications, logistics, healthcare, and more. 
The method, which is defined by self-organization, 
adaptation, and emergence, still fascinates scholars 
and practitioners who are looking for creative answers 
to complex real-world problems [1]. Welded beams 
are essential structural components widely utilized in 
various engineering applications, encompassing 
buildings, bridges, and industrial machinery. 

Designing a welded beam involves striking a delicate 
balance between ensuring structural integrity, 
optimizing material utilization, and minimizing 
weight [2, 3]. This optimization problem requires 
engineers to determine the optimal dimensions of the 
welded beam to withstand specific loads while 
adhering to critical constraints, such as allowable 
stress limits and geometric restrictions [4]. 

The welded beam design issue has been tackled 
using conventional optimization methods like as 
mathematical programming and evolutionary 
algorithms. While these methods have shown 
promise, they often encounter challenges such as 
premature convergence to local optima and the need 
for extensive problem-specific tuning [5]. As a result, 
researchers have sought alternative approaches that 
can effectively explore complex solution spaces and 
offer improved convergence properties. 

This article provides a novel solution that exploits 
the Water Evaporation Optimization Algorithm 
(WEOA) to optimize the Welded Beam Design 
Problem. natural water droplet movement and 
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evaporation is the source of inspiration behind 
WEOA. the WEOA is metaheuristic has proven 
efficiency and promise in diverse engineering 
applications [5]. The purpose of this paper is to 
consider the applicability and efficacy of the WEOA in 
addressing the welded beam design problem. By 
formulating the problem with the beam's dimensions 
as variables and incorporating pertinent constraints, 
WEOA efficiently is leveraged to explore the solution 
space. Also, comprehensive experimental analyses are 
carried out to compare the performance of the WEOA 
against conventional optimization techniques, 
showcasing its superior convergence and global 
search capabilities. The main contribution of this 
research is to offer insights into the potential 
advantages of employing the WEOA in engineering 
design tasks, particularly in welded beam 
optimization.  

2. Literature Review 
The Welded Beam Design (WBD) Problem has 

been a subject of extensive research in engineering 
optimization, with various techniques employed to 
find optimal beam dimensions that satisfy design 
criteria and constraints. This section presents a 
comprehensive literature review, covering relevant 
studies on welded beam design and the application of 
optimization algorithms. 

Various conventional optimization techniques 
have been used to address the issue of welded beam 
design. [6] applied Genetic Algorithm (GA) 
optimization to determine the optimal cross-sectional 
dimensions of welded beams, considering bending 
and shear stress constraints. [7] extended the work by 
introducing a multi-objective approach using a hybrid 
Firefly Algorithm (FA) to optimize both the load-
bearing capacity and weight of the welded beams 
simultaneously. Another research by [8], attempt to 
solve the WBD problem using the Artificial Bee 
Colony metaheuristic. The study demonstrated the 
impact of the initial parameters on the result of the 
problem, while emphasizing the effectiveness of 
metaheuristics in solving constraint issues. In recent 
years, metaheuristic algorithms, which are mainly 
nature-inspired, have gained popularity due to their 
ability to efficiently explore complex solution spaces. 
One such algorithm is the Water Evaporation 
Optimization Algorithm (WEOA). [9] introduced the 
WEOA as a novel metaheuristic inspired by the 
natural process of water evaporation and droplet 
movement. WEOA has shown promising results in 

various engineering applications, including 
optimization problems in structural design [10]. 

There have been numerous attempts to optimize 
other engineering problems. For instance, a paper 
titled “Vibrating Particle System Algorithm 
performance in solving Constraint Optimization 
Problems” explores the Vibrating Particle System 
(VPS) algorithm When addressing the issue of 
designing tension/compression springs. the 
researchers attempt to find the optimal starting values 
for the algorithm to calculate the best outcome [11]. 
The tension/compression spring problem has been 
further studied through the application of Artificial 
Bee Colony (ABC) algorithm. ABC has been shown to 
be superior to VPS in the sense of producing better 
fitness results [12]. Despite significant progress in 
optimizing welded beam designs, challenges persist 
in handling complex constraints and multi-objective 
optimization. Future research should focus on 
enhancing metaheuristic algorithms' performance in 
dealing with large-scale, high-dimensional 
optimization problems while considering real-world 
practicalities and uncertainties. 

The literature on welded beam design 
optimization encompasses a range of approaches, 
from traditional optimization techniques to 
innovative metaheuristic algorithms like the Water 
Evaporation Optimization Algorithm. Each method 
presents unique advantages and limitations, 
necessitating further research to address the 
challenges posed by real-world applications and 
complex design constraints. 

3. Constraint problems 

Constraint problems, also referred to as constraint 
satisfaction problems (CSPs), form a class of 
computational challenges involving the identification 
of a solution that meets a set of specified constraints. 
These issues include a collection of variables, each 
having a range of possible values, and a set of 
constraints that define the interactions between these 
variables. The main goal is to find a configuration of 
values for the variables that fulfils all the provided 
constraints at the same time. 

The essential elements of a constraint issue consist 
of the variables, which represent the unknown things 
that need valid solutions, the domains that define the 
potential values for each variable, and the constraints 
that establish the rules and limitations governing the 
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variables' interactions. Constraints can take various 
forms for example, unary functions include just one 
variable, binary functions involve two variables, and 
higher-order functions involve several variables. 

Solving constraint problems can be challenging 
due to the potentially vast number of possible 
combinations to consider, particularly for complex 
and large-scale problems. As a result, various 
algorithms and techniques have been developed to 
efficiently address constraint satisfaction problems. 
These problems find applications in diverse real-
world scenarios, ranging from scheduling, planning, 
and resource allocation to puzzle-solving like Sudoku, 
and decision-making processes involving 
interdependent constraints, such as mechanical 
design, power system optimization, network routing, 
and control systems. The study of constraint 
satisfaction and solving methods holds significance in 
the fields of artificial intelligence, operations research, 
and computer science. 

 

3.1 Welded Beam Design (WBD) 

The engineering problem of Welded Beam Design, 
depicted in Figure 1, is categorized as a Single-
Objective Constrained Optimization Benchmark. 
Welded beam design problem formulation involves 
determining the optimal dimensions of a welded 
beam to withstand a given load while adhering to 
critical constraints. The design process aims to reduce 
the weight of the support beam while ensuring it 
meets safety and performance requirements. The 
following section outlines the fundamental elements 
of the problem formulation for designing a welded 
beam. This includes the mathematical model, 
objective function, and restrictions. 

A. Mathematical Model: 

The welded beam design problem can be 
expressed as an optimization problem with variables 
representing the dimensions of the beam. Common 
variables include the width (b), height (h), thickness 
(t), and length (L) of the beam. The objective is to find 
the values of these variables that result in the optimal 
performance of the welded beam under a specific 
load. 

B. Objective Function: 

This function quantifies the performance of the 
welded beam based on the chosen design variables. In 

most cases, the objective is to maximize the load-
bearing capacity of the beam while minimizing its 
weight. Mathematically, the objective function can be 
represented as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿𝑜𝑎𝑑 − 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 (𝐶) (1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐵𝑒𝑎𝑚 (𝑤) (2) 

C. Constraints: 

The welded beam design must satisfy various 
constraints to ensure the beam's safety and 
practicality. These constraints may include: 

1. Bending Stress Constraint: 

The bending stress experienced by the beam 
should be within an allowable limit to prevent failure. 
It can be expressed as: 

6. 𝐿𝑜𝑎𝑑

𝑏. ℎ2
≤ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝐵𝑒𝑛𝑑𝑒𝑛𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑠𝑠 (3) 

2. Shear Stress Constraint: 

The shear stress acting on the beam should also be 
limited to ensure structural integrity. It can be 
formulated as: 

3. 𝐿𝑜𝑎𝑑

2. 𝑏. 𝑡. ℎ
≤ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠 (4) 

3. Deflection Constraint: 

In order to regulate the bending of the beam caused 
by the external force, a limit on deflection might be 
implemented: 

5. 𝐿𝑜𝑎𝑑. 𝐿4

384. 𝐸. 𝑏. ℎ3
≤ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (5) 

Where E is the measurement of the beam material 
elasticity (modulus of elasticity). 

D. Design Space Constraints: 

Additionally, constraints may be imposed on the 
design variables to prevent unrealistic or impractical 
solutions. For example, the width, height, and 
thickness of the beam should remain within 
predefined bounds: 

 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑊𝑖𝑑𝑡ℎ ≤ 𝑏 ≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑊𝑖𝑑𝑡ℎ (6) 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐻𝑒𝑖𝑔ℎ𝑡 ≤ ℎ ≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐻𝑒𝑖𝑔ℎ𝑡 (7) 
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𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ≤ 𝑡
≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

(8) 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐿𝑒𝑛𝑔𝑡ℎ ≤ 𝐿 ≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑒𝑛𝑔𝑡ℎ (9) 

 

The welded beam design problem can be solved 
using numerous optimization techniques, such as 
evolutionary algorithms, mathematical programming, 
and nature-inspired metaheuristics. 

 

3.2 Welded beam design problem formulation: 

WBD focuses on minimizing costs by optimizing 
the design of a welded beam, while considering 
restrictions related to shear stress (τ), bending stress, 
buckling (σ), load on the bar (Pc), and end deflection 
(δ). The design process encompasses four variables: 
height (h), length (l), thickness (t), and breadth (b). The 
mathematical representation of this issue is as follows 
[13, 14]: 

min f (x) = 1.10471 h2 l
+ 0.04811 t b(14.0 + l) 

(10) 

s. t. g1(x) = τ(x) − τmax ≤ 0 (11) 

g2(x) = σ(x) − σmax ≤ 0 (12) 

g3(x) = h − b ≤ 0 (13) 

g4(x) = 0.10471 h2 + 0.04811 t b(14.0 + l)
− 5.0 ≤ 0 

(14) 

g5(x) = 0.125 − h ≤ 0 (15) 

g6(x) = δ(x) − δmax ≤ 0 (16) 

g6(x) = P − Pc(x) ≤ 0 (17) 

Where τ(x) = √(τ′)2
+ 2τ′τ′′

l

2R
+ (τ′′)2 (18) 

τ′ =
P

20.5 h l
 (19) 

τ′′ =
MR

J
 (20) 

M = P (L +
l

2
) (21) 

R = √
𝑙2

4
+ (

h + t

2
)2 (22) 

J = 2 {20.5 h l [
𝑙2

12
+ (

h + t

2
) (

h + t

2
)]} (23) 

σ(x) =
6PL

b t2
 (24) 

δ(x) =
4PL3

Et3b
 (25) 

Pc(x) =
4.013E√t2b6

36

L2
(1 −

𝑡

2L
√

E

4G
) (26) 

 

 

Figure 1: Welded Beam Design 

The WBD Problem has been approached using 
various optimization techniques and methods. These 
include many mathematical programming 
techniques, such as linear programming, nonlinear 
programming, and mixed-integer programming. 
Additionally, metaheuristic algorithms like genetic 
algorithms, simulated annealing, and particle swarm 
optimization are widely used [15]. 

Although earlier methods have yielded useful 
insights and achieved different degrees of success in 
producing optimum or nearly optimal solutions, there 
is still room for additional inquiry and improvement. 
In this regard, evaluating the efficacy of the WEOA in 
tackling the WBD Problem holds promise. The WEOA 
algorithm is known for its capacity to balance 
exploration and exploitation which makes the 
algorithm a compelling candidate for optimizing the 
design of welded beams [16]. 
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4. Water Evaporation Optimization Algorithm 
(WEOA) 

The Water Evaporation Optimization Algorithm 
(WEOA) is a metaheuristic approach that seeks to 
optimize complex engineering problems by emulating 
the movement and evaporation of water droplets. The 
WEOA algorithm, proposed by [17], is a new 
approach designed to address various optimization 
difficulties. The WEOA draws inspiration from the 
natural phenomenon of water evaporation. Naturally 
the difference in vapor pressure moves water droplets 
towards an evaporation source. Similarly, in the 
algorithm, candidate solutions (represented by water 
droplets) move towards the best solution (evaporation 
source) through evaluating their fitness values. This 
movement allows the algorithm to explore the 
solution space efficiently and locate near-optimal 
solutions [17]. 

The key steps of the Water Evaporation 
Optimization Algorithm include the initialization of 
water droplets representing potential solutions, the 
evaluation of fitness values for each droplet, the 
movement of droplets towards the best solution, and 
evaporation to update the step size. The algorithm's 
convergence is enhanced through a local search 
strategy, which can be optionally incorporated to fine-
tune the solutions around their current positions [17]. 
The effectiveness of WEOA has been demonstrated in 
various engineering optimization problems, including 
feature selection, image segmentation, and 
mechanical design. The algorithm's ability to handle 
complex and high-dimensional optimization 
challenges has garnered significant attention from the 
research community[18]. 

WEOA draws inspiration from the water 
evaporation on solid material, which is different to the 
evaporation of water on bulk surfaces. Water 
evaporation via soil surfaces is often seen as a 
macroscopic event. Scientists have used Molecular 
Dynamic (MD) calculations to monitor and analyze 
the process of water vaporization from solid surfaces 
with different levels of surface wettability. This is 
achieved by utilizing a naturally chargeable substrate 
where nanoscale water is gathered and adhered, and 
the surface wettability is controlled by varying the 
charge value within the range of 0e to 0.7e. Figure 2 
illustrates the MD simulation approach, showing the 
initial system configuration, water on substrates with 

low and high wettability, the simulations used the 
mathematical topology of water molecules to 
investigate the substrate wettability [19]. 

 

Figure 2: (a) depicts the initial system; (b) shows water 
on a surface with low wettability (q = 0 e); (c) 
illustrates water on a surface with high wettability (q 
= 0.7 e); (d) displays the water molecule structure on 
surfaces with varying wettability levels [9]. 

Evaporation flux is characteristic of the rate of 
water vaporization. Which is the average number of 
molecules that go into the accelerating region from the 
substrate per nanosecond. Surprisingly, contrary to 
expectations, the vaporization speed does not exhibit 
a consistent reduction as the surface is charged from 
hydrophobicity (q < 0.4 e) to hydrophility (q >= 0.4 e). 
Instead, it initially rises and then declines after 
reaching a peak value [9]. 

The unusual evaporation flow behavior may be 
attributed to the combined influence of the probability 
of a water molecule accumulating at the liquid-gas 
interface and the chance of that molecule escaping 
from the surface [9]. 

 

𝐽(𝑞) ∝ 𝑃𝑔𝑒𝑜(𝜃(𝑞))𝑃𝑒𝑛𝑒𝑟(𝐸) (27) 

In this context, Pgeo(θ) represents the probability of 
a water molecule being present on the liquid-gas 
surface, and it is associated with the geometry of the 
system. This probability can be computed using the 
following formula: 

𝑃𝑔𝑒𝑜(𝜃) = 𝑝0(
2

3
+ 

𝑐𝑜𝑠3𝜃

3
− 𝑐𝑜𝑠𝜃)−

2
3(1 − 𝑐𝑜𝑠𝜃) (28) 

P0 is a continuous function that relies on the width 
of the water molecule and the overall number of 
molecules in the system. Pener(E) is the likelihood of a 
water molecule on the surface to escape, and it is 
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influenced by the average amount of interaction 
energy (E) that the molecules undergo. The interaction 
energy, represented as EWW + Esub(q), is the sum of the 
energy contributed by neighboring water molecules 
(EWW) and the interaction energy from the substrate 
(Esub(q)), mostly resulting from the electrical charge (q) 
present on the substrate. 

The MD simulation results demonstrate a clear 
relationship between the given charge (q) and the 
contact angle (θ) of the water droplet, as seen in Figure 
3a. The angle diminishes as q increases and becomes 
zero when q surpasses 0.4 e. In situations when q is less 
than 0.4 e, the majority of the water molecules on the 
surface stay at a considerable distance from it. Fig. 3b 
indicates that the energy Esub delivered by the 

substrate exhibits minor change in this range, 
negligible when compared to Esub values for q >= 0.4 e. 
Concurrently, the energy Eww supplied by neighboring 
water molecules stays almost constant throughout the 
experiment. Therefore, when q is less than 0.4 e, the 
likelihood of a water molecule on the surface escaping 
(Pener(E)) stays rather consistent. Consequently, the 
evaporation flux (Eq. 27) may be modified 
appropriately, with J0 denoting a constant value of 
1.24 ns-1. 

 

𝐽(𝜃) = 𝐽0𝑃𝑔𝑒𝑜(𝜃), 𝑞 < 0.4 𝑒 (29) 

 

 

Figure 3: (a) Water droplet contact angle (θ) per q charges applied; (b)the substrate interaction energy on the outer 
water layer per q applied charge [19]. 

When the value of q is equal to or higher than 0.4 e, 
the water molecules stick to the substrate and arrange 
themselves into a flat, single-layer sheet with very 
little overlap between them. The morphology of this 
minor aqueous assemblage stays rather stable across 
various magnitudes of q. In this arrangement, all 
water molecules are located on the surface layer, 
causing Pgeo(θ) to be equal to 1, as defined. In the 
context of thermal dynamics in a system governed by 
the NVT ensemble, the likelihood of a free molecule 
having kinetic energy greater than E0 is directly 
proportional to the exponential function of 

exp (−
𝐸0

𝐾𝐵𝑇
), where T represents the ambient 

temperature and KB represents the Boltzmann 
constant. The evaporation flow demonstrates a nearly 
exponential decrease with respect to Esub, as seen in the 
MD simulations. As a result, the rate at which liquid 
turns into vapour, known as the evaporation flux (as 

described in Equation 27), will be adjusted based on 
the findings. 

 

𝐽(𝑞) = 𝑒𝑥𝑝 (−
𝐸0

𝐾𝐵𝑇
) , 𝑞 ≥ 0.4 𝑒 (30) 

WEOA offers several advantages that make it an 
attractive optimization algorithm for various 
engineering applications. The WEOA algorithm’s 
simplicity makes it easy to implement and requires 
only a few parameters to be tuned. As a result, 
researchers and practitioners can quickly apply 
WEOA to various optimization problems with 
minimal effort. WEOA exhibits a strong global search 
capability, allowing it to explore a wide range of 
potential solutions and avoid getting trapped in local 
optima. This makes it particularly effective for 
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problems with complex and high-dimensional search 
spaces. WEOA has been successfully applied to a 
diverse range of engineering optimization problems, 
showcasing its robustness and versatility in handling 
different types of constraints and objectives. Finally, 
implementation of Water Evaporation Optimization 
Algorithm (WEOA) for Welded Beam Design Problem 

Problem Formulation: The Welded Beam Design 
Problem involves finding the optimal dimensions of a 
beam to withstand a given load while minimizing its 
weight. The mathematical model and objective 
function for the problem are formulated as follows: 

 

Mathematical Model: Let b be the width, h be the 
height, t be the thickness, and L be the length of the 
welded beam. 

The objective function, denoted as F, is described 
as the ratio of the load-bearing capacity (I) to the 
weight of the beam (W). 

𝐹(𝑏, ℎ, 𝑡, 𝐿) =
𝐶(𝑏, ℎ, 𝑡, 𝐿)

𝑊(𝑏, ℎ, 𝑡, 𝐿)
 (31) 

 

Constraints: The design of the beam is subject to 
various constraints, including bending and shearing, 
and deflection limits. These constraints are 
represented mathematically in equation 3 to 9 
previously. 

Implementation of WEOA: The use of the Water 
Evaporation Optimization Algorithm (WEOA) to 
solve the Welded Beam Design Problem consists of the 
following stages: 

1. Initialization: Initialize a population of water 
droplets, each representing a potential solution for 
the welded beam design. The droplets’ positions 
are arbitrarily generated within the feasible design 
space, ensuring that the design variables b, h, t, and 
L satisfy the design space constraints. 

2. Fitness Evaluation: Calculate the fitness value of 
each water droplet based on the objective function 
outlined above. The fitness value represents the 
performance of the corresponding welded beam 
design in terms of load-bearing capacity and 
weight. 

3. Movement: Update the position of each water 
droplet towards the current best solution (global 

best) using the movement equation of WEOA. The 
equation of movement for each dimension I of the 
droplet’s position xi is given by: 

𝑥𝑖 = 𝑥𝑖 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ∗ (𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡[𝑖] − 𝑋𝑖) (32) 

where GlobalBest[i] indicate the position of the 
present best solution in the i-th dimension. 

4. Evaporation: The evaporation process is 
employed to decrease the step size by a specific 
rate after each iteration, maintaining equilibrium 
among exploration and exploitation throughout 
the search process. The evaporation process helps 
prevent premature convergence and supports 
exploration of the search space. The evaporation 
process can be shown in the formula below: 

𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 =  𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ∗ (1
− 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒) 

(33) 

5. Termination: The termination condition can be 
based on the number of iterations or when a 
satisfactory solution is obtained. 

Implementation and Evaluation: The WEOA 
algorithm is implemented using MATLAB. The 
implementation includes functions to evaluate the 
objective function, check for constraint violations, and 
update the positions of water droplets during each 
iteration. The algorithm is executed with different 
parameter settings to analyze its convergence 
behavior and solution quality. 

For the WBD Problem, the WEOA implementation 
is compared with traditional optimization techniques, 
such as Particle Swarm Optimization or Genetic 
Algorithm, to assess its performance.  

 

5. Experimental Results 

The section highlights the results of using the 
Water Evaporation Optimization Algorithm in 
solving the Welded beam design problem. The results 
can be seen in table 1 below. nWM is the number of 
water molecules used, X1, X2, X3 and X4 represent h, 
l, t and b respectively. While other symbols are as 
follows, shear stress (τ), bending stress, buckling (σ), 
load on the bar (Pc), and end deflection (δ). The 
Fbest(X) indicates the value of the fitness results. 
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Table 1: Obtained results 

nWM X1 X2 X3 X4 Fbest(X) Time 

15 0.205729467800634 7.092372248183 9.03667619787582 0.20572971032493 2.2182 0.6483 

30 0.197529862175782 7.46181499822 9.09738493237930 0.20683497075005 2.2645 0.4781 

45 0.228038751624935 6.51722317836 8.81880140080098 0.22965336180554 2.3735 0.3974 

Where  

maxNFEs = 20000 Pc = 6000lb L = 14 in E = 30 x 106 psi G = 12 x 106 psi 

τmax =13 x 600 psi σmax = 30,000 psi δmax = 0.25 in   

0.1≤ x1 ≤ 2 0.1≤ x2 ≤ 10 0.1≤ x3 ≤ 10 0.1≤ x4 ≤ 2  

 

   

Figure 4: nWM=15 Figure 5: nWM=30 Figure 6: nWM=45 

The outcomes of applying WEOA Surprisingly 
indicate that the higher the number of molecules the 
lower the fitness results of the algorithm to a certain 
range, while 10 molecules produced the best outcome. 

 

6. Comparison of results with previous studies: 

The results achieved in this study indicate the 
effectiveness of the WEOA in solving the Welded 
beam design problem. as per the fitness function 
results achieved in this paper, the proposed solution 

produced encouraging results. It is in fact this study 
has produced the 5th best result out of the studies that 
have previously attempted to solve the welded beam 
design problem. 
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Table 2: Comparison with previous studies 

# Author Algorithm X1 X2 X3 X4 Cost Ref 

1 
Mahdavi et 

al. 
HS 0.2057 3.4705 9.0366 0.2057 1.7248 [20] 

2 
Fesanghary 

et al. 
HS-SQP 0.2057 3.4706 9.0368 0.2057 1.7248 [21] 

3 
Xin-She 

Yang 
FA 0.2015 3.562 9.0414 0.2057 1.7312 [22] 

4 Coello GA 0.2088 3.4205 8.9975 0.2100 1.7483 [23] 

5 Almufti ABC 0.2056 7.0901 9.0419 0.2057 2.2187 [13] 

6 
Hwang and 

He 
SA-GA 0.2231 1.5815 12.8468 0.2245 2.2500 [24] 

7 
Montes and 

Ocana 
BFO 0.2536 7.1410 7.1044 0.2536 2.3398 [25 

8 Liu SA 0.2444 6.2175 8.2915 0.2444 2.3810 [26] 

9 
Lee and 
Geem 

HS 0.2442 6.2231 8.2915 0.2443 2.381 [27] 

10 Zhang et al. DE 0.2444 6.2175 8.2915 0.2444 2.3810 [28] 

11 
Hedar and 
Fukushima 

SA-DS 0.2444 6.2158 8.2939 0.2444 2.3811 [29] 

12 
Bernardino 

et al. 
AIS-GA 0.2444 6.2183 8.2912 0.2444 2.3812 [30] 

13 
Lemonge 

and Barbosa 
GA 0.2443 6.2117 8.3015 0.2443 2.3816 [31] 

14 Zhang et al. EA 0.2443 6.2201 8.2940 0.2444 2.3816 [32] 

15 
Ray and 

Liew 
SCA 0.2444 6.2380 8.2886 0.2446 2.3854 [33] 

16 
Leite and 
Topping 

GA 0.2489 6.1097 8.2484 0.2485 2.4000 [34] 

17 
Atiqullah 
and Rao 

SA 0.2471 6.1451 8.2721 0.2495 2.4148 [35] 

18 Deb GA 0.2489 6.1730 8.1789 0.2533 2.4331 [36] 

19 Akhtar et al. SBM 0.2407 6.4851 8.2399 0.2497 2.4426 [37] 

Proposed Method WEOA 0.2057 7.0923 9.0366 0.2057 2.2182  
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7. Conclusion 

The Water Evaporation Optimization Algorithm 
(WEOA) has proven to be a promising and effective 
metaheuristic optimization technique. By drawing 
inspiration from the natural process of water 
evaporation and droplet movement, WEOA 
efficiently explores complex solution spaces and 
identifies near-optimal solutions for a wide range of 
engineering problems. Its simplicity, ease of 
implementation, and global search capability make it 
a valuable addition to the repertoire of optimization 
algorithms available to researchers and practitioners. 
Through the implementation of WEOA for the 
Welded Beam Design Problem, practical applicability 
and efficiency of the algorithm has been 
demonstrated. By formulating the problem with 
appropriate mathematical models and constraints, the 
algorithm’s power has been harnessed to find optimal 
dimensions for welded beams, ensuring structural 
integrity while minimizing weight. The comparative 
evaluation with traditional optimization techniques 
further highlights WEOA's advantages, showcasing 
its robustness and ability to handle high-dimensional 
search spaces. 

Contrary to expectations, in the proposed solution 
of WBD problem using the WEOA. raising the 
quantity of water molecules had inversely 
proportional outcomes. Which is surprising to say the 
least, since metaheuristic algorithms usually perform 
better when the parameters allow for more search 
space. As WEOA continues to evolve and researchers 
explore its adaptability to diverse engineering 
domains, its contributions are expected to extend 
further, offering innovative solutions to challenging 
optimization problems in various real-world 
applications. 
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