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1. INTRODUCTION 

In linear regression, one of the key assumptions is 
that the residuals, which are the differences between 
the observed values and the predicted values, should 
follow a normal distribution. However, the original 
observed values and the predicted values themselves 
are not required to be normally distributed. The 
normality assumption for residuals is important for 
various statistical inferences and assessing the 
reliability of the model, but it does not apply to the 
raw data or the predictions made by the model. In 
practice, deviations from normality in the observed 
values or predictions might not be problematic as 
long as the normality assumption holds for the 
residuals. Nonetheless, it is good practice to check for 
normality and consider alternative approaches if the 
assumption is significantly violated. 
Exponential regression (ER) is a regression analysis 
technique that involves fitting an exponential 
function to data points. This approach allows us to 
estimate the function's parameters, enabling 

prediction and drawing conclusions based on the 
fitted curve. Its application proves particularly useful 
for modeling and analyzing data demonstrating 
exponential growth or decay patterns. Many real-
world scenarios exhibit such exponential behavior, 
including population growth, the decay of 
radioactive substances, the spread of infectious 
diseases, and asset depreciation over time. By 
providing a mathematical framework, ER facilitates 
a deeper understanding and quantification of these 
exponential relationships.  
ER model assumes that the relationship between the 
dependent variable vector 𝒀 with size (𝑛 × 1) and the 
explanatory variables 𝑋 matrix with size (𝑛 × 𝑝) 
follows an exponential function of the form: 
 
𝒀 =  𝛽0 𝑒𝑥𝑝{𝑿𝜷} + 𝑼                                                         (1) 
 
Where 𝛽0 represents the initial value of the 
dependent variable at 𝑿 = 𝟎, 𝜷 is the vector of  𝑝 
parameters with size (𝑝 × 1) of exponential growth 
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or decay and 𝑼 is the residuals vector with size 
(𝑛 × 1).    
The objective of ER is to determine the optimal 
estimates for the coefficients 𝛽₀ and 𝜷 that align most 
effectively with the given dataset. This is 
accomplished through the minimization of the 
following sum of squared variances between the real 
data points and the predicted values generated by 
the exponential function,  
 
𝑆𝑆𝐸 =  (𝒀 − 𝛽0 exp{𝑿𝜷})𝑇(𝒀 − 𝛽0 𝑒𝑥𝑝{𝑿𝜷})             (2) 
 
Through the process of fitting the exponential curve 
to the data, we derive estimates for 𝛽₀ and β vector, 
representing the overall trend and growth or decay 
rate. These estimates empower us to make 
predictions beyond the observed data range and gain 
valuable insights into the behavior of the studied 
system or phenomenon. 
ER finds extensive application in diverse fields, such 
as biology, economics, finance, epidemiology, and 
environmental sciences. This widely-used technique 
offers a potent tool for analyzing and comprehending 
exponential relationships, equipping researchers, 
analysts, and decision-makers with the means to 
make informed predictions and sound decisions 
based on the observed data [1]. 
It is crucial to recognize that ER is well-suited for 
datasets displaying exponential behavior, but it may 
not be suitable for other types of relationships. It is 
vital to carefully examine the data's nature and 
explore alternative regression techniques if the 
relationship does not exhibit exponential 
characteristics. 
In this article, we focus on situations where the 
residuals appear to have an exponential pattern. 
According to statistical theory, this implies that the 
dependent variable in multiple regression follows an 
exponential distribution. Consequently, the model 
belongs to the class of models equivalent to Eq. 1. In 
linear regression analysis, residuals play a crucial 
role as a diagnostic tool to evaluate the model's 
adequacy and the underlying assumptions of the 
analysis. When the residuals display an exponential 
pattern, it could indicate potential systematic issues 
in the model, such as heteroscedasticity or a non-
linear relationship between the predictors and the 
response variable [2]. 
In multiple linear regression (MLR), 𝒀 = 𝑿𝜷 + 𝑼, if 
we assume 𝒃 is the vector of 𝜷 estimate and the 
residuals vector 𝑼 = (𝒀 − 𝑿𝒃) > 𝟎 follow the 
exponential distribution of the form  
𝑓𝑼(𝑢𝑖) = 𝜃 exp (−𝜃𝑢𝑖), then the dependent variable 𝒀 
follow the following probability density function 
(PDF),   

 
𝑓𝒀(𝑦𝑖) = 𝜃 exp{−𝜃 (𝑦𝑖 − 𝒃)}                  , 𝑦𝑖 > 𝒃            (3) 
where, 𝑖 = 1, 2, … , 𝑛. In practical applications, it is 
crucial to understand that the distributional 
assumption made for the residuals does not 
necessarily imply a direct impact on the dependent 
variable. The distributional assumption for the 
dependent variable is distinct and may follow a 
different distribution or exhibit different 
characteristics altogether. 
Little. R. conducted a simulation study in 1979 to 
explore maximum likelihood inference for 
coefficients in a multiple regression model. This 
approach was contrasted with the least squares 
method using mean squared error [3]. In 1998, 
Rawlings, Pantula, and Dickey highlighted the 
critical conditions for statistical inference in the MLR 
model: normality and variance constancy of the 
estimated model residuals [4]. Consequently, data 
transformation techniques, especially those 
belonging to the power transformation family, have 
been widely used to improve the utility of statistical 
modeling and achieve a better fit. 
One common strategy to address non-normality in 
residuals is through transformations. This aims to 
approximate normal distribution of residuals, 
satisfying the normality assumption. When dealing 
with residuals exhibiting an exponential pattern, 
various transformations can be applied to achieve 
normality. 
The Box-Cox transformation (BCT) approach is 
designed to meet the conditions of modeling in MLR 
by using parametric power transformation [5]. Yeo 
and Johnson introduced a new family of 
distributions in 2000, possessing many desirable 
properties of BCT and usable without restrictions for 
cases with positive and negative variable values [6]. 
In 2004, Nishidate and Mishina proposed a technique 
for analyzing diffuse reflectance spectra from skin 
tissue using multiple regression analysis combined 
with a Monte Carlo simulation. This approach 
yielded regression coefficients, utilizing the 
absorbance spectrum as the response variable and 
the extinction coefficients of melanin, oxygenated 
hemoglobin, and deoxygenated hemoglobin as 
predictor variables [7]. 
Various methodologies have been proposed and 
studied in the field of statistical analysis. One such 
approach is the multivariate regression modeling 
with functional data analysis, as presented by Matsui 
et al. (2008). Their study demonstrates how Gaussian 
basis functions and regularization techniques can 
establish the relationship between multiple scalar 
responses and functional predictors. To validate the 
efficacy of their proposed method, Monte Carlo 
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simulations and real data (Spectrometric data) were 
employed [8]. In 2011, Hossain conducted an 
analytical review focusing on the significant role of 
BCT technique in various statistical domains such as 
estimation, testing, inference, and model 
selection.[9]. Another research in 2014 by Al-Yousef 
and Abduahad introduced a method for describing 
Bayesian conditional expectation Probability 
distribution (gamma - gamma) through a nonlinear 
regression model using power transformation. [10]. 
In 2016, Fischer put forth the idea of utilizing tree 
growth models and the logarithmic transformation 
to address left-sided variable transformation in order 
to meet the assumptions of regression analysis. [11]. 
Recently, in 2021, Atkinson, Riani, and Corbellini 
worked on the BCT of non-negative responses in 
linear regression models. Their extensions covered 
the transformation of both sides of the model and the 
Yeo-Johnson transformation for observations that 
can be positive or negative.[12]. In the year 2022, Al-
Safar and Mohammed Ali made use of power 
transformation to enhance nonlinear models of the 
response surfaces methodology. This approach 
aimed to improve the accuracy and reliability of 
these models.[13]. 
The article emphasizes the widespread utility of the 
BCT, a versatile transformation function applicable 
to various regression models, including ER. This 
article delves into the application of BCT within the 
context of ER and its potential to normalize 
distributions, address normality assumptions, 
stabilize variance, and enhance the linearity between 
variables. 
The main goal of this study is to utilize BCT in ER 
when confronted with residuals following an 
exponential distribution. It's important to note that 
when residuals exhibit an exponential distribution, 
the response variable must also adhere to the same 
distribution. 
The article's organization is as follows: The second 
section covers material and methods, incorporating 
theoretical aspects related to ER. The third section 
introduces the proposed algorithm and its 
application in developing a nonlinear regression 
model using BCT. Subsequently, the fourth section 
presents and discusses the results obtained. Finally, 
the fifth section provides the conclusions drawn from 
the study's outcomes. 
 
2. MATERIAL AND METHOD 

In ER, the logarithm transformation is frequently 
employed to convert the exponential relationship 
between variables into a linear one. This 
transformation enables the use of linear regression 

techniques to fit a line to the transformed data, 
involving the estimation of coefficients like intercepts 
and slopes. By fitting the linear regression model on 
the transformed data, we can interpret the results in 
terms of the original variables. The application of 
logarithmic transformations often leads to a better 
linear fit and enhances the interpretability of the 
relationship between variables. However, it's 
essential to consider the appropriateness of the 
logarithm transformation based on specific data 
characteristics and the suitability of the linear model 
for the transformed data. Therefore, while the 
logarithmic transformation can transform the ER 
function into a linear one, its efficiency in 
representing the data may vary and requires careful 
assessment.  
Based on the above, a more general transformation 
function may be used instead of the specific 
logarithm transformation. This allows for more 
flexibility in capturing the underlying relationship 
between variables in ER. 
For the response vector 𝒀 in Eq. 1, BCT is defined by 
the formula: 
 

𝒀(𝜆) = 𝜑(𝑦) = {
𝑦𝜆 − 1 𝜆⁄        𝑖𝑓   𝜆 ≠ 0 

𝐿𝑛 (𝑦)        𝑖𝑓   𝜆 = 0
             (4) 

 
When the BCT is applied with 𝜆 = 1, it corresponds 
to analyzing the data in its original scale without any 
transformation using the following MLR model, 
 
𝒀 = 𝑿𝜷 + 𝑼                                                                           (5) 

  
In other words, no transformation is applied, and the 
response vector is used as it is in the analysis. The 
logarithmic transformation can be seen as a specific 
instance of BCT when 𝜆 = 0. This means, the data 
analysis will be according to the form, 𝑙𝑛 𝒀 =
𝑓(𝑿𝑩) + 𝑼. The back transformation of BCT of 
response vector involves transforming the 
transformed vector back to its original scale and 
defined as the following nonlinear model: 
 

𝒀 = {
(𝜆 𝑿�̂� + 1)

1/𝜆
       𝑖𝑓 𝜆 ≠ 0 

𝑒𝑥𝑝 (𝑿�̂�)       𝑖𝑓 𝜆 = 0
                               (6)  

 
A widely employed conventional approach for 
estimating the model and the power parameter 𝜆 is 
through the method of maximum likelihood 

estimation (MLE). If we suppose that 𝒀(𝜆) =  𝑿𝜷 +  𝑼 
represents the linear model of the transformed data 

so that 𝒀(𝜆)~𝑁(𝑿𝜷, 𝜎𝜀
2), the Likelihood to estimate the 

power Parameter and 𝜷 vector 𝐿𝑌(𝑦; 𝜆, 𝜷, 𝜎𝑢
2) =
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∏ 𝑓𝑌(𝜑(𝑦);  𝜆, 𝑿𝜷, 𝜎𝑢
2)|𝑑𝜑(𝑦) 𝑑𝑦⁄ | 𝑛

𝑖=1 according to the 
following joint PDF,  
 

𝐿𝑌(𝑦; 𝜆, 𝜷, 𝜎𝑢
2) = ( 2𝜋𝜎𝜀

2)−n 2⁄  

× 𝑒𝑥𝑝 {− ∑ (𝜑(y) − 𝐗𝛃)T(𝜑(y) − 𝐗𝛃) 2𝜎𝜀
2⁄

n

𝑖=1
} 

× ∏ |𝑑𝜑(y) 𝑑y⁄ | 𝑛
𝑖=1                                                                              (7)                                                                                    

 
Then, the log likelihood is as the following form: 
 
𝑙𝑜𝑔𝑒 𝐿(𝑦; 𝜆, 𝜷, 𝜎𝜀

2) = (−n 2)⁄ 𝑙𝑜𝑔𝑒 2 𝜋 −
(n 2)⁄ 𝑙𝑜𝑔 𝜎𝜀

2   −  ∑ 𝑆𝑆𝐸 2𝜎𝜀
2⁄ + ∑ 𝑙𝑜𝑔𝑒

𝑛
𝑖=1 |𝑑𝜑(y) 𝑑y⁄ |                             

(8) 
where: 
𝑆𝑆𝐸 = (𝜑(y) − 𝐗𝛃)T(𝜑(y) − 𝐗𝛃) 
Thus, the optimal 𝜆 is the value that maximize Eq. 8. 
  
3. COMPUTATIONAL ALGORITHM AND 
APPLICATION 
 
In this section, the authors proposed an application 
algorithm of the using of BCT model and parametric 
estimation to develop a nonlinear multiple 
regression model when the residuals follow 
exponential distribution and they used different 
criteria to estimate the parameter. The choosing of 
optimum power parameter 𝜆 in this algorithm is 
based on the four following different criteria; The 
first and second  criteria are the coefficient of 
determination and MLE that can be used for original 
random variable 𝑌. The third criteria are applied to 
select highest value of p-value of Shapiro-Wilk test 
for the residual normality resulting from the 
estimated nonlinear regression model of the original 
data vector. The last criterion is to choose of the 
highest value of p-value of Shapiro-Wilk test for the 
residual normality resulting from back transformed 
data. Therefore, the proposed application algorithm 
of the using of BCT model and parametric estimation 
to develop a nonlinear multiple regression model 
were shown in the algorithm steps. We conducted a 
simulated study in which data sets from normal 
distribution and the residuals followed exponential 
distribution with the parameters that could be used 
to estimate the effectiveness of the highest value MLE 
and p-value of Shapiro Wilk test which was based on 
the technique that could be mentioned the residuals 
for simulated model distributed as an exponential. 
Consider fitting a regression model where the 
response variable is a linear model with combination 
of 3 explanatory variables plus random residual. 
Consider an example in which we can generate 
random values for the explanatory variables and do 
not need to use real 𝑿 values. R program is used to 
generated three samples with different sample size. 
The response variable and independent variables are 

simulated via the following steps and we 
implemented the following algorithm in R. 
Step 1: Consider the following assumptions of MLR 
models to be generated: (a) Three explanatory 
variables vectors 𝑿1, 𝑿2, and 𝑿3. (b) Three assumed 

sample sizes, 𝑛 = 15, 30 and 50. (c) The residuals 
distributed as exponential distribution with the PDF, 
𝑓𝑈(𝑢) = 𝜃 exp(−𝜃𝑢) , 𝑈 > 0, fix 𝜃 = 2, 4, 8  . (d) 𝜷 the 
vector of parameters, intercept and slopes is bounded 
by the rang (0, 1), fix 𝜷′ = [0.5 0.7 0.8 0.3]. (e) 
The explanatory variables distributed as normal 
distribution.    
Step 2: Generate the data sets of that will be used, 
each of which includes an independent variable 
vector 𝒀 and three explanatory variables based on the 
assumptions of step 1.  
Step 3: Choose a set of candidate values for the power 
parameter of BCT. Fix 𝜆 ∈  𝛬, where  𝛬 =  {−𝑎, −(𝑎 −
0.1), … ,0 , … , (𝑎 − 0.1) , 𝑎}. 𝑎 is an integer and can be 
chosen from which we can obtain a convex curve for 
MLE.  For all generated data sets we perform the 
following steps 4 to 9. 
Step 4: Transform original response variable  𝑌 to 
𝜓(𝑦) using BCT according to Equation (4). 
Step 5: Estimate MLR model of the transformed data 
vector   ψ(y) 𝑋1⁄ , 𝑋2, 𝑋3, according to Equation (5).  
Step 6: Estimate log likelihood function 𝐿𝑚𝑎𝑥(𝜆, 𝑦)  
according to Equation (8). Calculate COD, p-value of 
SWT statistics to test the residual vector normality 
Step 7: Calculate the P-value of Shapiro-Wilk test of 
the residual vector normality of the estimated 
nonlinear model of the original data vector.  
Step 8: Calculate the P-value of Shapiro-Wilk test of 
the residual vector normality of the estimated 
nonlinear model of the back transformed data. 
Step 9: Repeat all the steps from 3 to 8 for all values 
of  𝜆 in 𝛬. 
Step 10: For all the steps from 1 to 9 repeat the 
calculations 25 replicate.  
 
4. RESULTS AND DISCUSSION 
 
The computational algorithm was implemented 
using R software. The results in Table 1 demonstrate 
the estimation of the power parameter based on four 
criteria, utilizing the proposed algorithm for three 
different sample sizes. For a sample size of 15, the p-
value of the Shapiro-Wilk test statistics for the 
residual's normality of the estimated regression on 
the transformed response vector falls within the 
range (0.29, 0.99), indicating normal distribution. 
The optimal power parameter is 𝜆 𝜖 (−1, 3). 
Similarly, for the back-transformed data, the p-value 
lies within the range (0.18, 0.99), and the optimal 
power parameter is 𝜆 𝜖 (−0.9, 3). COD for the 
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transformed response vector varies from 0.12 to 0.97, 
with the optimal power parameter 𝜆 𝜖 (−3, 3). 
Additionally, the MLE values range from -27.0 to 1.0, 
with the optimal power parameter 𝜆 𝜖 (−0.1, 0.9). As 
the sample size increases to 30 and 50, similar 
patterns emerge, and the optimal power parameter 
values are within the specified ranges. 
Table 2 presents the results when 𝜀𝑖~𝑒𝑥𝑝(𝜃 = 4) for 
three different sample sizes. The optimal power 
parameter for the p-value of the Shapiro-Wilk test 
statistics for both the transformed response vector 
and back-transformed data is 𝜆 𝜖 (−2.6, 3). The 
maximum COD value for the power parameter is 
𝜆 𝜖 (−3, 3), and the optimal MLE power parameter is 
𝜆 𝜖 (0.2, 1.1). 
Similarly, Table 3 illustrates the outcomes for 
𝜀𝑖~𝑒𝑥𝑝(𝜃 = 8) for three different sample sizes. The 
optimal power parameter for the p-value of the 
Shapiro-Wilk test statistics for both the transformed 
response vector and back-transformed data is 
𝜆 𝜖 (−1, 3). The optimal COD and MLE power 
parameters are 𝜆 𝜖 (−3, 3) and 𝜆 𝜖 (−0.1, 0.9), 
respectively. 
The results indicate that as the sample size increases, 
the p-values for the Shapiro-Wilk test statistics tend 
to become smaller, indicating a better fit to normality. 
In conclusion, for simulated data with different 
sample sizes, MLE provides the best criteria, with the 
optimal power parameter range being 𝜆 𝜖 (−0.1, 1.1), 
which shows consistent values across different 
scenarios. 
 
Table 1: Simulating data from different sample size 

when 𝜖𝑖~𝑒𝑥𝑝 (𝜃 = 2) 
 

Criteria 
Sample size (n) 

15 30 50 

MLE 
values (-27.0, 1.0) (-49.0, -20.9) (-94.7, -67.9) 

λ (-0.1, 0.9) (0.2, 0.9) (0.4, 0.8) 

COD 
values (0.12, 0.97) (0.14, 0.92) 0.09, 0.67) 

λ (-3, 3) (0.2, 3) (-0.2, 3) 

P-v. 
BT 

values (0.18, 0.99) (0.01, 0.98) (0.02, 0.99) 

λ (-0.9, 3) (-2.5, 2.9) (-2.4, 3) 

P-v. 
DT 

values (0.29, 0.99) (0.0, 0.99) (0.0, 0.91) 

λ (-1, 3) (-0.9, 0.8) (0.0, 3) 

 

Table 2: Simulating data from different sample size 
when ϵi~exp(θ = 4) 

 

Criteria 
Sample size (n) 

15 30 50 

MLE 
values (-19.8, 22.4) (-51.8, -22.8) (-93.7, -49.6) 

λ (0.2, 1.1) (0.5, 0.9) (0.3, 0.8) 

COD 
values (0.38, 0.99) (0.30, 0.87) (0.24, 0.74) 

λ (-3, 3) (0, 3) (0.7, 2.4) 

P-v. 
BT 

values (0.66, 0.99) (0.13, 0.99) (0.06, 0.98) 

λ (-2.6, 3) (-1.8, 3) (-1.9, 3) 

P-v. 
DT 

values (0.34, 0.99) (0.05, 0.99) (0.0, 0.96) 

λ (-0.8, 3) (0.3, 2.4) (-0.2, 1) 

Table 3: Simulating data from different sample size 
when ϵi~exp (θ = 8) 

 

Criteria 
Sample size (n) 

15 30 50 

MLE 
values (-26.9, 0.99) (-47.9, -20.8) (-94.7, -67.9) 

λ (-0.1, 0.9) (0.2, 0.9) (0.4, 0.8) 

COD 
values (0.12, 0.97) (0.14, 0.92) (0.09, 0.67) 

λ (-3, 3) (0.2, 3) (-0.2, 3) 

P-v. 
BT 

values (0.18, 0.99) (0.01, 0.98) (0.02, 0.99) 

λ (-0.9, 3) (-2.5, 2.9) (-2.4, 3) 

P-v. 
DT 

values (0.29, 0.99) (0.0, 0.99) (0.0, 0.91) 

λ (-1, 3) (-0.9, 0.8) (0.0, 3) 

5. CONCLUSION 

The combined p-value approximation proves to be a 
superior method for assessing normality, as it 
considers the agreement between transformed and p-
value estimates. Through our analysis of normal 
distribution and data, we deduce that a single value 
of the p-value cannot guarantee normality. However, 
the likelihood of obtaining significantly larger p-
values for multiple values appears implausible. 
Importantly, the optimal power parameters derived 
from the transformation models using BCT 
demonstrate significant effectiveness. Various 
methods exist for selecting the best power parameter. 
The first approach involves using well-known 
estimation methods like the MLE method. The 
second method employs efficiency criteria from 
regression modeling, such as the COD and p-value, 
as decision rules for power parameter estimation, as 
demonstrated in this study. 
In conclusion, for simulated data with different 
sample sizes, the MLE method proves to be the best 
criterion for determining the optimal power 
parameter. The range of optimal power parameters is 
𝜆 𝜖 (0.0, 1.1), and these values closely align with each 
other. 
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