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ABSTRACT  

A Metaheuristic Optimization is a group of algorithms that are widely studied and employed in the 
scientific literature. Typically, metaheuristics algorithms utilize stochastic operators that make each 
iteration unique, and they frequently contain controlling parameters that have an impact on the 
convergence process since their impacts are mostly neglected in most optimization literature, making it 
difficult to draw conclusions. This paper introduced the Big Bang-Big Crunch (BB-BC) metaheuristic 
algorithm to evaluate the performance of a metaheuristic algorithm in relation to its control parameter. It 
also demonstrates the effects of varying the values of BB-BC in solving. The "Welded Beam Design 
problem" is a well-known engineering optimization problem that is classified as a Single-Objective 
Constrained Optimization issue. Multiple starting parameter values for the BB-BC are evaluated as part of 
the experimental findings. This is done in an attempt to find the algorithm's optimal starting settings. The 
lowest, maximum, and mean values of the penalized objective functions are then computed. Finally, the 
BB-BC results are compared with various metaheuristics algorithms. 

Keywords Optimization Algorithms, Big Bang–Big Crunch, Welded Beam Design problem, Constrained 
Optimization. 

1. Introduction  

Optimization algorithms play a critical role in addressing difficult engineering design issues by effectively 

searching the search space and locating optimal solutions (Kaveh & Bakhshpoori, 2019). The Welded Beam 
Design problem is a well-known benchmark problem in structural engineering that attempts to calculate 
the ideal size of a welded beam given various constraints. The goal is to identify the beam size that reduce 
weight while meeting stress, deflection, and beam stability restrictions (Almufti, 2022a) . 

Due to their proficiency in solving challenging optimization issues, nature-inspired optimization 
algorithms have attracted a lot of interest recently. A good example of one of these algorithms is the Big 
Bang-Big Crunch (BB-BC) algorithm, which was motivated by the cosmological phenomena of the 

universe's expansion (Big Bang) and contraction (Big Crunch) (Mbuli & Ngaha, 2022). In a number of 
optimization applications, such as challenges with engineering design, the BB-BC method has 
demonstrated promising results(Prayogo et al., 2018). 

The objective of this paper is to evaluate the parameters of the BB-BC algorithm in the context of resolving 
the Welded Beam Design problem. By conducting a systematic analysis of these parameters, this paper aim 
to identify the optimal parameter settings that lead to improved convergence and solution quality. This 
investigation can provide valuable insights into the performance of the BB-BC algorithm and its 
applicability to engineering design optimization. 

The remainder of this paper is structured as follows: Section 2, provides a comprehensive review of the 
literature on the BB-BC algorithm and its applications. Section 3 introduces  the Constrained Optimization 
Problem, Section 4 presents the formulation of the Welded Beam Design problem 
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Section 5 introduces the fundamental concepts of the BB-BC algorithm, highlighting its key features and 
stages. And explains how it can be used for solving Welded Beam Design problem. The subsequent section, 
Section 6, outlines the methodology used to evaluate the BB-BC algorithm's parameters, followed by a 
discussion of the results. Finally, Section 6 offers concluding remarks, summarizes the key findings. 

By investigating the parameter evaluation of the BB-BC algorithm for the Welded Beam Design problem, 
this research aims to contribute to the broader field of nature-inspired optimization algorithms and their 
application in solving engineering design problems. Furthermore, the insights gained from this study can 
aid engineers and practitioners in selecting appropriate parameter settings for optimizing welded beam 
designs, ultimately leading to more efficient and reliable structural designs. 

2. Literature review 

Optimization algorithms play a vital role in solving complex engineering design problems by efficiently 
exploring the search space and identifying optimal solutions. Traditional techniques (Ihsan et al., 2021; 
Sadeeq et al., 2021a), such as gradient-based methods and evolutionary algorithms like Genetic Algorithms 
(GA)(M. Almufti et al., 2019) and Particle Swarm Optimization (PSO) (M. Almufti et al., 2019), have been 
widely employed. However, these algorithms often face challenges when dealing with high-dimensional, 

nonlinear, and multi-modal optimization problems(Almufti et al., 2018; Asaad & Abdulnabi, 2018). 

The Big Bang-Big Crunch (BB-BC) algorithm is a nature-inspired optimization algorithm that draws 
inspiration from the cosmological phenomena of the expansion and contraction of the universe. Introduced 
by E. Erol and E. Şehirlioğlu in 2006, the BB-BC algorithm has shown promising results in various 
optimization applications (Tang et al., 2010). At its core, the algorithm employs a population of candidate 
solutions that undergo successive stages, including initialization, exploration, and exploitation. The 
algorithm seeks to iteratively improve the population through a balance of exploration and exploitation, 
mimicking the expansion and contraction of the universe(Jahwar et al., 2021; Sadeeq et al., 2021b). 

Previous applications of the BB-BC algorithm have demonstrated its effectiveness in solving optimization 
problems in diverse domains, such as engineering, economics, and data mining. For instance, in structural 
engineering, the BB-BC algorithm has been employed to optimize truss structures, frame designs, and other 
architectural configurations. These studies have reported favorable results in terms of convergence speed, 

solution quality, and robustness(Mbuli & Ngaha, 2022). 

The Welded Beam Design problem is a classic optimization benchmark in structural engineering, aiming 
to determine the optimal dimensions of a welded beam that minimizes weight while satisfying constraints 
related to stress, deflection, and stability. Traditional optimization techniques, including mathematical 
programming and gradient-based methods, have been applied to this problem. However, they often 
struggle with the problem's complexity, nonlinearity, and multiple objectives(Almufti, 2022a).  

The BB-BC algorithm has shown promise in various engineering design problems beyond the Welded 
Beam Design problem. Several studies have applied the BB-BC algorithm to optimize truss structures, 
frame configurations, and composite materials, among others. These applications have demonstrated 
improved convergence rates, solution quality, and robustness compared to traditional optimization 

techniques and other metaheuristics (Kaveh & Bakhshpoori, 2019). While the BB-BC algorithm has shown 
promise in optimization problems, including engineering design, there is a lack of comprehensive studies 
investigating the parameter sensitivity and performance of the algorithm in specific engineering scenarios. 
Moreover, its application to the Welded Beam Design problem remains relatively unexplored. 

Therefore, this paper aims to bridge these research gaps by conducting a parameter evaluation of the BB-
BC algorithm for resolving the Welded Beam Design problem. By systematically analyzing the algorithm's 
parameters and their impact on convergence and solution quality, the paper seek to provide valuable 
insights into the performance of the BB-BC algorithm in this context. This investigation can contribute to 
the understanding of the algorithm's effectiveness, parameter sensitivity, and its potential for enhancing 
the optimization of welded beam designs in structural engineering. 

According to Almufti(M. Almufti, 2019; M. Almufti et al., 2023), there were more than 200 Metaheuristic 
algorithms have been developed to address a wide range of practical problems.  



Academic Journal of Nawroz University (AJNU), Vol.12, No.4, 2023 

3 
 

Indeed, in addition to the Big Bang-Big Crunch (BB-BC) algorithm, several other metaheuristic algorithms 
have been employed to tackle the Welded Beam Design problem. These algorithms aim to optimize the 
dimensions of the welded beam while satisfying the given constraints. Here are a few notable metaheuristic 
algorithms that have been applied to this problem: 

1. Genetic Algorithms (GA): 

   Genetic algorithms are widely recognized and extensively used metaheuristic algorithms for 
optimization problems. They are inspired by the process of natural selection and evolution. In the context 
of the Welded Beam Design problem, genetic algorithms generate a population of potential solutions and 
iteratively evolve them by applying genetic operators such as selection, crossover, and mutation. Fitness-
based selection mechanisms drive the convergence towards improved solutions (Yokota et al., 1999). 

2. Particle Swarm Optimization (PSO): 

   Particle Swarm Optimization is a population-based optimization algorithm inspired by the social 
behavior of bird flocks or fish schools. In PSO, a population of particles moves through the search space, 
searching for the optimal solution. Each particle adjusts its position based on its own experience and the 
best-known position of the swarm. PSO has been applied to the Welded Beam Design problem to explore 
and exploit the search space efficiently (Kamil et al., 2021). 

3. Simulated Annealing (SA): 

   Simulated Annealing is a stochastic optimization algorithm that simulates the annealing process in 
metallurgy. It starts with an initial solution and iteratively explores the search space by accepting both 
better and worse solutions based on a probabilistic criterion. Initially, the algorithm allows a higher 
acceptance rate for worse solutions, enabling it to escape local optima. Over time, the acceptance rate 

decreases, and the algorithm converges towards the global optimum(Christu Nesam David. D & S. Elizabeth 
Amudhini Stephen, 2018). 

4. Harmony Search (HS): 

   Harmony Search is a music-inspired metaheuristic algorithm that mimics the improvisation process in 
music composition. It maintains a population of candidate solutions called "harmonies" and iteratively 
improves them. In the context of the Welded Beam Design problem, harmony search algorithms explore 
and refine the search space by adjusting the values of the design variables to optimize the objective function 
while satisfying the given constraints (O. K. Erol et al., 2011). 

These metaheuristic algorithms, along with the BB-BC algorithm, have been applied to the Welded Beam 
Design problem with varying degrees of success. Each algorithm has its own strengths and weaknesses, 
and their performance can be influenced by factors such as parameter settings, problem complexity, and 
the nature of the objective and constraint functions. 

Comparative studies that assess the performance of these algorithms on the Welded Beam Design problem 
have provided valuable insights into their capabilities. Such studies have examined factors like 
convergence speed, solution quality, robustness, and computational efficiency to evaluate the effectiveness 
of different metaheuristic algorithms in addressing the problem. 

By conducting a parameter evaluation of the BB-BC algorithm in the context of the Welded Beam Design 
problem, this research aims to contribute to the existing body of knowledge by providing a comprehensive 
understanding of the algorithm's performance and comparing it with other metaheuristic algorithms. 

3. Constrained Optimization Problem 

Constrained optimization problems involve finding the best solution to an optimization objective while 
satisfying a set of constraints. Unlike unconstrained optimization problems where only the objective 
function needs to be considered, constrained optimization problems require considering the feasibility of 
solutions within the constraints imposed by the problem(Almufti, 2022b). 

 

The general form of a constrained optimization problem can be expressed as follows, Eq(1): 
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Minimize (or maximize) f(x) 

Subject to g(x) ≤ 0 

h(x) = 0 

lb ≤ x ≤ ub 

 

(1) 

Where: 

- f(x) is the objective function that needs to be minimized or maximized. 

- g(x) represents inequality constraints that need to be satisfied, where g(x) ≤ 0. 

- h(x) represents equality constraints that need to be satisfied, where h(x) = 0. 

- x represents the vector of decision variables. 

- lb and ub represent the lower and upper bounds for the decision variables. 

 

In a constrained optimization problem, the objective is to find a solution that minimizes (or maximizes) the 
objective function while ensuring that all the constraints are satisfied. The constraints can represent various 
requirements or limitations that the solution must adhere to, such as physical constraints, resource 
constraints, or design specifications. 

Solving a constrained optimization problem involves searching for feasible solutions within the constraints 
and evaluating their objective function values. Various optimization algorithms, including metaheuristics 
and mathematical programming techniques, can be used to tackle constrained optimization problems. 
These algorithms aim to iteratively explore the solution space, refine candidate solutions, and converge 

towards the best feasible solution(Parsopoulos & Vrahatis, 2005). 
The performance evaluation of algorithms in constrained optimization often involves considering factors 
such as feasibility, optimality, convergence speed, robustness, and computational efficiency. Additionally, 
techniques like penalty functions, constraint handling mechanisms, or optimization formulations may be 
employed to handle the constraints effectively during the optimization process.(M. Zhang et al., 2008) 

Constrained optimization problems are prevalent in various fields, including engineering design, finance, 
operations research, and machine learning. Examples of constrained optimization problems include 
structural design optimization, portfolio optimization with investment constraints, scheduling problems 
with resource limitations, and parameter estimation with inequality constraints(Almufti, 2022c). 

 

By addressing the challenges posed by constraints, constrained optimization problems provide a 
framework for finding optimal solutions while considering the real-world limitations and requirements 
imposed by the problem domain. 

Generally, Constrained optimization problems can be broadly categorized into two main categories:  

 

a) Constrained Unimodal Optimization Problems: 
Constrained unimodal optimization problems refer to those problems where the objective function has a 
single optimal solution, and the feasible region defined by the constraints is unimodal. In other words, 
there is only one global optimum in the search space, and the constraints do not create multiple feasible 
regions. 
Solving constrained unimodal optimization problems involves finding the global optimum within the 
feasible region. Algorithms used for solving these problems typically aim to converge to the global 
optimum by balancing exploration and exploitation in the search space(Almufti, 2022b). Examples of 
constrained unimodal optimization problems include linear programming (LP) and quadratic 
programming (QP) problems. 

 

b) Constrained Multimodal Optimization Problems: 
Constrained multimodal optimization problems are characterized by having multiple local optima within 
the feasible region defined by the constraints. The objective function may have multiple peaks, valleys, or 
distinct regions of interest, making it challenging to find the global optimum. 

   Solving constrained multimodal optimization problems requires exploration of the search space to 
discover multiple local optima while still ensuring feasibility within the constraints. Algorithms used for 
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solving these problems need to balance between local search intensification to refine local optima and 
global search diversification to discover different regions of interest. Metaheuristic algorithms, such as 
genetic algorithms, particle swarm optimization, or simulated annealing, are commonly applied to address 
constrained multimodal optimization problems(Almufti, 2022b). 

The categorization into constrained unimodal and constrained multimodal optimization problems 
provides a high-level distinction based on the nature of the search space and the presence of multiple 
optima. However, within each category, there can be various subtypes and specific problem instances that 
require tailored solution approaches. 

It's important to consider the characteristics of the optimization problem at hand when selecting 
appropriate algorithms and techniques. Factors such as problem complexity, dimensionality, the number 
of constraints, the behavior of the objective function, parameters, encoding schemes, and fitness evaluation 
techniques should be taken into account to choose the most suitable optimization methodology. The most 
well-known examples of engineering constrained optimization problems that can be effectively solved by 
metaheuristic algorithms can be classified as: 

 

a) Truss Optimization: Optimal design of truss structures considering constraints such as stress, 
displacement, and buckling limits. Metaheuristic algorithms like genetic algorithms, particle swarm 
optimization, and simulated annealing have been successfully applied to solve truss optimization problems 
(Öztürk & Kahraman, 2023). 

 

b) Shape Optimization: Optimizing the shape of structures or components, such as airfoils, turbine blades, or 
car bodies, considering constraints on aerodynamic performance, structural integrity, and manufacturing 
limitations. Metaheuristic algorithms like genetic algorithms and evolutionary strategies have been 
employed to tackle shape optimization problems. 

 

c) Facility Layout Optimization: Determining the optimal layout of facilities in a manufacturing plant or a 
warehouse to minimize material handling costs, improve workflow, and ensure operational efficiency. 
Metaheuristic algorithms such as particle swarm optimization, ant colony optimization, and tabu search 
have been applied to solve facility layout optimization problems. 
 

d) Process Scheduling: Optimal scheduling of processes in manufacturing systems, chemical plants, or 
assembly lines to minimize makespan, energy consumption, or resource utilization while satisfying 
sequencing constraints, resource availability, and production targets. Metaheuristic algorithms like genetic 
algorithms, particle swarm optimization, and simulated annealing have proven effective in process 
scheduling problems. 

e) Portfolio Optimization: Determining the optimal allocation of investments in a financial portfolio while 
considering constraints such as risk tolerance, asset allocation limits, and return objectives. Metaheuristic 
algorithms, including genetic algorithms, particle swarm optimization, and evolutionary algorithms, have 
been employed to solve portfolio optimization problems. 

 

f) Vehicle Routing: Optimizing the routes of delivery vehicles to minimize travel distance, time, or fuel 
consumption, while satisfying constraints such as vehicle capacity, time windows, and customer demands. 
Metaheuristic algorithms like genetic algorithms, ant colony optimization, and tabu search have been 
widely used to solve vehicle routing problems. 

These examples highlight the diverse range of engineering constrained optimization problems that can be 
effectively tackled using metaheuristic algorithms. Metaheuristic algorithms offer the advantage of 
handling complex optimization landscapes, nonlinearity, and multiple constraints. Their ability to balance 
exploration and exploitation allows for the discovery of high-quality solutions in a reasonable amount of 
time. 

 

4. Welded Beam Design (WBD) 

Welded Beam Design that is shown in figure 1, is an engineering Single-Objectives Constrained 
Optimizations Benchmark Problems. It involves designing a welded beam with the lowest possible cost 
while taking into account side limitations, shear stress(τ),  bending stress, buckling (σ),  load on the bar 



Academic Journal of Nawroz University (AJNU), Vol.12, No.4, 2023 

6 
 

(Pc), and end deflection (δ). Four variables make up the design: h (x1), l (x2), t (x3), and b (x4). This issue 
may be expressed quantitatively as follows(Almufti, 2022a; Deb, 1991): 

min f (x) = 1.10471x1
2x2 + 0.04811x3x4(14.0 + x2) (2) 

s. t. g1(x) = τ(x) − τmax ≤ 0 (3) 

g2(x) = σ(x) − σmax ≤ 0 (4) 

g3(x) = x1 − x4 ≤ 0 (5) 

g4(x) = 0.10471x1
2 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0 (6) 

g5(x) = 0.125 − x1 ≤ 0 (7) 

g6(x) = δ(x) − δmax ≤ 0 (8) 

g6(x) = P − Pc(x) ≤ 0 (9) 

Where τ(x) = √(τ′)2
+ 2τ′τ′′

x2

2R
+ (τ′′)2 (10) 

τ′ =
P

20.5 x1x2
 (11) 

τ′′ =
MR

J
 (12) 

M = P (L +
x2

2
) (13) 

R = √
x2

2

4
+ (

x1 + x3

2
)2 (14) 

J = 2 {20.5x1x2 [
x2

2

12
+ (

x1 + x3

2
) (

x1 + x3

2
)]} (15) 

σ(x) =
6PL

x4x3
2 (16) 

δ(x) =
4PL3

Ex3
3x4

 (17) 

Pc(x) =
4.013E√x3

2x4
6

36
L2

(1 −
x3

2L
√

E

4G
) (18) 

Where P =  6000lb, L =  14 in, E =  30 x 106 psi, G =  12 x 106 psi, τmax = 13,600 psi, σmax =
 30,000 psi, δmax =  0.25 in, 0.1 ≤  x1 ≤  2, 0.1 ≤  x2 ≤  10, 0.1 ≤  x3 ≤  10, 0.1 ≤  x4 ≤  2. 
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Figure 1:Welded Beam Design 

Several approaches and optimization techniques have been employed to address the Welded Beam Design 
Problem. These include mathematical programming techniques, such as linear programming, nonlinear 
programming, or mixed-integer programming, as well as metaheuristic algorithms like genetic algorithms, 
particle swarm optimization, and simulated annealing(Eesa et al., 2023). 

Previous approaches have provided valuable insights into the problem and have demonstrated varying 
degrees of success in finding optimal or near-optimal solutions. However, there is still room for further 
exploration and improvement, especially by evaluating the effectiveness of the Big Bang-Big Crunch (BB-
BC) algorithm for resolving the Welded Beam Design Problem. The BB-BC algorithm's ability to balance 
exploration and exploitation makes it a promising candidate for optimizing the welded beam 
design(Dalirinia et al., 2023). 

5. Overview of Big Bang-Big Crunch Algorithm 

The Big Bang-Big Crunch (BB-BC) algorithm is a nature-inspired optimization algorithm that imitates the 
cosmological events of the universe's expansion (Big Bang) and contraction (Big Crunch). The BB-BC 
algorithm was firstly introduced for solving 

continuous optimization problems in 2006 by Erol and Eksin (Erol & Eksin, 2006), it aims to discover 
optimal or near-optimal solutions by balancing exploration and exploitation. It achieves this by iteratively 
improving a population of candidate solutions. 

The BB-BC algorithm begins with an initial population of candidate solutions, and through iterative stages, 
it explores the search space, refines the solutions, and converges towards optimal or near-optimal 

solutions(Goel et al., 2023; Mbuli & Ngaha, 2022; Tang et al., 2010). 
 

Step 1.  Initialization: 

In the initialization stage, the BB-BC algorithm generates an initial population of candidate solutions. This 
population represents the potential solutions to the Welded Beam Design problem. The initialization 
process can adopt various strategies such as random sampling or Latin hypercube sampling. The goal is to 
create a diverse set of candidate solutions that covers the search space effectively. 

Step 2. Exploration: 

During the exploration stage, the BB-BC algorithm focuses on exploring the search space to discover new 
and potentially promising solutions. It introduces random perturbations or employs local search 
techniques to explore the neighborhood of the candidate solutions. This exploration process allows the 
algorithm to discover regions of the search space that might contain better solutions. 

By exploring the search space, the BB-BC algorithm aims to escape local optima and reach areas with more 
promising solutions. This helps in maintaining diversity within the population and provides a chance to 
find global or near-global optima. 

Step 3. Exploitation: 

In the exploitation stage, the BB-BC algorithm intensifies its search around promising solutions to further 
improve their quality. It applies solution refinement techniques or local optimization methods to exploit 
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the potential of these solutions. By focusing on exploiting the most favorable regions of the search space, 
the algorithm aims to converge towards optimal or near-optimal solutions. 

The exploitation stage allows the BB-BC algorithm to refine the solutions and concentrate on areas that 
show the most potential for improving the objective function value. This step is crucial for enhancing the 
overall solution quality and convergence rate. 

Step 4. Fitness Evaluation: 

The BB-BC algorithm evaluates the fitness of candidate solutions using the objective function and 
constraints of the Welded Beam Design problem. The fitness evaluation process calculates the performance 
measure for each candidate solution based on how well it satisfies the objectives and constraints. This 
measure quantifies the quality or suitability of each solution within the population. 

The fitness evaluation guides the search process by providing a comparative measure of the candidate 
solutions. It helps the algorithm to assess the potential of each solution and make informed decisions 
during the exploration and exploitation stages. 

Step 5.  Iterative Improvement: 

The BB-BC algorithm performs iterative improvement to gradually enhance the quality of solutions over 
successive generations. It updates the population of candidate solutions based on their fitness values. 
Solutions with higher fitness, indicating better performance, have a higher chance of being selected for the 
next generation. 

Through iterative improvement, the BB-BC algorithm converges towards optimal or near-optimal 
solutions. The algorithm continues the exploration and exploitation stages, evaluating fitness, and 
updating the population until a termination condition is met, such as reaching a maximum number of 
iterations or a desired solution quality threshold. 

Step 6. Algorithmic Parameters: 

The BB-BC algorithm has several parameters that can significantly influence its performance. Some 
important parameters include population size, maximum number of iterations, mutation rate (perturbation 
level), local search strategy, and selection mechanisms. These parameters control the balance between 
exploration and exploitation, the convergence speed, and the algorithm's ability to escape local optima. 

Practically, Each particle is a member of the algorithm's population or a potential answer. In the Big Bang 
phase, a certain number of particles are repeatedly updated in the search space with step sizes based on 
the convergence operators of the Big Crunch phase in an effort to reach the problem's overall optimal 

solution(Sharma & Singh, 2022). 
Similar to earlier population-based metaheuristics, the Big Bang-Big Crunch (BB-BC) approach starts with 
a set of randomly generated starting solutions in the search space. A converging operator is formed in the 
first phase of the algorithm cycle, known as the Big Crunch, and then particles in the search space are 
updated with step sizes in the region of the converging operator created in the second phase, known as the 
Big Bang. Consider a population or candidate solutions matrix (P) with a given number of particles (nP), 
its associated penalized objective function (PFit), and the best observed particle in each iteration (bestP) 
with the least penalized objective function value. [2]. 

The weighted average of candidate solution positions, sometimes referred to as the center of mass (CM) or 
the position of the best candidate solution (bestP), can be used to define the convergence operator based 

on the Big Crunch phase. CM is stated as follows for minimization problems.(A. Ghasemi & Mirzavand, 
2014): 

𝐶𝑀(𝑖) = ∑ (
𝑃(𝑗, 𝑖)

𝑃𝐹𝑖𝑡(𝑗)
) / ∑ (

1

𝑃𝐹𝑖𝑡(𝑗)
) ,           𝑖 = 1, … . , 𝑛𝑣

𝑛𝑃

𝑗=1

𝑛𝑃

𝑗=1

 (19) 

At the beginning of the Big Bang phase. Particles are simply updated in the original BB-BC with respect to 
the previously determined center of mass (CM) or location of the best particle (bestP) by shifting by a 
random fraction of the permissible step size denoted by the upper (Ub) and lower (Lb) limits of design 
variables: 
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𝑛𝑒𝑤𝑃 = (𝐶𝑀 𝑜𝑟 𝑏𝑒𝑠𝑡𝑃) +
𝑟𝑎𝑛𝑑 ∗ (𝑈𝑏 − 𝐿𝑏)

𝑛𝐼𝑇
 (20) 

where rand is a uniformly distributed random number (0, 1). The step size is also divided by the number 
of algorithm iterations or number of Big Bang phases (NITs) in order to establish the effective search range 
around the global optimum or center of mass in order to restrict the search as the algorithm progresses. 
Clearly, the method contains two parameters that are necessary for all metaheuristics: the population size 
and the maximum number of algorithm iterations as a stopping criterion. Camp provided a novel 
formulation with two extra parameters for the Big Bang phase and demonstrated its effectiveness. The 
revised formulation is as follows(Camp, 2007): 

𝑛𝑒𝑤𝑃(𝑖) = (𝛽 ∗ 𝐶𝑀 + (1 − 𝛽) ∗ 𝑏𝑒𝑠𝑡𝑃 +
𝑟𝑎𝑛𝑑 ∗ 𝛼 ∗ (𝑈𝑏 − 𝐿𝑏)

𝑛𝐼𝑇
,   𝑖 = 1, . … . , 𝑛𝑃 (21) 

This updated formulation is used and encoded inside this section. Notably, the BB-BC algorithm does not 
need a replacement approach. In other words, particles depart their place regardless of whether their 
present position is advantageous. 

The pseudo code of the method is supplied below, and the BB-BC flowchart is seen in Fig2.

 

 

Figure 2:BB-BC Algorithm Flowchart

A.  BB-BC applications: 

The BB-BC algorithm has shown versatility and effectiveness in a wide range of optimization problems, 
and these applications highlight its adaptability to various domains. However, research on metaheuristic 
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algorithms is continuously evolving, and there might be more recent studies and applications, Table 1 
summarize some applications of BB-BC algorithm.

 

Table 1: BB-BC Applications 

# Application Name Author(s) Summary Year References 

1.  Structural Optimization H. Najafi and 
A. Kaveh 

BB-BC applied to 
optimize the 

design of steel 
trusses for 

minimum weight 
subject to various 

constraints. 

2007 (Kaveh & 
Mahdavi, 2016) 

2.  Function Optimization A. 
Ebrahimzadeh, 

M. 
Nezamabadi-

pour 

BB-BC used to 
optimize the 

Rastrigin 
function, a 
standard 

benchmark 
problem for 

global 
optimization. 

2011 (Ebrahimzadeh 
& Nezamabadi-

pour, 2011). 

3.  Image Segmentation S. Kamel and 
A. E. Hassanien 

BB-BC applied to 
the problem of 

image 
segmentation to 

partition an 
image into 

distinct regions. 

2013 (Kamel & 
Hassanien, 

2013) 

4.  Clustering Abdolreza 
Hatamlou, 

Salwani 
Abdullah, and 

Masumeh 
Hatamlou 

BB-BC used to 
cluster data 
points into 

groups with 
similar 

characteristics, 
aiding in data 

analysis. 

2011 (Hatamlou et 
al., 2011) 

5.  Portfolio Optimization V. S. Rathore 
and N. P. 

Khandelwal 

BB-BC applied to 
optimize 

investment 
portfolios, 

considering risk 
and return of 

different assets. 

2020 (Rathore & 
Khandelwal, 

2020) 

6.  Robot Path Planning A. Ghasemi 
and M. 

Mirzavand 

BB-BC used to 
plan optimal 

paths for robots 
navigating 

through obstacles 
and reaching 

target locations. 

2014 (A. Ghasemi & 
Mirzavand, 

2014) 

7.  Machine Learning Model 
Tuning 

B. N. Arafa, et 
al. 

BB-BC employed 
to optimize 

hyperparameters 

2018 (Arafa et al., 
2018) 
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of machine 
learning models 

for improved 
predictive 

performance. 

8.  VLSI Circuit Design 
Optimization 

A. Ghasemi 
and A. R. 

Alimohammadi 

BB-BC applied to 
optimize Very-

Large-Scale 
Integration 

(VLSI) circuits for 
minimized 

power 
consumption and 

area. 

2019 (A. , Ghasemi & 
Alimohammadi, 

2019) 

9.  Neural Network Training Sharma Rahul 
And 

Singh Amar 

BB-BC used for 
optimizing the 

weights and 
biases of neural 

networks to 
achieve better 

training 
accuracy. 

2021 (Sharma & 
Singh, 2022) 

10.  Energy Management in 
Smart Grids 

M. A. Elsoud 
and M. A. H. 

Abualrish 

BB-BC employed 
to optimize 

energy 
distribution and 
management in 

smart grid 
systems for 
improved 
efficiency. 

2021 (Elsoud & 
Abualrish, 

2021) 

6. Experimental results  

The results of utilizing the Big Bang-Big Crunch (BB-BC) method to solve the Welded Beam Design 
problem (WBD) with various beginning settings for the algorithm's parameters are reported in this section.  

Most of the time, BB-BC is determined by a set of constant factors that have a direct influence on how the 
results converge to the best possible value. Various values for the BB-BC variables are evaluated in this 
article to illustrate the influence of those factors on BB-BC performance. The study also explores the 
algorithm's exploration and exploitation capabilities in order to attain the best level of efficacy in resolving 
the (WBD). 

The algorithm executed by considering P =  6000lb, L =  14 in, E =  30 x 106 psi, G =
 12 x 106 psi, τmax = 13,600 psi, σmax =  30,000 psi, δmax =  0.25 in, 0.1 ≤  x1 ≤  2, 0.1 ≤  x2 ≤  10, 0.1 ≤
 x3 ≤  10, 0.1 ≤  x4 ≤  2. 

B. Alpha parameter: 

The BB-BC method employs the Alpha parameter to limit the initial search space and provide random first 
solutions. Table 2 depicts the effect of various Alpha values on the BB-BC algorithm's ability to solve the 
WBD issue. It displays the convergence history for a single run of the algorithm with the same beginning 
population and changing Alpha values (0.5, 1, 1.5). In these runs, the value partners fixed to Beta=0.2 and 
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nP=50.
 
Table 2: BB-BC results with Beta=0.2  nP=50, maxNFEs=20000 and various value of Alpha 

Alph
a 

X1 X2 X3 X4 F(X) time 

0.5 
0.20588247618473

5 
7.0487652384440

1 
9.0813038619131

4 
0.20591735501063

0 
2.223

7 
1.740

5 

1 
0.20386782268481

8 
7.0905583080146

0 
9.1459927504366

6 
0.20535486277856

1 
2.231

3 
2.416

2 

1.5 
0.20495512860610

7 
7.1157041699459

6 
9.0788407962509

7 
0.20556359687011

7 
2.226

1 
1.626

2 

The least fitness of solving WBD with four constraint values (X1, X2, X3, and X4) is shown in Table 2. It 
demonstrates that when Alpha=0.5, the BB-BC algorithm produces the best results. It shows how differing 
Alpha values can have a big influence on the results of BB-BC algorithms. It is vital to remember that the 
size of these affects rises according to both F(X) and the period of time the algorithm has been running. 
 

C. Beta parameter: 

The beta parameter is used to control the weighted average of particle positions, also known as the center 
of mass (CM), and the best particle. Table 3 shows how different Beta values affect the BB-BC algorithm's 
ability to solve the WBD issue. It shows the convergence history for a single run of the algorithm with the 
same beginning population but different Beta values (0.2, 0.5, and 0.8). The value partners Alpha=0.5 and 
nP=50 should be specified in these runs.
Table 3: BB-BC results with Alpha=0.5  nP=50, maxNFEs=20000 and various value of Beta 

Bet
a 

X1 X2 X3 X4 F(X) time 

0.2 
0.20588247618473

5 
7.0487652384440

1 
9.0813038619131

4 
0.20591735501063

0 
2.223

7 
1.740

5 

0.5 
0.20573293439641

5 
7.0903013198152

6 
9.0388583449232

3 
0.20575912141868

9 
2.218

6 
1.265

9 

0.8 
0.33101116965122

6 
4.8847962697206

9 
7.2189210018807

8 
0.33220629110983

3 
2.770

1 
1.959

0 

The least fitness of solving WBD with three constraint values (X1, X2, and X3) is shown in Table 3. It 
demonstrates that when Beta=0.5, the BB-BC algorithm produces the best results. It shows how differing 
Beta values can have a big influence on the results of BB-BC algorithms. It is vital to remember that the size 
of these F(X) affects is best when Beta= 0.5. 
 

D. BB-BC nP parameter: 

nP denotes the number of Particles involved in the search process. Table 4 shows how different Beta values 
affect the BB-BC algorithm's ability to solve the WBD issue. It shows the convergence history for a single 
run of the algorithm with the same beginning population but different nP values (30, 50, and 100). The 
value of Alpha=0.5 and Beta=0.5 should be specified in these runs.
Table 4: BB-BC results with Alpha=0.5  Beta=0.5, maxNFEs=20000 and various value of nP 

nP X1 X2 X3 X4 F(X) time 

30 0.205240059100049 7.05601789042014 9.12291346315412 0.205598691776848 2.2284 1.4365 

50 0.205732934396415 7.09030131981526 9.03885834492323 0.205759121418689 2.2186 1.2659 

100 0.204684299169551 7.10871309598151 9.09290958455787 0.206802452961017 2.2387 1.0309 
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The least fitness of solving WBD with three constraint values (X1, X2, and X3) is shown in Table 4. It 
demonstrates that when nP=100, the BB-BC algorithm produces the best results. It demonstrates how 
differing nP values may significantly affect the outputs of BB-BC algorithms. It is vital to remember that 
the size of these F(X) effects is ideal when nP= 50. 
Table 5, compares the result of BB-BC algorithm with 20 different metaheuristics algorithms, it shows that 
the results of BB-BC algorithm comes in 5 position out of 20.
 

Table 5: comparison of  metaheuristics algorithms in solving WBD problem 

# 
Author 

Algorith
m 

X1 X2 X3 X4 Cost Ref 

1.  Mahdav
i et al. 

HS 0.2057 3.4705 9.0366 0.2057 1.7248 
(Mahdavi et al., 

2007) 

2.  
Fesangh
ary et al. 

HS-SQP 0.2057 3.4706 9.0368 0.2057 1.7248 
(Fesanghar

y et al., 
2008) 

3.  
Xin-She 

Yang 
FA 0.2015 3.562 9.0414 0.2057 1.7312 

(Gandomi 
et al., 
2011) 

4.  
Coello GA 0.2088 3.4205 8.9975 0.2100 1.7483 

(Coello 
Coello, 
2000) 

5.  This 
study 

BB-BC 0.2057 7.0903 9.0388 0.2057 2.2186 1.2659 

6.  
Almufti ABC 0.2056 7.0901 9.0419 0.2057 2.2187 

(Almufti, 
2022a) 

7.  Hwang 
and He 

SA-GA 0.2231 1.5815 12.8468 0.2245 2.2500 (Liu, 2005) 

8.  

Montes 
and 

Ocana 
BFO 0.2536 7.1410 7.1044 0.2536 2.3398 

(Betania 
Hernández-

Ocaña & 
Efrén 

Mezura-
Montes, 

2009) 
9.  

Liu SA 0.2444 6.2175 8.2915 0.2444 2.3810 

(Hedar & 
Fukushima, 

2006) 
10.  

Lee and 
Geem 

HS 0.2442 6.2231 8.2915 0.2443 2.381 

(Lee & 
Geem, 
2005) 

11.  
Zhang 
et al. 

DE 0.2444 6.2175 8.2915 0.2444 2.3810 
(M. Zhang 

et al., 
2008) 

12.  Hedar 
and 

Fukushi
ma 

SA-DS 0.2444 6.2158 8.2939 0.2444 2.3811 
(Hwang & 
He, 2006) 

13.  
Bernardi
no et al. 

AIS-GA 0.2444 6.2183 8.2912 0.2444 2.3812 
(Bernardin

o et al., 
2007) 

14.  Lemong
e and 

GA 0.2443 6.2117 8.3015 0.2443 2.3816 (Lemonge & 
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Barbosa Barbosa, 
2004) 

15.  
Zhang 
et al. 

EA 0.2443 6.2201 8.2940 0.2444 2.3816 
(J. Zhang 

et al., 
2009) 

16.  Ray and 
Liew 

SCA 0.2444 6.2380 8.2886 0.2446 2.3854 
(Ray & 

Liew, 2003) 
17.  Leite 

and 
Topping 

GA 0.2489 6.1097 8.2484 0.2485 2.4000 

(Leite & 
Topping, 

1998) 
18.  Atiqulla

h and 
Rao 

SA 0.2471 6.1451 8.2721 0.2495 2.4148 

(ATIQULLAH 
& RAO, 
2000) 

19.  Deb GA 0.2489 6.1730 8.1789 0.2533 2.4331 (Deb, 1991) 

20.  Akhtar 
et al. 

SBM 0.2407 6.4851 8.2399 0.2497 2.4426 
(Akhtar et 
al., 2002) 

 
7. Conclusion 

In this article, we have explored the impact of different starting parameters of the Big Bang-Big Crunch 
Algorithm (BB-BCA) on the resolution of the Welded Beam Design Problem. The BB-BCA, a metaheuristic 
optimization technique inspired by the concept of the Big Bang and Big Crunch in cosmology, has shown 
promise in solving complex engineering optimization problems. Our objective was to investigate how the 
choice of initial parameters affects the algorithm's performance in tackling the Welded Beam Design 
Problem. 

Through a comprehensive series of experiments, we systematically varied the initial parameters, 
including the Alpha, nP, and Beta with a fixed maximum iteration count. The results obtained from our 
simulations provide valuable insights into the behavior of the BB-BCA under different configurations. 

The analysis revealed that the BB-BCA is sensitive to the initial parameter settings. While certain 
combinations led to rapid convergence and high-quality solutions, others resulted in slower convergence 
and suboptimal outcomes. Notably, a careful selection of parameters allowed the algorithm to overcome 
local optima and explore a more diverse solution space, ultimately leading to improved results. 

Based on the results obtained from the experiments conducted on the Big Bang-Big Crunch Algorithm 
(BB-BCA) with different starting parameters for the resolution of the Welded Beam Design Problem, the 
following conclusions can be drawn: 

1. The Alpha Parameter: 
When maintaining MaxNFEs = 20000, nP = 50, and Beta = 0.2 as constant values, the convergence 

histories for a single trial run from the same starting population were observed to range between 0 and 1 
for different Alpha parameter values (0.5, 1, and 1.5). It was found that the method runs more efficiently 
when Alpha is set at 0.5. This suggests that lower values of Alpha contribute to faster convergence and 
better-quality solutions for the given problem. 

2. The Beta Parameter: 
With MaxNFEs = 20000, nP = 50, and Alpha = 0.5 held constant, the convergence histories for a single 

trial run from the same starting population varied between 0.0 and 1.0 for different Beta values (0.2, 0.5, 
and 0.8). The results indicated that the technique is more efficient when the Beta value is set at 0.5. This 
implies that moderate values of Beta lead to improved performance and faster convergence. 

3. The nP Parameter: 
By setting MaxNFEs = 20000, Alpha = 0.5, and Beta = 0.5 as constant, the convergence histories for a 

single trial run from the same starting population were observed to vary between 0 and 1 for different nP 
values (30, 50, and 100). The findings suggest that the approach operates more efficiently when nP is set to 
50, indicating that an intermediate number of particles in the population is more effective for the given 
problem. 
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By comparing the results of BB-BC algorithm with 20 different metaheuristics algorithm, it can be 
concluded that BB-BC is well designed for solving optimization problems. 

In summary, the investigation into the effect of different starting parameters on the resolution of the 
Welded Beam Design Problem using the BB-BCA revealed that the algorithm's performance is highly 
influenced by the values of Alpha, Beta, and nP. Optimal combinations of these parameters lead to more 
efficient convergence and better-quality solutions. 
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