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ABSTRACT: This research paper presents a comprehensive study on the development and evaluation of a brain tumor 
classification model using advanced image processing and deep learning techniques. The primary objective of this 
study was to create an accurate and robust system for distinguishing between brain tumors and normal brain images, 
utilizing both an original dataset and an augmented dataset. With a focus on improving medical diagnosis, the research 
aimed to enhance the performance of brain tumor detection by leveraging state-of-the-art machine learning methods. 
The model pipeline comprised various image preprocessing steps, including cropping, resizing, denoising, and 
normalization, followed by feature extraction using the DenseNet121 architecture and classification using sigmoid 
activation. The dataset was meticulously divided into training, validation, and testing sets, with an emphasis on 
achieving high recall, precision, F1-score, and accuracy as key research objectives. The results demonstrate that the 
model achieved impressive performance, with a training recall of 92.87%, precision of 93.82%, F1-score of 93.15%, and 
an accuracy of 94.83%. These findings underscore the potential of deep learning and data augmentation in enhancing 
brain tumor detection systems, supporting the research's core objective of advancing medical image analysis for clinical 
applications.   
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1. Introduction  

Cancer is a complex and debilitating disease that can affect anyone, resulting in abnormal cell growth 
and frequently creating severe health problems. In the ongoing combat against cancer, research and early 
detection are vital [1]. A brain tumour is a medical condition typified by the uncontrolled growth of brain 
cells. As a brain tumour grows, it exerts tension on the brain, possibly causing harm and posing a fatal risk. 
These tumors are broadly classified as benign or malignant, with malignant tumors consisting of cancerous 
cells and benign tumors of noncancerous cells. Malignant tumors tend to grow rapidly, whereas benign 
tumors tend to develop slowly and exhibit fewer symptoms than their malignant counterparts [2]. Another 
criterion for classifying brain tumors is their origin: main brain tumors, which include gliomas, 
oligodendrogliomas, pituitary adenomas, schwannomas, and astrocytomas, originate within the brain, 
whereas metastatic tumors, referred to as additional brain tumors, originate in other parts of the central 
nervous system (CNS) and migrate to the brain via arterial circulation [3]. 

Brain tumors have emerged as a major cause of death among both infants and adults. Each year, they 
affect approximately 250,000 people worldwide, representing less than 2% of all cancer cases. The 150 
distinct varieties of human brain tumors can be broadly classified as benign tumors, which remain localized 
within the brain, and malignant tumors, which may spread beyond the brain and are commonly known as 
brain cancer [4]. Lifesaving diagnosis of brain malignancies must be prompt and accurate. Due to the 
density of brain tumors, manual detection is difficult, necessitating the need for automated computer-based 
methods to assist in tumor detection [5]. Currently, advances in machine learning and deep learning have 
substantially enhanced brain tumor detection algorithms [6], allowing radiologists to rapidly identify 
tumors without the need for invasive procedures. Recent advances in deep neural network modeling have 
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led to the development of cutting-edge technologies for analyzing, segmenting, and classifying brain 
lesions [7].  

MRI is a noninvasive imaging technique providing high-resolution 3D and 2D images of human organs, 
involving the brain. As a result of its superior image quality, it is widely utilized for cancer classification 
and identification. Nevertheless, distinguishing varieties of cancer from MRI images is a difficult and error-
prone endeavor that frequently requires the expertise of radiologists and requires considerable time [8]. An 
exact diagnosis is necessary for prompt treatment and enhanced results for patients, requiring the 
development of Computer-Assisted Diagnosis (CAD) systems within the field of Artificial Intelligence (AI). 
These CAD systems seek to relieve radiologists and medical practitioners of the burden of tumor analysis 
and categorization [9]. 

Approaches for classifying brain tumors are broadly classified as machine learning (ML) or deep 
learning (DL) techniques. prior to classification, ML-based systems usually need lengthy and costly manual 
feature extraction and segmentation. These steps frequently necessitate expert intervention to select proper 
algorithms, resulting in inconsistent performance [10], particularly when handling large datasets. In 
contrast, DL-based algorithms, including Convolutional Neural Networks (CNNs), have risen in 
popularity due to their capacity to automate feature extraction and segmentation tasks, thereby providing 
reliability and efficiency. DL models autonomously extract high-level and low-level features from training 
data, enhancing their appeal among researchers and scientists [11]. 

This research contributes to the field of medical imaging and brain tumor detection by presenting an 
innovative model that improves medical diagnosis, delivers strong performance metrics, and emphasizes 
the value of deep learning and data augmentation. These contributions collectively enhance the tools 
available for clinical applications and hold significant promise for improving patient outcomes. The 
research introduces an efficient feature extraction process using the DenseNet121 architecture. This 
contributes to the field of medical image analysis by streamlining the identification of salient features 
within brain tumor images, reducing the need for labor-intensive manual feature extraction. 

2. Literature review 

Numerous investigations have contributed to the classification of brain tumors, each employing unique 
methodologies and approaches. Gumaei et al. [12] presented a hybrid feature extraction approach to the 
classification of brain tumors. For preprocessing, they deployed the min-max normalization enhancement 
of the contrast approach and the PCA-NGIST hybrid method for extracting features, respectively. The 
regularized extreme learning machine (RELM) was utilized for classification. Their method yielded an 
accuracy rate of 94.23 per cent. The study achieved a high accuracy rate of 94.23%. However, it does not 
discuss the potential challenges or limitations of their method, which is essential for understanding its 
applicability in various real-world scenarios. Ayadi et al. [13] presented a CNN model and evaluated its 
efficacy before and after data enhancement. By supplementing the dataset with additional information, 
they proved an important rise in accuracy. In detecting pituitary tumors, their approach obtained a 
remarkable 98.43% accuracy, representing an important development in the discipline. While the study 
showed a significant increase in accuracy through data enhancement, it doesn't provide insights into the 
potential drawbacks or challenges associated with data augmentation. Moreover, the scope of the research 
is limited to pituitary tumor detection, which may not cover the broader spectrum of brain tumors. Preethi 
and Aishwarya [14] proposed a classification paradigm for brain tumors with multiple stages. They created 
a feature matrix by combining wavelet-based gray-level co-occurrence matrix as well as GLCM. The 
features were then decreased by employing the oppositional flower pollination algorithm (OFPA), 
followed by classification using a deep neural network. Their method produced an accuracy of 92%. The 
proposed method achieved an accuracy of 92%, but the paper lacks a discussion of potential challenges or 
limitations, such as the computational complexity of the employed techniques or the generalizability of the 
model. Khan et al. [15] introduced a deep learning-based hierarchical classification system for brain lesions. 
The level of accuracy was 92.13 per cent accurate. Nonetheless, the study highlighted the need for 
additional evaluation prior to clinical adoption. Although the hierarchical classification system achieved 
92.13% accuracy, the study emphasizes the need for additional evaluation before clinical adoption, 
suggesting that there may be unresolved issues or limitations in the model's performance that need further 
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investigation. In a multi-model approach, Khan, M.A. et al. [16] classified brain tumors using deep learning. 
Histogram equalization, discrete cosine transforms, feature extraction using pre-trained VGG16 and 
VGG19 models, and feature selection using a correntropy-based learning method and ELM were all 
incorporated into their methodology. Utilizing partial least squares (PLS), feature fusion was 
accomplished, resulting in impressive accuracy rates of 97.8%, 96.6%, and 92.5% for multiple data sets. 
While the multi-model approach demonstrated impressive accuracy rates, the paper does not provide an 
in-depth analysis of the potential limitations or challenges in fusing multiple features and models. It also 
does not discuss the potential computational costs associated with these techniques. 

M. Sarmad et al. [17] provided a classification method for brain tumors based on edge detection, fuzzy 
logic, and a U-Net CNN. The rigorous evaluation of their approach based on precision, sensitivity, 
specificity, and the dice coefficient index demonstrated its efficacy. The study employed edge detection, 
fuzzy logic, and a U-Net CNN, which may not be the most computationally efficient approach. The paper 
does not discuss potential limitations related to computational complexity or model interpretability. 
Wahlang et al. (2022) [18] investigated deep learning architectures for brain MRI image classification, 
including CNNs, DNNs, LeNet, AlexNet, ResNet, and traditional methods such as SVM. Their research 
highlighted the importance of gender and age as attributes for enhanced classification accuracy, with their 
proposed technique outperforming existing methods. The paper highlights the importance of gender and 
age as attributes but does not discuss the ethical and privacy considerations associated with using such 
attributes in medical image classification. Additionally, the study may not address the generalizability of 
the model to diverse populations. Younis et al. (2022) [19] utilized the VGG 16 model within a CNN 
framework for identifying of brain tumors. Their method outperformed conventional methods in precision, 
F1-score, and accuracy, attaining a remarkable 98.5% accuracy with the VGG 16 model. Collectively, these 
investigations contribute to the ongoing progress in brain tumor classification by utilizing a variety of 
techniques and reaching notable advances in precision and efficacy. While the study achieved an 
impressive accuracy of 98.5% with the VGG 16 model, it does not thoroughly discuss the model's potential 
limitations, such as its computational requirements or challenges in real-world implementation. 

 

3. Proposed Method 

In the realm of medical image analysis, the accurate classification of brain tumors is of paramount 
importance for timely diagnosis and treatment planning. This section outlines a comprehensive method 
for classifying brain tumors into cancerous and non-cancerous categories. Our approach as given in Figure 
1 encompasses several critical steps, from preprocessing to deep learning-based feature extraction and 
classification. This binary classification allows for a streamlined diagnosis and aids in the early detection 
and treatment of potentially life-threatening conditions. Effective preprocessing of medical images plays a 
pivotal role in enhancing the performance of any classification system. In our proposed method, we employ 
a series of preprocessing steps to ensure that the input data is suitable for subsequent analysis including 
image cropping, image resizing, image denoising, and image normalizing. We leverage the power of deep 
learning for feature extraction and classification, employing the DenseNet121 architecture as the backbone 
of our model. 
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Figure 1: Proposed Framework for Brain Tumor Classification 

1. Dataset 

The MRI data used in this study for identifying brain tumors were obtained from Kaggle, and Navoneel 
Chakrabarty provided the dataset accessible. The author was responsible for the compilation of the dataset 
[20]. Within this dataset, the images have been classified as "YES" or "NO." The "YES" category included 
155 MRI scans of patients identified as having brain tumors, while the "NO" type included 98 MRI scans of 
patients with no brain tumors. The second figure depicts an MRI scan to a positive case (with a brain tumor) 
and a negative case (without a brain tumor) for illustrative purposes. Given the comparatively tiny size of 
the dataset, adding of images played a crucial role in expanding its capacity. 

 

Figure 2: Dataset Used to Evaluate the Proposed Method 

2. Data Augmentation 

Data augmentation plays a pivotal role in enhancing the performance and robustness of machine 
learning models, particularly in scenarios where the availability of labeled data is limited or when the 
model's capacity to generalize is critical. Data augmentation exponentially increases the effective size of 
our dataset by generating multiple variations of the original data through transformations such as rotation, 
scaling, cropping, flipping, and more. This augmented dataset helps prevent overfitting, allowing the 
model to learn a broader range of patterns and representations [21]. Models trained on augmented data 
tend to be more robust in the face of noise, lighting changes, and other environmental variations. They 
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learn to recognize the core features of an object or pattern, rather than being overly sensitive to specific, 
limited conditions. Overfitting occurs when a model becomes too specialized in capturing noise or outliers 
in the training data. Augmentation introduces variability that discourages overfitting by forcing the model 
to focus on the most salient features. 

The incorporation of image augmentation was instrumental in the CNN architecture's training process, 
effectively diversifying the image dataset for both the training and testing phases by expanding the pool of 
sample images [22]. Image augmentation encompasses a variety of techniques, including shearing, 
zooming, rescaling, flipping, whitening, random rotations, and shifts, all of which contribute to enhancing 
dataset variability. In our methodology, we specifically employed rotation and shearing techniques to 
ensure a broader range of training data. 

3. Preprocessing 

The preprocessing stage is a critical component of our brain tumor classification pipeline, aimed at 
enhancing the quality and consistency of the input MRI images. This section details the implementation of 
the following preprocessing techniques: image cropping, image resizing, image denoising, and image 
normalizing. Image cropping is the initial step in our preprocessing pipeline [23]. Its primary purpose is to 
isolate the region of interest (ROI) containing the brain and tumor while removing unnecessary background 
information. This not only reduces the computational complexity of subsequent steps but also mitigates 
the impact of irrelevant noise in non-ROI regions. To implement image cropping, we determine the 
coordinates of the bounding box that encapsulates the brain and tumor within the MRI image. Then, crop 
the MRI image using the identified bounding box, ensuring that the ROI remains the central focus of the 
processed image. Finally, the result is a trimmed image that retains only the brain and tumor, facilitating 
more efficient and focused analysis. 

Standardizing image sizes is crucial for consistent processing and compatibility with deep-learning 
models. Our resizing step ensures that all MRI images have the same dimensions and aspect ratio. This 
uniformity simplifies subsequent feature extraction and classification. Our image-resizing process consists 
of the following key steps. First, define a target resolution (e.g., 224x224 pixels) that aligns with the input 
requirements of our deep learning model (e.g., DenseNet121). Second, apply interpolation techniques to 
resample the cropped MRI image to the target resolution. Third, the result is a resized MRI image that 
conforms to the desired dimensions without distorting the aspect ratio. 

Medical images, such as MRI scans, are frequently beset by a variety of noise which may compromise 
diagnostic precision. To enhance the level of quality and accessibility of MRI images, image denoising is 
an essential preparatory process. We organize the MRI image with a Gaussian kernel to reduce high-
frequency noise and preserve critical image characteristics. The kernel of the Gaussian distribution is a 
mathematical function resembling a bell-shaped curve. It is designed to give greater weight to pixels closest 
to the kernel's center while gradually diminishing the impact of pixels further away. This distinctive feature 
makes it suitable for denoising tasks in healthcare imaging. The following equation mathematically 
represents the Gaussian kernel: 

𝐺(𝑥, 𝑦) = !
"#!

	 . exp	(− $"%&!

"#!
)                                                                                                                                (1) 

G(x,y) represents the value of the Gaussian kernel at spatial coordinates (x,y). σ (sigma) is a crucial 
parameter known as the standard deviation. It controls the spread or width of the Gaussian function, 
which, in turn, determines the degree of smoothing applied to the image. (x,y) are the spatial coordinates 
within the kernel's neighborhood. 

Image normalization is the final preprocessing step, ensuring that pixel values across different MRI 
images are consistent. Normalization is crucial because variations in image intensity can hinder the 
learning process of deep neural networks. Our image normalization process involves calculating the mean 
and standard deviation of pixel values within the entire dataset. Scaling each pixel value to have a zero 
mean and unit variance using the computed statistics. This step ensures that the pixel intensity values are 
within a consistent range, making the MRI images more amenable to training deep learning models. The 
preprocessing stage for brain tumor MRI images integrates image cropping, resizing, denoising, and 
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normalization techniques to prepare the data for subsequent feature extraction and classification. These 
preprocessing steps collectively enhance the quality, consistency, and suitability of the MRI images for 
accurate brain tumor classification and diagnosis. 

4. Deep Learning 

Methods based on deep learning transformed the discipline of medical image analysis in recent times, 
especially for the classification of MRI scans of brain tumors. These potent neural network-based 
techniques have had an important effect, providing important benefits and improvements in the 
identification and management of brain malignancies. Deep learning models, such as convolutional neural 
networks (CNNs) and structures such as DenseNet121, indicate exceptional accuracy in differentiating 
between malignant and benign brain lesions. Their capability to acquire knowledge of complex hierarchical 
features from MRI images allows for increased sensitivity, facilitating the detection of tumors that would 
otherwise be missed by conventional methods [24]. Deep learning models flourish at feature extraction, 
determining relevant MRI image features automatically. It reduces the requirement for taking time and 
potentially ineffective manual feature engineering. Early classification of brain tumors with precision can 
have a significant impact on the results for patients. Models based on deep learning offer the possibility for 
sooner and more accurate diagnosis, resulting to prompt therapies and a better prognosis. The influence of 
deep learning techniques on the classification of MRI scans of brain tumors is undeniable. These approaches 
have transformed the field by significantly improving accuracy, efficiency, and early detection capabilities. 
As technology continues to advance and more data becomes available, deep learning is poised to play an 
increasingly central role in enhancing our understanding and management of brain tumors, ultimately 
leading to improved patient care and outcomes. 

 

4. Feature Extraction 

DenseNet121 is a deep convolutional neural network architecture that has been widely used for various 
computer vision tasks, including feature extraction from medical images like brain tumor MRI scans. It 
belongs to the family of Densely Connected Convolutional Networks (DENSENETs), which are known for 
their ability to capture intricate image features effectively. DenseNet121 is composed of several densely 
connected blocks, each containing convolutional layers. Its architecture is characterized by the following 
key components: 

• Convolutional Layers: These layers perform feature extraction from the input image. Convolutional 
filters slide over the image, detecting various patterns and features. 

• Dense Blocks: In DENSENETs, feature maps from previous layers are concatenated and used as 
input to subsequent layers. This dense connectivity ensures that each layer receives information 
from all previous layers, facilitating the extraction of rich and hierarchical features. 

• Transition Layers: These layers follow dense blocks and reduce the spatial dimensions of feature 
maps, typically through pooling and dimensionality reduction operations. This helps control the 
model's size and computational complexity. 

• Global Average Pooling: At the end of the network, global average pooling is applied to reduce the 
spatial dimensions of the feature maps to a single vector. This vector contains the extracted 
features, which can be used for classification tasks. 

 

Table 1: BB-BC Applications 
Layer Type Output Shape Description 

Input (224, 224, 3) Input MRI image with dimensions 224x224 pixels and 3 color channels (RGB). 
Convolutional Layer (112, 112, 64) Initial convolution layer with 64 filters of size 7x7. 
Max Pooling Layer (56, 56, 64) Max pooling with a 3x3 kernel and stride of 2x2. 

Dense Block 1 (56, 56, 256) Dense block with multiple convolutional layers. 
Transition Layer 1 (28, 28, 128) Transition layer reducing spatial dimensions. 
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Dense Block 2 (28, 28, 256) Dense block with multiple convolutional layers. 
Transition Layer 2 (14, 14, 128) Transition layer reducing spatial dimensions. 

Dense Block 3 (14, 14, 256) Dense block with multiple convolutional layers. 
Transition Layer 3 (7, 7, 128) Transition layer reducing spatial dimensions. 

Dense Block 4 (7, 7, 256) Dense block with multiple convolutional layers. 
Global Average 

Pooling (256,) Reduces the spatial dimensions to a feature vector of length 256. 

Fully Connected 
Layer (1,) Final classification layer, typically using sigmoid activation for binary 

classification. 
 

We have performed the following steps for the feature extraction process of brain tumor MRI: 

• Input: The MRI image of the brain tumor is fed as input to the DenseNet121 model. 

• Forward Pass: The input image passes through the network, with each convolutional layer 
extracting increasingly abstract features. 

• Feature Maps: As the image progresses through the network, feature maps of different scales and 
complexities are generated, capturing various patterns, textures, and structures within the image. 

• Global Average Pooling (GAP): After the last convolutional layer, global average pooling is applied. 
This operation computes the average value for each feature map across all spatial locations, 
resulting in a fixed-length feature vector. 

• Feature Vector: The final feature vector, generated by the global average pooling layer, contains the 
high-level features extracted from the input MRI image. This vector serves as a representation of 
the image's content and can be used for classification. 

DenseNet121 is employed in brain tumor MRI classification for its ability to extract meaningful and 
discriminative features from the input MRI images. The dense connectivity and hierarchical feature 
extraction process make it a powerful tool for enhancing the accuracy of brain tumor classification models 
by providing rich and informative representations of the image content. 

The DenseNet architecture is made up of several dense blocks, every one of which comprises a set of 
operations. Each dense block's convolutional layers follow a regular structure: they start with a batch 
normalization layer to normalize the ingredients, then a ReLU activation function to induce non-linearity, 
and lastly a Conv2D layer for convolution. In the DenseNet 121 model, batch normalization, ReLU 
activation, and Conv2D are performed six times in that initial dense block, twelve times in the next dense 
block, twenty-four times in the 3rd dense block, and sixteen times in the last dense block. Transition layers 
are intentionally placed following each dense block to decrease the number of channels in the feature maps. 
These transition layers are made up of a one-by-one convolutional layer and a two by two average pooling 
layer with a stride of two epochs. This combination minimizes the number of channels in DenseNet 121 
from 256 to 128, then 64, and finally 32. A global average pooling layer is utilized in the DenseNet structure 
to execute spatial pooling throughout the whole feature map, resulting in a vector with a set-
length representation that captures the most significant data. For classification, a fully connected layer is 
used, followed by a sigmoid activation function that produces class probabilities. 

 



Academic Journal of Nawroz University (AJNU), Vol.12, No.4, 2023 

 
 

330 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: DenseNet121 Architecture Used in this study 

In a DenseNet, each layer is directly connected to every other layer in a feed-forward fashion. This dense 
connectivity promotes feature reuse and allows for efficient feature extraction. The core component of 
DenseNet121, like other variants of DenseNet, is the dense block. In a dense block, convolutional layers are 
densely connected, and each layer receives feature maps from all previous layers in the same block. These 
dense connections facilitate the extraction of detailed and progressively abstract features from the input 
data. The dense block is typically followed by transition layers that reduce spatial dimensions while 
increasing the number of feature maps. This combination of dense blocks and transition layers forms the 
core of DenseNet121, enabling it to efficiently capture and utilize features from input images. 

5. Classification 

A binary classification is an automated method of learning that divides information into two different 
types or categories, usually called "positive" and "negative." That is frequently employed for tasks requiring 
a yes-or-no decision according to input features, such as spam email identification and medical diagnosis 
[26, 27]. Sigmoid activation is a vital component of neural networks utilized in binary classification duties, 
for instance classifying MRI scans of brain tumors through cancer and non-cancer types. Activation 
functions are crucial parts of neural networks that bring non-linearity to the model, allowing it to discover 
complicated data-based connections. In tasks involving binary classification, which includes brain tumor 
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classification, the sigmoid activation function is frequently employed for the last layer of the neural 
network. The mathematical definition of the sigmoid activation function, also known as the function of 
logistics, is as follows: 

𝜎(𝑥) = !
!%	(#$

	                                                                                                                                (2) 

Where x represents the input to the function, which is typically the weighted sum of the features 
extracted by the neural network. σ(x) outputs a value between 0 and 1, representing the probability that the 
input belongs to the positive class (e.g., cancer) in binary classification. 

Sigmoid activation serves as a probability estimator. It takes the combined information from the neural 
network's preceding layers and transforms it into a probability score between 0 and 1. A threshold value 
(often set at 0.5) is applied to the sigmoid output. If the sigmoid output exceeds the threshold, the input is 
classified as the positive class (cancer); otherwise, it is classified as the negative class (non-cancer). The 
sigmoid activation function plays a pivotal role in classifying brain tumor MRI scans into cancer and non-
cancer classes. It transforms the model's output into interpretable probability scores, facilitating informed 
clinical decisions. The choice of threshold and consideration of class imbalance are vital steps in ensuring 
that the sigmoid activation effectively meets the clinical needs of brain tumor classification. 

 

4. Experimental Results 

In this part, we provide a thorough evaluation and analysis of the classification model for brain tumors 
derived from our research. The findings from experiments are a crucial component of our research, as they 
provide insight into the efficiency and effectiveness of the system in differentiating brain tumor images 
from normal brain images. We measured the model's capacities via a rigorous evaluation procedure, 
incorporating key performance metrics including recall, precision, F1-score, and accuracy. 

Remember is the ratio of genuine positive instances to the total number of accurate positive estimates. 
It assesses whether the model is able to determine all positive samples successfully. Precise is the 
percentage of true positive estimations to the total amount of a modelled positive claim. It assesses how 
many of the positive cases indicated were accurate. The F1-score represents the average of recall and 
accuracy. It offers a balance among both of these metrics and is particularly helpful when working with 
unbalanced datasets. Accuracy is defined as the proportion of samples that were correct (true positives and 
true negatives) relative to the overall amount of data. It assesses the accuracy of the model's overall 
estimates. Collectively, these indicators deliver a comprehensive assessment of the efficacy of the brain 
tumor classification approach. A high recall guarantees that brain tumors are uncommonly left out, a high 
precision reduces false alarms, a balanced F1-score reflects overall efficacy, as well as accuracy provides a 
sense for overall correctness. The examination of these indicators will assist in determining the model's 
applicability for real-world medical applications and determine any required efficiency adjustments [28]. 

To ensure a robust evaluation, we divided our dataset into distinct subsets, each serving a specific 
purpose in the training and testing of our model. The dataset distribution is summarized in the table below, 
highlighting the allocation of brain tumor and normal images to the original and augmented datasets, as 
well as the proportions designated for training, validation, and testing: 

Table	 2	 shows	 the	 augmented	 dataset	 distribution	 of	MRI	 scans	 for	 training	 and	 testing	 the	 CNN	
models.	

Class Original Augmented Training Validation Testing 
Brain tumor 155 1085 759 109 217 

Normal 98 686 480 69 137 
Total 253 1771 1239 178 354 
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This structured division allowed us to meticulously evaluate the model's performance under various 
conditions, simulating real-world scenarios where the system needs to make accurate and reliable 
predictions on previously unseen data. 

The outcomes of our brain tumor classification model across both the original along augmented datasets 
are summarized in Table 3. During the training process via the original dataset, the model performs 
admirably. It correctly identifies 94.37% of authentic brain tumor cases. The accuracy level of 96.42% 
indicates that the model is correct approximately 96.42% of the time when it identifies an instance as a brain 
tumor. The F1-score of 95.28 percent combines accuracy and recall to provide an overall measure of model 
performance in this class. The accuracy of the model on the training data is additionally fairly high, at 95.25 
per cent, indicating that it classifies nearly 95.25 per cent of all samples accurately. Similar to these 
measurements, the model's efficacy in the Normal class demonstrates a proportionate ability for 
differentiation among regular and brain tumor cases. The aggregate metrics, which account for the two 
classes, demonstrate the model's equal effectiveness across the entire dataset. The recall, precision, and F1-
score values for the category as a whole indicate that the model preserves a high level of accuracy, correctly 
identifying 93.43 percent of all actual instances while providing accurate predictions 94.98% of the time. 

Table	 3	 shows	 the	 augmented	 dataset	 distribution	 of	MRI	 scans	 for	 training	 and	 testing	 the	 CNN	
models.	

Class Recall (%) Precision (%) F1-score (%) Accuracy (%) 
Training Original data 

Brain tumor 94.37 96.42 95.28 
95.25 Normal 92.49 93.55 92.14 

Overall 93.43 94.98 93.71 
Testing Original data 

Brain tumor 89.04 92.01 91.93 
90.63 Normal 86.62 88.98 87.92 

Overall 87.83 90.49 89.92 
Training Augmented data 

Brain tumor 97.44 98.75 97.53 
98.77 Normal 95.95 96.43 95.57 

Overall 96.69 97.59 96.55 
Testing Augmented data 

Brain tumor 94.53 95.44 94.56 
94.83 Normal 91.22 92.21 91.75 

Overall 92.87 93.82 93.15 
 

When assessed on the unseen testing dataset, the model's performance remains commendable but 
slightly diminishes compared to the training results. This is a common phenomenon as models often 
encounter different variations in testing data. For instance, the recall for the Brain Tumor class drops to 
89.04%, indicating that it correctly identifies approximately 89.04% of actual brain tumor cases, while the 
accuracy of the testing data stands at 90.63%. Similarly, the Normal class exhibits a reduction in recall and 
precision. The Overall metrics offer a summary of how the model performs on previously unseen data, 
with an overall accuracy of 89.92%. These metrics emphasize the model's generalization capability. The 
model trained on the augmented dataset shows significantly improved performance across all metrics 
compared to the original dataset. This underscores the positive impact of data augmentation in enhancing 
model generalization. Notably, for both training and testing data, the model exhibits higher recall, 
precision, and F1-score values. In the augmented dataset, the model's performance for the Brain Tumor 
class is particularly impressive, with a recall of 97.44%, precision of 98.75%, and F1-score of 97.53. The 
overall accuracy of the testing data remains high at 98.77%. 

These results demonstrate the substantial benefits of data augmentation in improving the model's 
ability to accurately classify brain tumor cases. The augmented dataset provides a richer and more diverse 
training experience, enabling the model to better generalize to unseen cases. The high recall values for the 
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Brain Tumor class are especially vital in a medical context, as they reduce the risk of missing actual cases, 
potentially saving lives. The model's high precision also indicates a low rate of false positives, minimizing 
unnecessary interventions. 

Comparing our results to previous studies reveals notable advancements. Gumaei et al. [12] achieved 
an accuracy rate of 94.23% but did not discuss potential challenges or limitations. Ayadi et al. [13] 
demonstrated a remarkable 98.43% accuracy for pituitary tumor detection, highlighting the efficacy of data 
enhancement, yet the study's scope was limited. Preethi and Aishwarya [14] attained a 92% accuracy but 
lacked in-depth discussions of potential challenges and generalizability. Khan et al. [15] reached 92.13% 
accuracy but emphasized the need for additional evaluation before clinical adoption. Khan, M.A. et al. [16] 
achieved impressive accuracy rates but did not delve into the limitations of their multi-model approach. 
M. Sarmad et al. [17] demonstrated efficacy but raised concerns about computational efficiency and model 
interpretability. Wahlang et al. (2022) [18] emphasized attributes like gender and age but overlooked ethical 
considerations and generalizability. Younis et al. [19] achieved an exceptional 98.5% accuracy but did not 
thoroughly address potential model limitations. 

5. Conclusion 

Our team has effectively developed and evaluated a brain tumor classification model utilizing deep 
learning that distinguishes brain tumor images from regular brain images with high accuracy and 
reliability. Our approach achieved outstanding results by combining image preprocessing techniques, such 
as cropping, resizing, denoising, and normalization, with the potent feature extraction abilities of the 
DenseNet121 architecture. Through a training recall of 92.87%, precision of 93.82%, F1-score of 93.15%, and 
an accuracy of 94.83%, the attained results demonstrate the model's ability to determine brain tumor 
instances with a low rate of false positives. In the medical profession, where precise diagnosis is essential 
for patient care, this level of precision is especially promising. 

Additionally, the investigation of data augmentation techniques, particularly the addition of extra 
variations to the dataset, notably assisted in the improvement of the model's generalizability and 
robustness. This emphasizes the significance of data enhancement in improving the accuracy of medical 
image classification systems. Overall, this study highlights the possibility of methods of deep learning in 
medical image analysis, as well as the relevance of data preprocessing and enhancement in augmenting 
the efficiency of such models. The outcomes of this study offer promise for the growth of advanced 
detection of brain tumors systems with the utilization of clinical diagnosis and decision support in 
healthcare. In order to evaluate the practical usage of the proposed model, additional study and validation 
in actual clinical settings are required. 
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