
doi : 10.25007/ajnu.v7n3a206

Academic Journal of Nawroz University (AJNU) 121

Extend an Algorithm of Auto-converting Kurdish Written Scripts in Websites:
from Latin Characters to Kurdish/Arabic Characters and Vice Versa

Sardar O. Salih

College of Science, University of Duhok, Duhok, Kurdistan Region- Iraq

ABSTRACT

Nowadays, most Kurdish websites, especially news websites are required both written scripts (Latin and

Kurdish/Arabic) for their users, for example, Rudaw, WAAR, NRT, etc. Therefore, designing two websites for each

written script require effort, time and cost. There are web-based applications available for users not web developers

to converting script manually, regardless of accuracy (misspellings), in this case, users have to input script to input

box like pelk , KAL (Kurdish Academic of language) website, etc.(Jemal Nebez, 2015)(pellk, 2010). This research

develops an algorithm which can auto-converting one website from its written script to its opposite for both users and

web developer. for instance, if website is designed using Latin characters, this algorithm converts to its opposite

programmatically. The algorithm uses JavaScript language and configured on jQuery plugin for web developers as

API (Application User Interface) to use in website. In addition, there is a Firefox browser add-ons (Extension) for users

(non- developers) to convert script to its opposite. This research addresses cases (irregular cases) which cause to

increase misspellings, then, find solutions for each of these cases to minimal incorrect spelling. To Increase accuracy

of algorithm, one website chooses as case study for analyzing algorithm output. The algorithm is tested using test

methods to check errors, debugging, and accuracy.

KEYWORDS : Script, Plugin, add-ons, jQuery, API and Latin.

1. INTRODUCTION
Both Kurdish written scripts (Latin and Kurdish/Arabic)
are being used depended on the territory which Kurd live
there. For instance, north Kurdistan uses Latin character
- Kurmanji dialect and center of Kurdistan uses
Kurdish/Arabic characters - Sorani dialect (Jemal Nebez,
2015). In this research, algorithm will be designed to
convert one script to its opposite programmatically, to
help for who not know one of those written scripts, and
help web developers to use for electronic converting, for
example, developer can create one version of website and
convert it to opposite. API is written in JavaScript
language and used as source code to create two
applications. First , is for users which help them to convert
scripts named (KURDI_LATIN) Firefox add-ons (Mozil,
2010), second is a jQuery plugin named (ConvertKu-WS)
which helps web developers to use in website. The reset of

article is organized with sections. The first section,
literature review is about current tools and algorithms
available, compared with our algorithm. Then, the
research methods section includes subsections, start in,
converting Kurdish Arabic characters to Latin characters,
with choosing irregular cases in converting and solutions
for them. The second subsection is opposite, converting
Latin characters to Kurdish/Arabic. After cases take
considerable, then algorithm is designed with two
applications Firefox addon and jQuery plugin. The third
section, WAAR media website is taken for a case study
and analyzing its results with testing by using
applications for accuracy. The section four, is about
further aspect of using algorithm. Finally, research is
concluded and summarized.
2. LITERATURE REVIEW
As mentioned in introduction, there are applications
which are being used to convert written scripts, for
instance, KAL (Kurdish Academy Language) websites are
offered web-based applications to convert written script
by write down text in textbox (Jemal Nebez, 2015). These
web-based applications are enough to do converting
regardless of algorithm accuracy. There is also a python
based algorithm converts script from Kurdish/Arabic to
Latin but not opposite and not doing website converting,
this algorithm takes three irregular cases and its solution
(Hossein Hassani & Dzejla Medjedovic, 2016). Adding

Academic Journal of Nawroz University
(AJNU) Volume 7, No 3 (2018).
Received 16 Feb 2018.
Regular research paper : Published 20 June 2018
Corresponding author’s e-mail : renas_rekany@yahoo.com

Copyright ©2018 Sardar O. Salih.

This is an open access article distributed under the
Creative Commons Attribution License.

mailto:renas_rekany@yahoo.com

doi : 10.25007/ajnu.v7n3a206

122 Academic Journal of Nawroz University (AJNU)

more irregular cases to algorithm led to less misspellings.
The output of python algorithm is taken and use for
comparation with our algorithm (JavaScript algorithm)
with same input to check accuracy (less misspellings). The
following Figures show Kurdish/Arabic script with its
converted to Latin in both algorithm.

By looking at Error! Reference source not found. Figures,
there are highlight with underline words which indicate
unequal output words between both algorithm. The Table
below shows which words of unequal are correct in
spelling in both algorithms.

Table (1) : Both algorithms' output words with corrected words

JavaScript base algorithm output words (our

algorithm)

Python base algorithm output

words

Correct word

Li L li

kombuneka Kombûneka kombûneka

êketiya Êketya êketiya

Cîhanî Cîhany Cîhanî

Duhî Dwhy Duhî

Zanikoyiyên Zanikoîên Zanikoyiyên

Wergirtina Wergrtna Wergirtina

qutabiyan Qutabîên qutabiyan

Û U û

Planekê Planeky Planekê

êketiyê Êketîê êketiyê

Look at Table above, all our algorithm (JavaScript) output
words are correct in spelling comparing with Python
based algorithm are not correct. There is also case study

which explain in more detail the accuracy of algorithm this
will be explain in section 5. In addition, there is a test to
checking accuracy of algorithm, after that, two

JavaScript based algorithm, with its output
Latin script

Origin Script:
نجامدان ئه تیا زانكۆییێن جیهانی هاتهكا ئێكهل زانكۆیا دهۆك كۆمبونه

ك ل دۆر تیا زانكۆییێن جیهانی كۆمبوونهئێكه 20/12/2014دوهی

كێ بۆ زانكۆیێن ودانا پلانه بییێن ئاوارهرگرتنا قوتابیان و ئاریشێن قوتاوه

نجام دا..تیێ ل زانكۆیا دهوك ئهندام ل ڤێ ئێكهئه

Converted Script:
li zanikoya dhok kombuneka êketiya zanikoyiyên
cîhanî hate encamdan duhî 20/12/2014 êketiya
zanikoyiyên cîhanî kombûnek li dor wergirtina
qutabiyan û arîşên qutabîyên aware û dana
planekê bo zanikoyên endam li vê êketiyê li
zanikoya dhuk encam da.

Python based algorithm, with its output Latin
script

Origin Script:
نجامدان ئه تیا زانكۆییێن جیهانی هاتهكا ئێكهل زانكۆیا دهۆك كۆمبونه

ك ل دۆر تیا زانكۆییێن جیهانی كۆمبوونهئێكه 20/12/2014دوهی

كێ بۆ زانكۆیێن ودانا پلانه رگرتنا قوتابیان و ئاریشێن قوتابییێن ئاوارهوه

 نجام دا.تیێ ل زانكۆیا دهوك ئهندام ل ڤێ ئێكهئه

Converted Script:
l zankoya dhok kombûneka êketya zanikoîên
cîhany hate encamdan dwhy 20/12/2014 êketya
zanikoîên cîhany kombûnek l dor wergrtna
qutabian u arîşên qutabîên aware u dana
planeky bû zanikoîên endam l vê êketîê li
zankoya dhuk encam da.

doi : 10.25007/ajnu.v7n3a206

Academic Journal of Nawroz University (AJNU) 123

applications are made from it. First, Firefox add-on which
helps users to integrate in their Firefox browser to convert
any written script instantly without needs to write down
any written script in text box as KAL web based
application does. Second, jQuery plugin for web
developers to use in their application.

3.METHODOLOGY

To convert script Latin to Kurdish- Arabic or opposite.

Exceptions exist (cases). For instance, characters exist in
Latin and are not in Kurdish/Arabic or opposite, see
Table (2. Case exist with two difference Unicode code
point with same character such as (ک, ك) needs to be
converted into to (k) in Latin (Unicode, 2014). Also case
with double character need to be converted into one such
as (ئا) into (a) in Latin (Hossein Hassani & Dzejla
Medjedovic, 2016). These cases will be explained in the
following subsections. The algorithm is design based on
Kurdish Academic of Language alphabets table as show
below.

Table (2) : Existing Kurdish alphabets by (Kurdish Academy of Language)

North Kurdish (Latin Kurmanjî) Central Kurdish (Soraní - modified Arabic)

1. A a ئا ـا ا

2. B b بـ ـب ـبـ ب

3. Ç ç چ ـچ ـچـ چـ

4. D d ــد د

5. E e ئه ـه ە

6. Ê ê ێـ ـێـ ـێ ێ ئێـ

7. F f فـ ـفـ ـف ف

8. G g گــ ـگـ ـگ گ

9. H h ـهـ هـ

10. I i نوسرىنا (N/A)

11. Î î يـ ـيـ ئى ى

12. C c جـ ـجـ ـج ج

13. J j ـژ ژ

14. K k کــ ـکـ ـک ک

15. L l لــ ـلـ ـل ل

16. Nîne ڵــ ـڵـ ـڵ ڵ

17. M m مــ ـمـ ـم م

18. N n نــ ـنـ ـن ن

19. O o ئۆ ـۆ ۆ

20. P p پــ ـپـ ـپ پ

21. Q q قــ ـقـ ـق ق

22. R r ـر ر

23. Nîne ـڕ ڕ

24. S s ســ ـسـ ـس س

25. Ş ş شــ ـشـ ـش ش

26. T t تــ ـتـ ـت ت

27. U u ئو ـو و

28. Û û ـوو وو

29. V v ڤـ ـڤـ ـڤ ڤ

30. W w ـو و

31. X x خـ ـخـ ـخ خ

32. Y y يـ ـيـ ى ى

33. Z z ـز ز

2.1 Converting Kurdish/Arabic Characters to Latin Characters

doi : 10.25007/ajnu.v7n3a206

124 Academic Journal of Nawroz University (AJNU)

In this conversion, each character in Kurdish – Arabic
script is converted to Latin with it’s against character, for

instance (ب -> b) as show in table below.

Table (3) : Kurdish/ Arabic characters against Latin charecters

KU-AR ف س د ب ا ……

Latin A b d S f …....

For above characters are not so difficult to convert them
due to each of them has its own against character, this can
be done with following JavaScript statements:
1. var word=””;
2. word = word.replace (/ب/g, "b");
3. word = word.replace (/د/g, "d");
4. ………..………………………….
The replace function takes two parameters, first one uses
to find character in string you want to convert and The
replace function takes two parameters, first one uses to
find character in string you want to convert and second is
the character which you intend to put instead of finding
litter (replace). The first argument takes character between
two slashed symbols / /, this means, it uses regular

expression object to find Kurdish/Arabic letter, and (/ /g)
uses to search without stopping until find all matches. If
it omits, it will stop in first matching (Stoyan, 2008).
When above rule is applied to all characters (each
character has it’s against one), the converted script is
understandable, but spelling is incorrect (messy), so to
reduce spelling errors, cases (irregular cases) will be taken
from both origin script and converted script. Look at
below table, two words, (دهوك) means Duhok city and
 means game are taken as example of converting each (یارى)
character to its opposite, converted word is misspellings,
in this case converted word needs to re-converted, to
reduce misspellings. To reduce misspellings.

Table (4) : Two Examples of cases after converting

Cases Origin word
Characters of

word
Converted word

(misspellings)
Re-converted word (correct

spelling)

Case 1 د ه و ك دهوك d h o k d i h o k

Case 2 ی ا ر ی یاری î a r î y a r î

Case #1
There are characters that have more than one shapes

(more than Unicode) with same sound depend in the
position in the word, see Table below (Unicode, 2014).

Table (5) : Case #3 of converting (ك ,ک) to (k)

Position in word Example Unicode

Begin of word كوردستان U+0643

Middle of word ئاڤاكرن U+06A9

Last of word دهوك U+0643

As shown in the Table above, there are two characters (ک,
 should be converted into one Latin character (k), this (ك
can be done:
1. word = word.replace (/ك/g, "ک"); // this convert ک to
 if is available ك
2. word = word.replace(/ک/g, "k"); // then convert ك to
k in Latin.

Case #2
Character (i) is a vowel character available in Latin scrip
but not available in Kurdish/Arabic script (see Table
below). This character has a sound in Kurdish but it is not
written in Kurdish/Arabic script, so it is difficult to
predicate where this character can be written when
converting to Latin but we can use it if we found these
following converted characters have a space before and
after them. See Table below.

Table (6) : Insert (i) after characters b, j, l, ç and d

Converted chars after and before space Re-converted Example

B bi

J ji سالا ... ژ ji sala

L li چیایێ جودی... ل li çiyayê cudî

Ç çi

D di

doi : 10.25007/ajnu.v7n3a206

Academic Journal of Nawroz University (AJNU) 125

1. word = word.replace(/ b /g, " bi ");
2. word = word.replace(/ ç /g, " çi ");
3. word = word.replace(/ d /g, " di ");
4. word = word.replace(/ j /g, " ji ");

5. …………………………………
Also, (i) can be putted between two contiguous characters
as shown in Table Error! Reference source not found.:

Table (7) : put (i) between two of contiguous characters

Converted contiguous characters Re-converted to

Bt Bit

Bx bix

Ch cih

.. … …

1. word = word.replace(/bt/g, "bit");
2. word = word.replace(/bx/g, "bix");
3. word = word.replace(/ch/g, "cih");
4. word = word.replace(/cv/g, "civ");
5. word = word.replace(/dd/g, "did");
6. ………………………………….
Case #3
The character (î) changes before or after characters (a, e, ê,
and u) to (y). In addition, it changes to (y) in the beginning
of the word (see line 2).
1. word = word.replace(/ی/g, "î");
2. word = word.replace(/ î/g, " y"); //changes (î) to (y) in
the beginning of the word.
3. word = word.replace(/îa/g, "ya");
4. word = word.replace(/îe/g, "ye");
5. word = word.replace(/îê/g, "yê");
6. word = word.replace(/îo/g, "yo");
7. word = word.replace(/îu/g, "yu");
8. …………………………………
Same case for character (u), it changes to (w) before and
after (a, e, ê, o and î)
1. word = word.replace(/ua/g, "wa");
2. word = word.replace(/ue/g, "we");
3. word = word.replace(/uê/g, "wê");
4. word = word.replace(/uî/g, "wî");
5. ………………………
Case #4 (Exceptions)
Spelling of some converted words are not correct due to of
character (i), therefore, these words convert again. It helps
to reduce spelling errors in algorithm, this case called
(exceptions word). Table Error! Reference source not

found. shows exception words.
Table (8) : Exception case

Word converted Word re-converted

grtn Girtin

krn Kirin

karb Karib

bgr Bigir

1. word = word.replace(/grtn/g, "girtin");
2. word = word.replace(/krn/g, "kirin");
3. word = word.replace(/karb/g, "karib");
4. word = word.replace(/bgr/g, "bigir");
5. word = word.replace(/grn/g, "girin");

6. ……………………………………
Converting Latin Characters to Kurdish/Arabic
Characters
Latin characters have both capital and small case, so for
easy comparison, capital case is converted to small by
using toLowerCase JavaScript function, and then lower
case is used for comparison. It is easy to convert
characters have against characters, as shown in Table
Error! Reference source not found. but as Latin
converting, there are cases which are not follow this rule.
Case #1
As it mentioned character (i) is exist in Latin and is not in
Kurdish/Arabic script, so below is a code which is used to
handle this:
1. word = word.replace(/ i/g, " ئ"); // beginning of word
example istabull -> نبولئیسته
2. word = word.replace(/i/g, ""); //replaced (i) with
nothing.
The above code replaces “ئ” character with “i” if it is in
beginning of the word for instance (Istanbul -> نبولئیسته),
otherwise, it replaces with nothing due to “i” is not
available in Kurdish- Arabic character
Case #2
Word (e ,a) are equivalence to “ ئا، ئه ” in Kurdish- Arabic,
but this case is correct in the beginning of words, so if
converted is not in the beginning of word the spelling will
not be correct . Let take the following as example.
“beraz” word is a (pig) in English will changes to “ رئازبئه

“, this case “ئ” must be removed from word as follow.
1. word=word.replace(/بئ/g, "ب"); //e-->رازبئه <--- ئه
2. word=word.replace(/پئ/g, "پ");
3. word=word.replace(/تئ/g, "ت");
4. word=word.replace(/جئ/g, "ج");
5. word=word.replace(/چئ/g, "چ");
6. word=word.replace(/خئ/g, "خ");
7. word=word.replace(/دئ/g, "د");
8. word=word.replace(/رئ/g, "ر");
9. ………………………………….
Look at, “ئ” character is removed from “رئ“ ,”ئه” by lines
number 1and 5.
The full code for both converting can be seen in appendix.
The following is demonstrated how we can apply this
algorithm for our real application for both programmers
(developers) and non-programmer (users).

doi : 10.25007/ajnu.v7n3a206

126 Academic Journal of Nawroz University (AJNU)

Table (9) : Latin characters against Kurdish/Arabic
characters

4.Applications Using Algorithm
In order to implement algorithm, two applications create
from it, Firefox add-ons and jQuery plugin.
5.FIREFOX ADD-ONS (KURDI_LATIN 0.1)
This Firefox add-ons (extension) is designed to help web
users to convert script from one written script to its
opposite. For instance, if web site is displayed in
Kurdish/Arabic characters, users can convert it to Latin
and vice versa, the screenshot bellow shows how one line
of WAAR Latin script converted to Kurdish/Arabic script.
When right-click is fired in Firefox document, context
menu is appeared (see Fig () with four options to convert

document, the first two options (To Kurdi, To Latin)
convert selected written script and others (All to Kurdi,

All to Latin) convert whole document.
The Firefox add-ons is authorized with authentication
credential, it means anyone can integrated with its Firefox
but after that it requires code to activate it. the following
page is appeared when first time add-ons installed and the
view code should be sent to email (see Fig (), then code
will be added to user record to activate for the next time.

Fig (1) : screenshot of converted written style (WAAR article)

Fig (2) : screenshot appears while first time installing

6.Convert Ku-Ws (Convert Kurdish Written Script)
Jquery Plugin
jQuery is a JavaScript library which is coded to
manipulating DOM (Document Object Model). This
library helps developers to increases productivity of its
work and reducing its time and cost. jQuery plugin is
extended to jQuery library which helps developer to
inherit all jQuery functionality. In our case “ConvertKu-

WS” (Convert Kurdish Written Script) plugin is
configured on jQuery plugin to help web developers to
use in their website. This plugin helps web developers to
convert any written script to its opposite.
DESIGNING CONVERTKU-WS PLUGIN
To create jQuery plugin, just add API (algorithm
functions) to jQuery $.fn object, this object inherits jQuery
library to algorithm API. The following simple example,

b d s F

 ف س د ب

doi : 10.25007/ajnu.v7n3a206

Academic Journal of Nawroz University (AJNU) 127

explains how jQuery plugin is created (Schlegel, 2014).
$.fn. greenMe = function() {
this.css ("color", "green");
};
$(“a”). greenMe (); // Makes all the links green
The greenMe function changes font color of all links in the

web document, so, according to this principle, functions
(ToKurdi_ArabicChar, ToLatinChar) in algorithm can be
configured with JQuery library. The following is to
Kurdish/Arabic function which developers can use in
their code to convert any HTML text in Latin to
Kurdish/Arabic.

Fig (3) : Latin to Kurdish - Arabic function

The following demonstrate how developer can convert
HTML Latin text to Kurdish/Arabic. To do that
developers need to add the following statement.
$(selector). ToKurdi_ArabicChar (options);
Selectors “are patterns used to select the element(s) you
want to style”, and option is used to specify text direction
(left to right and vice versa).
Example #1
If we have this HTML element:
<p> Kurdistan </p>
The P element has a text is written in Latin character to
convert it, just put the following statement between

<script> tag in HTML document:
$(p). ToKurdi_ArabicChar(“rtl”);
The above statement converts all P text in document to
Kurdish/Arabic written script. So, in this case <p>
Kurdistan </p> will change to <p>كوردستان</p>! the
argument “rtl” changes element written direction from
left- right to right-left due to Kurdish/Arabic written
script is right to left.
Full Code
The figures 4 and 5 illustrate full code of converting Latin
to Kurdish/Arabic characters.

Fig (4) : Full code of converting P elements text in Latin to Kurdish- Arabic script

doi : 10.25007/ajnu.v7n3a206

128 Academic Journal of Nawroz University (AJNU)

Fig (5) : Result of converted text in p element(s)

The result of above code is illustrated in the following
figure.
Example #2
If developer has
this HTML
element:
<p> كوردستان</p>
To convert it to
Latin, just write
down the
following code.
$(p). ToLatinChar
(“ltr”);
The above
statement
converts all <p> texts in document to Latin written script,
so, in this case <p> كوردستان </p> will change to <p>

Kurdistan</p>! The argument “ltr” changes element text
direction from right-left to left-right due to Latin written
script is left to right.

The direction argument is optional, if it is omitted, it will
change direction automatically according to written script

direction, Kurdish/Arabic (right-left) and Latin (Left-
right).
The figures 6 and 7 illustrate full code of converting Latin
to Kurdish/Arabic characters.

Fig (6) : Full code of converting P element text in Kurdish- Arabic to Latin script
The result of above code illustrates in the following figure.

Fig (7) : Result of converted text in p element(s)

 As you saw, this plugin changes written text in document
from one script to its opposite programmatically without
need to write text in both written scripts for two versions,
this helps developers to design one version of Kurdish
written script in their website, instead of two. The
following benefits of designing one version of website
instead of two are:

1. Reducing time and cost for both web developers and
data entry.

2. Don’t need to have two site administrations.
3. Writing text in one version, not need to have two

versions (Kurdish/Arabic and Latin).
7.CASE STUDY
WAAR media website is taken for case study to find how
algorithm and its application Firefox add-ons can convert

 ك ل بن ئاڤێباژێره
 دهوك –وار
لاتێ یابانێ و ل باژارێ توكیو د نوترین پروژێ بیناسازیدا . دێ ل وه

 15ت ب درێژاهیا كى نو ل بن ئاڤێ دروست كهكا یابانى پروژهكومپانیه

 . ترانكیلومه

نتیس تله) ئه ى ناڤێ ڤى باژێرى كریهت ب چێكرنا ڤى پروژهكومپانیا تایبه
) .

كو یهندهو چهى ئهست ژ ڤى پروژهبههاند كو مهرپرسێ كومپانیێ راگهبه
دێ د ڤ پروژهربێخین و ئهریاى دهم بشێن ووزێ ژ بنێ دهبرێیا وێ ئه

 . ام داننجئه ماوێ پێنج سالێن بهێتدا بتمامى هێته

doi : 10.25007/ajnu.v7n3a206

Academic Journal of Nawroz University (AJNU) 129

written script from one script to another, WAAR has two
version of written script (Latin and Kurdish/Arabic).
The bellow is a part of WAAR article which is written in
Latin with its converted version using Firefox add-ons.

Rizgarkirina Şingalê bi serpereştîya Barzanî rojeka
dîrokî bû
Mêjû: 2015/11/17 - 2:14 PM
Waar –Duhok:
Mîr Tehsîn Beg Mîrê Êzîdîyan, rizgarkirina Şingalê ji
alîyê hêzên pêşmerge ve bi serpereştîya serokê herêma
Kurdistanê, bi rojeka dîrokî bi navkir û ragîhand;
herçend Kurdên Êzîdî qurbanîyên yekê yên êrîşa ser
Şingalê bûn, lê niha hind alî ketine çandina tovê
ajawegêrîyê dinava xelkê Şingalê da.

کا دیرۆکی بووشتییا بارزانی ڕۆژهرهرپهڕزگارکرنا شنگالێ ب سه
 پم ٢:١٤ - ٢٠١٥/١١/١٧مێژوو:

 دوهۆک:–وائار

گ میرێ ئێزیدییان، ڕزگارکرنا شنگالێ ژ ئالییێ هێزێن هسین بهمیر ته

کا کوردستانێ، ب ڕۆژه رێمارۆکێ ههشتییا سهرهرپهب سه ڤه رگهپێشمه

کێ یێن ند کوردێن ئێزیدی قوربانییێن یهرچهدیرۆکی ب ناڤکر و ڕاگیهاند؛ هه

گێرییێ چاندنا تۆڤێ ئاژاوه تنهر شنگالێ بوون، لێ نها هند ئالی کهئێریشا سه

 لکێ شنگالێ دا.دناڤا خه

Below is a piece of sample Kurdish/Arabic article in
WAAR media and its converted version using algorithm
with Firefox add-ons.
If you notice, that both converted scripts give clear text
and they can be readable for users. But if you look at word

‘dhuk’ in Error! Reference source not found., it gives you
clear meaning but the spelling is not correct because (i)
letter is missed, the correct is like ‘Dihuk’. This occurs due
to letter (i) is not written in Kurdish/Arabic characters.
But if you look at Error! Reference source not found.
again, you will see word (bi) is appear in some case, this is
due to it follows rule in case #3 Kurdish/Arabic to Latin.
This case study shows that the algorithm and its Firefox
add-ons can give clear text while it is doing converting,
but it rarely gives spelling error.
7.1 TESTING
There are two tests can be conduct to find performance of
algorithm, the first one, is conducted by (developers)
which have knowledge about the structure of software,
this type of testing is call white-box testing and the second
one, is called black-box testing, this testing is done by who
don’t have acknowledgment about the software (Laurie,
2011).
7.2 WHITE-BOX TESTING
White box testing focuses on the internal structure of the
software code (Khan, Khan, & others, 2012). This test is
conducted by system developers using debugging tool
such as Firebug, also, to avoid system from crashing.
JQuery plugin and algorithm API are wrapped with try-
catch errors exception, the try-catch helps to find errors.
try
{ // code here
[throw(exception)] }
catch(err)
{//Handle errors here }

Fig (8) : screenshot of firebug use

7.3 BLACK-BOX TESTING
This test is conduct to find errors and accuracy of the
software. Five random testers are selected for this test
(JAKOB NIELSEN, 2000). These users will be asked to
convert one article of five common media websites in
Kurdistan for both script, after converting, they will be
asked their feedback to analyze and to check algorithm
works as it is supposed to do, and how users satisfy, as
well as, to determine how the algorithm is accurate (less

spelling errors) while converting text.
7.4 USERS FEEDBACK
As mentioned, testers will be asked to install Firefox add-
ons and open random article in Kurdish (both written
script) in one websites (Rudaw, WAAR, NRT, K24 and
Ronahi), then they will do converting by using Firefox
add-ons, after that, they will check converting text and
read carefully with answers following questions with its
satisfaction to check accuracy.

Table (9) : Testers opinion for accuracy of algorithm

Statements User1 User2 User3 User4 User5

doi : 10.25007/ajnu.v7n3a206

130 Academic Journal of Nawroz University (AJNU)

1 Converted text is understandable Sa Sa Sa Sa Sa

2 Spelling of converted text is well A A Sa A Sa

3 In general, converted text is useful for you. Sa Sa Sa Sa Sa

4 These add-ons help you if you have not understood
text written in one script.

Sa Sa Sa Sa Sa

5 You can depend on the converted text for your
official document.

A SA A SA A

(Sa) Strongly Agree (A) Agree (D) Disagree (Sd) Strongly Disagree
These above statements are answered in the web-based
application, then the result will be collect in the email. The
screenshots of this web based application are appended to
appendix.
7.5 TESTING EVALUATION
User feedback test gives how is algorithm performance?
White box test shows that the internal of system is
working what is supposed to do. This test is conducted by
using Firebug debugging which it uses to debug error.
Furthermore, try-catch exception uses to avoid code from
crashing at run time and inform exception messages. Black
box test is conducted to find accuracy (spelling errors) by
using questionnaires. There are statements which use to
find accuracy of the algorithm, the users opinions show
that the algorithm is enough good, but the statement
number (2) in (Table (9), two users out of five give “Strong
agree” and others “agree”, this due to rarely spelling of
some converted words are not correct depended in the text
intended to be converted, also this led users to answer the
statement number (5) in (Table (9) with 3 “agree” out of
five with two “strong disagree”.
7.6 Further Aspect of Using Algorithm
Some further ideas are not being applied, so these ideas
will be applying in future of the developing software
(algorithm and its applications), as it is seen, tests show
that the spelling of some converted words are usually not
correct, therefore, the algorithm will be developed to
reduce spelling error, this can be done with adding more
case if available and more exception words to algorithm.
In addition, there will be plugins for variety of technology
such as angularJS, PHP, C# …etc., this will help algorithm
to be more populated and used in community.
CONCLUSION
As it has been explained in the previous sections , the
algorithm passes through software engineering steps,
requirements, designing, coding, implementing and
testing, in the designing, the characters have their against
characters in both scripts , they can be easy converted but
there are some cases which are not follow this rule ,these

cases numbered with them suggestion solutions, after that
there are application are made up from algorithm, these
application are Firefox add-one and jQuery plugin and
they are useful for both users and web developers to
convert written script, in the case study and testing the
algorithm show that the converted text is clear and
understandable but spelling of some converted words
usually are not correct, so in this case the algorithm needs
to be developed.
REFERENCES
Hossein Hassani, & Dzejla Medjedovic. (2016).
AUTOMATIC KURDISH DIALECTS IDENTIFICATION.
JAKOB NIELSEN. (2000). Why You Only Need to Test
with 5 Users. Nielsen Norman Group. Retrieved from
https://www.nngroup.com/articles/why-you-only-
need-to-test-with-5-users/
Jemal Nebez. (2015). Kurdish Academy of Language
[KAL] | Kurdish Academy of Language. Retrieved 15
November 2015, from
http://www.kurdishacademy.org/?q=node/1
Khan, M. E., Khan, F., & others. (2012). A comparative
study of white box, black box and grey box testing
techniques. International Journal of Advanced Computer
Sciences and Applications, 3(6), 12–1.
Laurie, W. (2011). A (Partial) Introduction to Software
Engineering Practices and Methods. NCSU CSC326.
Mozil. (2010). Add-ons. Retrieved 24 November 2017,
from https://developer.mozilla.org/en-
US/docs/Mozilla/Add-ons
pellk. (2010). pellk Kurdî Nûs 4.0. Retrieved 26 November
2017, from
http://www.transliteration.kpr.eu/ku/en.html
Schlegel, K. (2014). Balloon synopsis: a jQuery plugin to
easily integrate the semantic web in a website? In
Proceedings of the 2014 International Conference on
Developers-Volume 1268 (pp. 19–24). CEUR-WS. org.
Stoyan, S. (2008). Object-Oriented JavaScript. Packet
Publishing Ltd.
Unicode, O. (2014). Arabic Range: 0600–06FF. unicode.org.

