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ABSTRACT 

In this work, we   study  the numerical method for solving Stochastic differential equations. Because of the difficulty 
of finding analytical solutions for many of the Stochastic differential equations the Heun's method  was used. 
Numerical simulations for different selected  examples are implemented. And the difference between the numerical 
solution and the exact solution was also found. 
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1. INTRODUCTION 
Early attempts are made in the area of numerical 
methods for stochastic differential equations using. 
Heun's method[1,8]. provides an early account for 
constructing a numerical method for solving stochastic 
differential equations. This method is known as the 
Milstein method[1,4,8]. proved an application of the 
central difference and predictor methods for finding a 
solution of differential equations with stochastic. 
Numerical methods for SDE's constructed by 
translating a deterministic numerical method (like the 
Heun's method or Runge-Kutta method[6]. and 
applying it to a stochastic ordinary differential 
equation. However, merely  translating a deterministic 
numerical method and applying it to an SDE will 
generally not provide accurate methods [6]. Suitably 
appropriate numerical methods for SDE's should take 
into account a detailed analysis of the order of 
convergence as well as stability of the numerical scheme 
and the behavior of the errors. The Heun's method for 
SDE's is the simplest method which is a direct 
translation of the deterministic Heun's method, but 
according to [4,9]this method is not very accurate. 
However, this method is useful in that it provides a 
starting point for more advanced numerical methods 
for SDE's. Our work is solving stochastic differential 

equation, by using  Heun's (modified Euler's 
method).Moreover we use some examples to show that 
the numerical solutions of different examples are 
implemented properly. 
Definition 1.1.[6]. 
Let x(t)  ∈ (0 tT) be a stochastic process such that for 

any 0  t1< t2 T 

x(t2) − x(t1)  =∫ a(t) dt 
t2

t1
 + ∫ b(t) dw(t)

t2

t1
 

where a 
1L [0, T], b 

2L [0, T]. Then we say that x(t) 

has stochastic differential dx, on [0, T], given by :  

dx(t) = a(t)dt + b(t)dw(t) 
Observe that x(t) is a no anticipative function. It is also a 
continuous process. Hence, in particular, it belongs to  

L[0, T]. 

Definition 1.2.[7]. 
Let x(t) be as in definition (1) and let f(t) be a function in 

L[0, T]. We define :  

f(t)dx(t) = f(t)a(t)dt + f(t)b(t)dw(t). 
Theorem 1.1.[7]. 

Let d(t) =adt + bdw(t), and let f(x, t) be a continuous 

function in (x, t) R1[0, ) with                                                  

partial derivatives fx, fxx, ft. Then the process f((t), t) has 
a stochastic differential, given by :  

df((t), t) = [ft((t), t) + fx((t), t)a(t) + 
1

2
 fxx((t), t)b2(t)]dt + 

fx((t), t)b(t)dw(t)                                                 …(1) 
This is called the Itô formula. Notice that if w(t) were 
continuously differentiable in t, then (by the standard 

calculus formula for total derivatives) the term 
1

2
 fxxb2dt 

will not appear. 
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2.Vector SDE's [6]. 
We shall interpret a vector as a column vector and its 
transpose as a row vector and consider an m-
dimensional 

Wiener process w={wt, t  0}, with components wt
1, wt

2, 
…, wt

m which are independent scalar Wiener process.  
Then, we take a k-dimensional vector values function a : 

[t0, T]Rk⎯→Rk, the drift coefficients, and a km-matrix 

valued function b : [t0,T]Rk⎯→Rk×m,the diffusion 

coefficient, t0 [0, T], to form a k-dimensional vector 
stochastic differential equation :  

dxt= a(t, xt) dt + b(t, xt) dwt …(2) 
we interpret this as a stochastic integral equation :  

xt = x0 +∫ a(s, xs) ds 
t

t0
 + ∫ b(s, xs) dws

t

t0
 …(3) 

with initial value xt0
Rk, where the Lebsegue and Itô  

integrals determined component by component, with 
the component of (3) being :  

xi
t= xi

t0
 +∫ ai(s, xs) ds 

t

t0
 + 

0

tm

j 1 t=

 
bi,j(s, xs) dwj

s, 

 i = 1,2, … , n 
If the drift and diffusion coefficients do not depend on 

the time variable, that is if a(t, x)  b(x), then we say that 
the stochastic equation is autonomous. We can always 
write a no autonomous equation as a vector 
autonomous equation of one dimension more by setting 
in the drift component the component of xt the time 

variable wt
l= t.There is a vector version of the Itô  

formula. For a sufficiently smooth transformation  f = 

[t0, T] Rd⎯→Rk 

of the solution x= { xt, t0 t  T} of (2), we obtain a k-

dimensional process and  y= { yt= f(t, xt), t0 t  T} with 
the vector stochastic differential in component form 

d𝑦𝑡
𝑝
=

p p 2 pd d m
i i, j,

i 1 i i, j 1 1 i j

f f 1 f
a b b dt

t x 2 x x= = =

   
+ + 

     
  

 + 

pm d
i,

t
1i 1 i

f
b dW

x= =






 

for p = 1, 2, …, k; where the terms are all evaluated at (t, 
Xt).  
3. Generating Brownian Motion in Matlab[7]. 
The underlying difference between deterministic and 
probabilistic differential equations is to need generate 
the following random increments of the Brownian 
motion for the SDE 

wn=𝑤𝑡𝑛
− 𝑤𝑡𝑛−1

            ……(4) 

For computational purpose, it is necessary to describe 
the Brownian motion, where wt is specified at discrete t 

values. Therefore, let t = T/N, for some positive 
integer N and for T on the interval [0, T]. From the 
definition of Brownian motion :  

wn=𝑤𝑡𝑛
−𝑤𝑡𝑛−1

  ~ N( 0, tn−tn−1) 

or equivalently :  

wn=𝑤𝑡𝑛−𝑤𝑡𝑛−1~ 
n n 1t t −− N(0, 1) 

where N(0, 1) denotes a standard normally distributed 
random variable with zero mean and variance equal to 

one. Here tn−tn−1=t is the variance of the Brownian 
motion random variable. In Mat lab, the function randn 

(1, N) will generate N random variables from the 
standard normal distribution. In order to generate a 

random variable with variance equal to t, random 
variables from the standard normal distribution are 
generated using the Mat lab  
function randn (1, N) and each of these variables are 

then multiplied by t , resulting in the random 

increments  
in equation (4). From equation (4) :  

              w1=𝑤𝑡1
−𝑤𝑡0

 

              w2=𝑤𝑡2
−𝑤𝑡1

 

Implying that 

w1 + w2=wt2
−wt1

+ wt1
−wt0

 = wt2
 

and since 𝑡0= 0 when W0= 0, when therefore 

wtn
= n

j 1=


wj 

For more details, see the computational algorithm for 
generating Brownian motion supported by Mat lab 
4. Stochastic Taylor Expansion [9]. 

We consider the equation x= {xt, t  [t0, T]} of one-
dimensional stochastic ordinary differential equation :  
𝑑

𝑑𝑡
𝑥𝑡= a(𝑥𝑡) 

with initial value  𝑥𝑡0, for t  [t0, T], where 0  t0 ≤ 𝑡 ≤ T, 
which we can write in the equivalent integral equation 
  form as :  

  𝑥𝑡 = 𝑥𝑡0
 + ∫ 𝑎(𝑥𝑠) 𝑑𝑠

𝑡

𝑡0
    …(5) 

To justify the following constructions we require that 
the function a satisfies appropriate properties, for 
instance to be sufficiently smooth with a linear growth 

bound. Let f : 𝑅⎯→𝑅 be continuously differentiable 
function. 
Then by the chain rule, we have :  
𝑑

𝑑𝑡
 f(𝑥𝑡) = a(𝑥𝑡)f(𝑥𝑡)       …(6) 

Which using the operator Lf =af 
we can express (6) as the integral relation 

 f(𝑥𝑡) = f(𝑥𝑡0
) + ∫ 𝐿𝑓(𝑥𝑠) 𝑑𝑠

𝑡

𝑡0
  …..(7) 

for all t  [t0, T]. When f(x) = x, we have Lf = a, L2f =La,   
…  and (7) reduces to :  

  𝑥𝑡 =  𝑥𝑡0
 + ∫ 𝑎(𝑥𝑠) 𝑑𝑠

𝑡

𝑡0
    …..(8) 

That is equation (5). If we apply the equation (7) to the 

function  f= a in the inte`gral in (8), we obtain that 

𝑥𝑡 =  𝑥𝑡0
+ ∫ [𝑎(𝑥𝑡0

)    +  ∫ 𝐿𝑎(𝑥𝑧)𝑑𝑧
𝑠

𝑡0
] 𝑑𝑠

𝑡

𝑡0
 

  =  𝑥𝑡0
 + a(𝑥𝑡0

)∫ 𝑑𝑠
𝑡

𝑡0
 + ∫ ∫ 𝐿𝑎(𝑥𝑧)𝑑𝑧𝑑𝑠

𝑠

𝑡0

𝑡

𝑡0
  ….(9) 
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which is the simplest nontrivial Taylor expansion for Xt. 
Also can apply (7) again to the function  

f= La in the double integral of (9) we have  

𝑥𝑡=𝑥𝑡0
 + a(𝑥𝑡0

)∫ 𝑑𝑠
𝑡

𝑡0
 + La(𝑥𝑡0

)∫ ∫ 𝑑𝑧𝑑𝑠
𝑠

𝑡0

𝑡

𝑡0
 + R3 

where 

R3=∫ ∫ ∫ L2a(xu)
z

t0
dudzds

s

t0

t

t0
. 

for t  [t0, T]. For a general r + 1 times continuously 

differentiable function f : 𝑅⎯→ 𝑅, this method gives the 
classical Taylor formula in integral form 

f(𝑥𝑡) = f(𝑥0) + ∑
(𝑡−𝑡0)𝑙

𝑙!

𝑟
𝑙=1 𝐿𝑙𝑓(𝑥𝑡) +∫ … . ∫ 𝐿𝑟+1𝑓(𝑥𝑠1

)𝑑𝑠1
𝑠2

𝑡0

𝑡

𝑡0
                                               …(10) 

for t  [t0, T] and r = 1, 2,..; since 

1 1

0 0 0

s st

1

t t t

... ds ...ds
−

  
= 1

!

(t− t0)   For 𝑙= 1, 2, ….  

By repeatedly applying the Itô  formula (3). For any 

twice continuously differentiable function f : 𝑅⎯→𝑅 
and apply the 

 Itô  formula to obtain 

f(𝑥𝑡) = f(𝑥𝑡0
) + ∫ [𝑎(𝑥1)𝑓′(𝑥1) +

𝑡

𝑡0
1

2
𝑏2(𝑥1)𝑓′′(𝑥1)] 𝑑𝑠+∫ 𝑏(𝑥1)𝑓′(𝑥1)𝑑𝑥1

𝑡

𝑡0
 

Introduce the following operators :  

L0f =af + 
1

2
 b2f ,    L1f = bf …(11) 

So that  

f(𝑥𝑡) = f(𝑥𝑡0
) + ∫ 𝐿0𝑓(𝑥1) 𝑑𝑠

𝑡

𝑡0
 + ∫ 𝐿1𝑓(𝑥1) 𝑑𝑤1

𝑡

𝑡0
...(12) 

for any t  [t0, T]. If f(x) = x, then L0f =a and L1f = b. 

Thus, the above is just the original Itô  equation for X1 

𝑥𝑡=𝑥𝑡0
 + ∫ 𝑎(𝑥𝑠) 𝑑𝑠 

𝑡

𝑡0
 + ∫ 𝑏(𝑥𝑠) 𝑑𝑤𝑠 

𝑡

𝑡0
…(13) 

Apply  (11) the functions f=a and b in equation (13), the 
following is obtained :  

xt =  𝑥𝑡0
 + ∫ (𝑎(𝑥𝑡0

) + ∫ 𝐿0𝑎(𝑥𝑧)
𝑠

𝑡0
𝑑𝑧 +

𝑡

𝑡0

∫ 𝐿0𝑎(𝑥𝑧)𝑑𝑤𝑧
𝑠

𝑡0
) 𝑑𝑠 +∫ (𝑏(𝑥𝑡0

) + ∫ 𝐿0𝑏(𝑥𝑧)𝑑𝑧 +
𝑠

𝑡0

𝑡

𝑡0

∫ 𝐿0𝑏(𝑥𝑧)𝑑𝑤𝑧
𝑠

𝑡0
) 𝑑𝑤𝑧 

     = 𝑥𝑡0
 + 𝑎(𝑥𝑡0

) ∫ 𝑑𝑠
𝑡

𝑡0
 + 𝑏(𝑥𝑡0

) ∫ 𝑑𝑤𝑧
𝑡

𝑡0
 + R...(14) 

Where  

R =

0 0

t z

t t

 
L0a(Xz) dzds + 

0 0

t z

t t

 
L1a(Xz) dwzds + 

0 0

t z

t t

 
L0b(Xz) dzdws + 

0 0

t z

t t

 
L0b(Xz) dwzdws 

 
Repeat this procedure by applying the formula (12) to f 

= L1f in equation (14) to obtain :  

  𝑥𝑡   = 𝑥𝑡0
 + 𝑎(𝑥𝑡0

) ∫ 𝑑𝑠
𝑡

𝑡0
 + 𝑏(𝑥𝑡0

) ∫ 𝑑𝑤𝑧
𝑡

𝑡0
 + 

L1b(𝑥𝑡0
)∫ ∫ 𝑑𝑤𝑧𝑑𝑤𝑠 

𝑧

𝑡0

𝑡

𝑡0
 + R ….(15) 

Where 

  R =

0 0

t s

t t

 
L0a(xz) dzds + 

0 0

t s

t t

 
L1a(xz) dwzds + 

0 0

t s

t t

 
L0b(xz) dzdws + 

0 0 0

t s z

t t t

  
L0L1b(u) dudwzdws + 

0 0 0

t s z

t t t

  
L1L1b(Xu) dwudwzdws 

The Itô -Taylor expansion can thus be considered as a 

generalization of both the Itô  formula and the 

deterministic Taylor formula. 
5.Main Results :  
In this section The Heun's method applying to SDE is 
by of the Heun's(modified Euler's method)  
  Consider the following  SDE : - 
      𝑑𝑦𝑡 = 𝑎(𝑡, 𝑥𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑥𝑡)𝑑 …(16) 
Where   𝑎(𝑡, 𝑥𝑡), 𝑏(𝑡, 𝑥𝑡)  are continuous functions which 
are defined on interval [𝑡0, 𝑇]. 
Now, if we integrate the SDE the equation (16), we get  

  𝑦(𝑥1) = 𝑦(𝑥0) + ∫ 𝑎(𝑠, 𝑥𝑠)𝑑𝑠
𝑥1

𝑥0
+ ∫ 𝑏(𝑠, 𝑥𝑠)𝑑𝑤𝑠

𝑡

𝑡0
…(17) 

Also let       𝐼1 = ∫ 𝑎(𝑠, 𝑥𝑠)𝑑𝑠
𝑡=𝑥1

𝑡0=𝑥0
=  ∫ 𝑓(𝑥) 𝑑𝑥

𝑡=𝑥1

𝑡0=𝑥0
 

where trapezoidal rule 𝑥0 =  𝑡0, 𝑥1 = 𝑡 ,  h = 𝑥0 − 𝑥1 =

 𝑡0 − 𝑡. 

And 𝑓(𝑥) =  𝑃𝑛(𝑥) + 
𝑓𝑛+1(𝛿)

(𝑛+1)!
∏ (𝑥 −𝑛

𝑖=0 𝑥𝑖) ….(18) 

Provided that   𝑃𝑛(𝑥)  =   ∑ 𝑓(𝑥𝑖)
𝑛
𝑖=0
𝑖≠𝑘

∗ 𝐿𝑖(𝑥) ,  where 𝐿𝑖(𝑥)  

=  ∑
𝑋− 𝑋𝑖

𝑋𝑘−𝑋𝑖

𝑛
𝑖=0
𝑖≠𝑘

    

And,also  n=1 →  𝑃1(𝑥) =  ∑ 𝑓(𝑥𝑖)
1
𝑖=0
𝑖≠𝑘

∗
𝑋− 𝑋𝑖

𝑋𝑘−𝑋𝑖
=  

𝑋− 𝑋1

𝑋0−𝑋1
∗

𝑓(𝑥0) +
𝑋− 𝑋0

𝑋1−𝑋0
∗ 𝑓(𝑥1) 

Hence   

         𝑓(𝑥) =   
𝑋− 𝑋1

𝑋0−𝑋1
∗ 𝑓(𝑥0) +

𝑋− 𝑋0

𝑋1−𝑋0
∗ 𝑓(𝑥1) +

 
𝑓(𝑛+1)(𝜀)

(𝑛+1)!
∏ (𝑥 −𝑛

𝑖=0 𝑥𝑖) 

Also if    𝐼1 = ∫ 𝑓(𝑥) 𝑑𝑥
𝑡=𝑥1

𝑡0=𝑥0
=  ∫ (

𝑋− 𝑋1

𝑋0−𝑋1
∗ 𝑓(𝑥0) +

𝑡=𝑥1

𝑡0=𝑥0

𝑋− 𝑋0

𝑋1−𝑋0
∗ 𝑓(𝑥1)) 𝑑𝑥+ ∫

𝑓(𝑛+1)(𝜀)

(𝑛+1)!
∏ (𝑥 −𝑛

𝑖=0 𝑥𝑖)𝑑𝑥
𝑡=𝑥1

𝑡0=𝑥0
. 

Where 

            ∫
𝑓(𝑛+1)(𝜀)

(𝑛+1)!
∏ (𝑥 −𝑛

𝑖=0 𝑥𝑖)𝑑𝑥
𝑡=𝑥1

𝑡0=𝑥0
 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 

Then 

          𝐼1 =  ∫ 𝑓(𝑥) 𝑑𝑥
𝑡=𝑥1

𝑡0=𝑥0
= ∫ {

(𝑥− 𝑥1)2

2(𝑥0−𝑥1)
∗ 𝑓(𝑥0) +

𝑡=𝑥1

𝑡0=𝑥0

(𝑥− 𝑥0)2

2(𝑥1−𝑥0)
∗ 𝑓(𝑥1)} 𝑑𝑥 = 

𝑋1−𝑋0

2
[𝑓(𝑥0) + 𝑓(𝑥1)] =

ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] ...(19) 

And 𝐼2 = ∫ 𝑏(𝑥𝑠)𝑑𝑤𝑠
𝑡

𝑡0
= ∫ 𝑏(𝑠, 𝑥𝑠)𝑑𝑤𝑠

𝑡=𝑥1

𝑡0=𝑥0
=

 ∫ 𝑏(𝑥) 𝑑𝑤
𝑡=𝑥1

𝑡0=𝑥0
=

𝑋1−𝑋0

2
[𝑏(𝑥0) + 𝑏(𝑥1)] ...(20) 

Since Euler Scheme method which is  𝑥𝑡 =  𝑥𝑡0
+ 𝑎∆𝑛 +

𝑏∆𝑤𝑛 
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Or        𝑦𝑛+1 =  𝑦𝑛 + 𝑎 ∆𝑛 + 𝑏∆𝑤𝑛 ;  𝑛 = 0,1,2, . . . , 𝑁 − 1                                                                                       
…(21) 
Then Substitute. Equation (21) in equations (19), (20 ), 
we get 

𝐼1 =
ℎ

2
[𝑓(𝑦𝑛) + 𝑓(𝑦𝑛 + 𝑎 ∆𝑛 + 𝑏∆𝑤𝑛)], and 𝐼2 =

ℎ

2
[𝑏(𝑦𝑛) + 𝑏(𝑦𝑛 + 𝑎 ∆𝑛 + 𝑏∆𝑤𝑛)]….(22) 

where x = {xt : t0 t  T} is an Itô  process with initial 

value 𝑥𝑡0
=𝑥0. Subdivide the interval [t0, T] into N-

subintervals according to the following discretization :  

t0=0<1< … <n< … <N= T.  
𝑇ℎ𝑒 ℎ𝑒𝑢𝑛′𝑠 𝑎𝑝𝑝𝑟𝑜𝑥. 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑎𝑠 𝑐𝑜𝑛𝑡. 𝑡𝑖𝑚𝑒 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑦 =
{𝑦(𝑇); 𝑡0 ≤ 𝑡 < 𝑇}   𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 the iterative scheme :  

𝑦𝑛+1 =  𝑦𝑛 +
ℎ

2
[𝑓(𝑦𝑛) + 𝑓(𝑝𝑖+1)]∆𝑛  + 

ℎ

2
⌈𝑏(𝑦𝑛) +

𝑏(𝑝𝑖+1)⌉∆𝑤𝑛 ...(23) 

for n = 0, 1, …, N − 1; with initial value y0= x0.  
Remark1. 

Equation (23) is the Itô -Taylor expansion of xt() in 

equation (17). The Itô -Taylor expansion is useful in 

approximating a sufficiently smooth function in a 
neighborhood of a given point to a desired order of 
accuracy.     Thus, considering the first three terms of 
equation (23) provides the Heun's scheme in (23) where 
each term in the right hand side of equation (23) 
approximates the corresponding term on the right hand 
side of equation (17). For brevity, equation (23) is 
written as :  

Yn+1=Yn + an + bWn 
where 

𝑝𝑖+1 = 𝑦𝑛 + 𝑎 ∆𝑛 + 𝑏∆𝑤𝑛 

   And     ∆𝑛 = 𝑡 − 𝑡0 =  ∫ 𝑑𝑠
𝑡

𝑡0
,  ∆𝑤𝑛 = 𝑥𝑡𝑛+1

− 𝑥𝑡𝑛
=

 ∫ 𝑑𝑤𝑠
𝑡

𝑡0
, a= a(n, y(n)) , b= b(n, y(n)), and yn= y(n) 

Remark2. 
The Heun's scheme for a deterministic ordinary 

differential equations is obtained if b = 0 in equation 
(23). Thus,    the main difference between the Heun's 
scheme for deterministic ordinary differential equations 
and the Heun's scheme for SDE's is the following 
random increments need to be generated for the SDE :  

wn=xtn+1
−xtn

 

for n = 0, 1, …, N − 1; of the Wiener process w= {wt, t  
0}, (see defined(1.1) in [6]). 
Remark 3.  
The Heun's scheme determines values of the 
approximating process at the discretization times only.                     
The values at the intermediate instances can be 
calculated by using either the piecewise constant 
interpolation method or the linear interpolation 
method. An overview method is provided in [8].The 

Heun's scheme is an example of a time discrete 
approximation (or difference method) in which the 
continuous time differential equation is replaced by a 
discrete time difference equation generating values Y1, 
Y2,..,Yn to approximate𝑥𝑡1

, 𝑥𝑡2
, …, 𝑥𝑡𝑛

 at given 

discretization times t0< t1< … < tn. The Heun's scheme is 
the simplest strong Taylor approximation and attains an 

order of convergence when = 0.5.  
5.1 Algorithm and Illustration :  
Algorithm (Euler-Maruyama Method) :  
Input : The dynamic stochastic differential equation in 
problem formulation :  
 dx(t) = f(xt, t)dt + g(xt, t)dw(t)

x(0) = x0
}                                                                                                …(24) 

Output : Numerical (sample path) solution of stochastic 
process. 
Step 1 : Consider problem formulation (24). 
Step 2 : Generating a Brownian motion. 
Step 2.1 : Generate a random number. 

Step 2.2 : Consider T = t0; N = n0; dt= T/N. 
Step 2.3 : W(t) ~ N(0, 1). 

Step 2.4 : W0= 0 with probability 1. 

Step 2.5 : Wj=Wj−1 + dWj, j = 1, 2, …, N. 

Step 2.6 : dWj ~ √δt N(0, 1). 

Step 3 : Set j = 1 ⎯→ L 

W(Tj) − W(Tj−1) = W(jRδt) − W((j − 1)Rδt) =
jR

k
k jR R 1

dW
= − +


 

Xj=Xj−1 +
h

2
f(Xj−1)t +

h

2
 g(Xj−1)(W(Tj) − W(Tj−1)),  

If j  L stop. 
Step 4 : Computation of error, depending on the type of 
error for example, the following is absolute error 

Step 4.1 : If t = δt 

Set i= 1 ⎯→ L 

error= abs(Xn(i) − XT(i)) 

Step 4.2 : If t  δt   ;       error= abs(Xn(final) − XT(final)). 
𝐈.Illustration. (With Absolute Error Test) :  
Consider the SDE is :  

dX= f dt + g dW 

X(0) = 1 

Where f(t) =∫ cos (∫ sins ds
s

0

t

0
)dx ; g(t) = 

∫ sin (∫ tans ds
s

0

t

0
)dx ; X0= 0 and  Y0= 1 ;   

The absolute error at the final time interval for different 

sample space numbers, wheret =t; R = 1; the step time  
for discretization of Brownian motion equals to the step 
time of Euler scheme, are shown in the following (table 
(A) and Figure (1.1)). As one can see, increasing the 
number of sample (N) leads to improving the absolute 

error at the different time steps, where t=δt.  
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Table (A) : Error generated by the Heun's scheme. 

R N Error at final time 

1 

𝟐𝟕 0.7626 

𝟐𝟖 0.1032 

𝟐𝟗 0.3001 

2 

𝟐𝟕 0.8550 

𝟐𝟖 0.2975 

𝟐𝟗 0.3392 

On using R = 1, N = 28, the following numerical solution is obtained and presented in the following figure (1.1)  

                                                       

                                   Figure (1.1) : Absolute error between the Heun's scheme and exact 

 

𝐈𝐈.Illustration. (With Absolute Error Test) :  

Consider the SDE is :  

dX= f dt + gdw   

 X(0) = 1 

Where                                     f(t) =∫ sec(∫ sin s ds
s

0

t

0
)dx ; g(t) 

= ∫ csc(∫ cos s ds
s

0

t

0
)dx ; X0= 0 and  Y0= 1 ;   

As discussed previously in illustration (II), the following 

table (B) is needed for error analysis and as follows 
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Table (B) : Error generated by the Heun's scheme. 

R N Error at final time 

1 

25 0.4138 

26 1.5409 

28 0.2804 

29 0.8158 

210 0.5493 

211 0.3525 

On using R = 1, N = 28, the following numerical solution is obtained and presented in the following figure (1.2)  

                                                                    

Figure (1.2) : Absolute error between the Heun's scheme and exact 

 

 𝐈𝐈𝐈.Illustration. (With Absolute Error Test) :  

Consider the SDE is :  

 dX= f dt + gdW 

 X(0)= 0 

Where                        f(t) =∫ exp(∫ sin s ds
s

0

t

0
)dx ; g(t) = 

∫ sin(∫ cos s ds
s

0

t

0
)dx; X0= 0;  Y0= 1. 

The error at final time interval for R = 1 and different 

number of sample N is discussed in the following table 

(C). 
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                                                           Table (C) : Error generated by the Heun's scheme 

R N Error at final time 

1 

25 0.4138 

28 0.1032 

211 0.1297 

One can select R =1, N = 28 for accuracy, the following numerical solution is then obtained and presented in the 

following figure (1.3). 

                                                                              

                                Figure (1.3) : Absolute error between the Heun's scheme and exact 

 
Summary 
Numerical methods for the solution of stochastic  
differential equations are essential for the analysis of 
random phenomena. Strong solvers are necessary when 
exploring characteristics of systems that depend on 
trajectory-level properties. Several approaches exist for 
strong solvers, in particular Heun's type methods, 
although both increase greatly in complication for 
orders greater than one. In many _ financial 
applications, major emphasis is placed on the 
probability distribution of solutions, and in particular 
mean and variance of the distribution. In such cases, 
weak solvers may sauce. Independent of the choice of 
stochastic differential equation solver, methods of 
variance reduction exist that may increase 
computational efficiency. The replacement of 
pseudorandom numbers with quasi random analogues 
from low-discrepancy sequences is applicable as long as 
statistical independence along trajectories is 
maintained. In addition, control variates offer    an 
alternate means of variance reduction and increases 
inefficiency simulation of stochastic differential 
equations trajectories. 
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