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ABSTRACT   

This paper proposed a parallel method for solving the Agricultural Land Investment Problem (ALIP), the problem 

that has an important impact on the agriculture issues. The author is first represent mathematically the problem by 

introducing a mathematical programming model. Then, a parallel method is proposed for optimizing the problem. 

The proposed method based on principles of parallel computing and neighborhood search methods. Neighborhood 

search techniques explore a series of solutions spaces with the aim of finding the best one. This is exploited in 

parallel computing, where several search processes are performed simultaneously. The parallel computing is 

designed using Message Passing Interface (MPI) which allows to build a flexible parallel program that can be 

executed in multicore and/or distributed environment. The method is competitive since it is able to solve a real life 

problem and yield high quality results in a fast solution runtime. 
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1. INTRODUCTION 
This paper addressed an issue of agricultural problems, 
namely the Agricultural Land Investment Problem 
(abbreviated to ALIP). The problem faced by an 
investor, who needs to invest a large agricultural land. 
There are various variants of plants that can be 
cultivated with a limited finance and duration. Each 
plant has a cost to be raised. On the other hand, each of 
them has a profit. These profits varies according to 
plants. Some plants have great profits but they cost a lot 
until they can bear fruit and vice versa. The objective of 
the problem is to maximize the profit of investment of 
Agriculture. As it is clear that, the ALIP is NP-hard. In 
order to simplify the treating of the problem, the ALIP 
can be simulated as a well-known combinatorial 
optimization problem that is the knapsack problem 
(abbreviated to KP). In fact, there are a wide variety of 
practical situations that can be simulated as the KP in 
various domains, including, computer sciences (Kellerer 
et al., 2014). Given a set 𝐼 on 𝑛 plants and financed with 
a limited capacity 𝑐, where each plant 𝑖 is characterized 
by a profit 𝑃𝑖 and a cost 𝑤𝑖, the objective of the problem 

is to select a subset of plants so that the sum of the 
selected plants’ profits is maximized without exceeding 
the limited financed capacity 𝑐. The mathematical 
programming model of the ALIP can be stated as 
follows : 
𝑀𝑎𝑥 ∶     𝑓(𝑥) = ∑ 𝑝𝑖 𝑥𝑖

𝑛
𝑖=1            …………... (1) 

𝑠. 𝑡.                        ∑ 𝑤𝑖  𝑥𝑖  ≤ 𝑐𝑛
𝑖=1   …………… (2) 

𝑥𝑖  ∈ {0,1}     ∀𝑖 ∈ 𝐼 = {1, … , 𝑛}  ..………….. (3) 
The decision variable 𝑥𝑖 , ∀ 𝑖 ∈ 𝐼, is equal to 1 (𝑖. 𝑒.  𝑥𝑖 =

1) if a plant 𝑖 is selected and cultivated in the land 
(included in the solution), otherwise 𝑥𝑖 = 0 (out of the 
solution). In this integer linear programming, there are 
three equations. The first equation (1) is the objective 
function where the goal is to maximize the value of the 
total profit of plants cultivated in the land under two 
constraint. The first constraint (equation 2) is the 
capacity constraint, ensuring that the costs’ sum of the 
selected plants does not exceed the limited finance. 
Meanwhile, the second constraint (equation 3) is 
imposed on plants that are to be selected or not in the 
solution (it is not allowed to select a fractional plant) 
(Martello & Paolo, 1990). In order to avoid trivial cases, 
it is assumed that: all input data 𝑐, 𝑤𝑖 , 𝑝𝑖 , ∀ 𝑖 ∈ 𝐼, are 
positive integers, and ∑ 𝑤𝑖  > 𝑐𝑖∈𝐼  (Hifi & Otmani, 2012). 
The rest of the paper is organized as follows. Section 
two reviews some related works. Section three discusses 
the principle of the proposed approach for optimizing 
the ALIP. In section four, the performance of the 
proposed approach is evaluates on a number of 
instances, and analyzes the obtained results. Finally, 
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section five summarizes the contribution of the paper. 
2. Related Works 
The ALIP is a real life problem that can be simulated as 
the KP, as mention in the previous section (i.e. Section 
1). Accordingly, the solution procedures for the 
problems belonging to the knapsack family are also 
suitable for the ALIP (for more details, see Kellerer et al., 
2014). However, the solution procedures, available in 
the literature, are either exact or approximate methods. 
Horowitz and Sahni (Horowitz & Sahni, 1974) proposed 
a branch and bound algorithm, which is based on a 
depth first enumeration. The upper bounds is derived 
from the principles of continuous relaxation of the 
currently induced sub-problem. On the other hand, in 
order to solve large-sized instances, Balas and Zemel 
(Balas & Zemel, 1980) proposed a method focused on 
the enumeration on the most interesting ones. This 
subset of items, known as the core of the problem, is 
then solved either by approximate techniques or by 
using exact solution procedure such as branch-and-
bound methods. Yamada et al. (Yamada et al., 2002), 
proposed exact and approximate algorithms for solving 
a variation of the knapsack problem that is disjunctively 
constrained knapsack problem. The heuristic solution 
procedure is used in order to generate approximate 
feasible solutions. Then, these solutions are improved 
using local search method. The exact solution method is 
based on the principles of implicit enumeration search 
which starts its search from the initial solution obtained 
from the approximate part. Hifi et al. (Hifi et al., 2014) 
proposed a parallel method based on the principles of 
large neighborhood search method for solving the 
disjunctively constrained knapsack problem. The 
method is designed using message passing interface. In 
this paper, we proposed an approximate solution 
procedure based on principles of parallel computing 
and neighborhood search methods. The neighborhood 
search techniques are exploited in parallel computing, 
where several search processes are performed 
simultaneously.   
3. Parallel heuristic based on neighborhood search 
In this section, we discuss the principle of the proposed 
parallel heuristic method which is based on the 
principles of neighborhood search for optimizing the 
ALIP problem. Neighborhood search is a wide class of 
improvement techniques that can be used for 
developing effective algorithms to approximate large-
size instances of various combinatorial optimization 
problems (Aarts & Lenstra, 2003). On the other hand, 
parallel computing have already been proved as an 
effective solution procedure  in which  several 
calculations can be performed simultaneously. The idea 
is that huge data can be divided into smallest parts, 
which are then processed and treated concurrently 
(Pacheco, 2011). In this paper, the neighborhood search 

techniques are exploited in parallel computing. 
Accordingly, a parallel heuristic method is presented 
for solving the ALIP problem. On the one hand, 
neighborhood search techniques explore a series of 
solutions spaces with the aim of finding the better. On 
the other hand, several search processes are performed 
simultaneously and this dramatically accelerates the 
computing processes and yields high quality solutions 
within acceptable solution running time. 
3.1 Parallel computation and MPI 
It has become more interesting than before to design 
algorithms that can be implemented effectively in a 
multiprocessor/multicore environment. Such that, we 
have numbers of processing units which cooperate for 
solving a specific problem. That is, the parallel 
computing. This will lead to a high progress in the 
solution procedures of the considered problem 
(Pacheco, 2011). In this work, we use Message Passing 
Interface (noted as MPI) to design a parallel heuristic 
method that can be executed in multicore and/or 
distributed environment. MPI addresses primarily the 
message-passing parallel programming model, in which 
data is moved from the address space of one processor 
to that of another processor through cooperative 
operations on each processor. The main advantage of 
MPI is the ease of use. In addition, it enables us to build 
an efficient, and flexible message passing model of 
parallel programming (Wittwer, 2006).  
3.2 Parallel Computation Environment 
The proposed parallel computation model provides a 
multiprocessor environment. In such environment, 
there are multiprocessors on a single multicore personal 
computer machine. This is a cheap computing power 
that has been exploited in our parallel programming 
model. In fact, the tackled problem is divided into sub-
problems, then each one of them is treated by one core 
of the multicore personal computer. In other words, we 
have multi-processing environment, where each process 
is associated with a unique core. All processes are 
arranged and ordered within a virtual topology known 
as Communicator. The virtual topology means that, 
there may be no relation between the physical 
structures of the process topology. In contrast, it 
describes a virtual mapping ordering of the processes. 
The mapping of processes in the MPI communicator is 
dependent upon the algorithm implementation and the 
problem to be solved. The communicator composed of a 
set of processes, where each one of them has a unique 
integer rank. Rank value start at zero to 𝑁 − 1, where 𝑁 
is the total number of processes in the communicator. 
The whole processes in the communicator may 
communicate with each other using their ranks either 
by collective or point to point communications 
operations. A sender process may send a message to 
other process by providing the receiver ranks and a 
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unique tag to identify the message. The receiver process 
can then post a receive for a message by providing the 
sender rank and the same tag to identify the message 
(for some cases it can simply ignore the tags). 
Accordingly, the receiver process handles the data 
correctly  (Pacheco, 2011). 
3.3 Parallel heuristic Implementation  
The solution method proposed for optimizing the ALIP 
problem focus on the computation of high quality 
solutions with the acceptable computational effort. 
Thus, the proposed method is an approximative 
methods, due to the nature of the problem which is NP-
hard problem. Algorithm 1 describes the main steps of 
the proposed parallel heuristic method. The principle is 
that, several neighborhood search processes are 
performed concurrently by the help of MPI parallel 
programming model. Each core in the used computer is 
associated with one process, where a random 
neighborhood search is considered as an efficient search 
process. In other words, each core perform a 
neighborhood search process according to its 
parameters, then the best results obtained from the 
whole processes are recorded. Herein, an adaptive 
neighborhood search method is considered, which 
consists of two main stages: the first stage yields a 
starting feasible solution by using a greedy procedure. 
The second stage tries to improve the quality of the 
starting feasible solution by using local search and a 
diversification strategy. The diversification strategy is 
used in order to escape from a series of local optimum 
solution and explore diversify search spaces as shown 
in algorithm 1. 
Algorithm 1: Parallel Heuristic method for the ALIP 
Require: 𝑆𝐴𝐿𝐼𝑃, a starting solution of 𝑃𝐴𝐿𝐼𝑃 
Ensure: 𝑆𝐴𝐿𝐼𝑃

∗ ,  the best local optimum solution of 𝑃𝐴𝐿𝐼𝑃 
1. Initialize 𝑆𝐴𝐿𝐼𝑃, the starting solution, using a greedy 
procedure. 
2. Initialize n processors and make the processor; 
3. On each processor 𝑖 (𝑖 = 0, 1, … , 𝑛 − 1), apply a 
random neighborhood search: 
3.1  While the iteration limit is not achieved do 
3.1.1  Use the starting solution as the initial solution 
3.1.2 Apply a destroying strategy to yields a reduced 
sub-problem. 
3.1.3 Apply a local search procedure to improve the 
reduced sub-problem. 
3.1.4 Update the best solution at hand 
3.2: End While 
4. Update 𝑆𝐴𝐿𝐼𝑃

∗  the best local solution obtained from all 
processes 

5. Return 𝑆𝐴𝐿𝐼𝑃
∗ .  

Algorithm 1 describes the principles of the proposed 
parallel method for optimizing the ALIP. Step 1, a 
starting solution is initialize using a simple greedy 
procedure, in which items are selected randomly to be 
included in the solution. In this work, we use n equals 
to 4. That is mean that, we use only four cores in the 
multicore computer. Step 2: n processors are initialize, 
where the neighborhood search process will be applied. 
Step 3: apply a diversification neighborhood search 
strategy, which includes two steps: a degrading strategy 
(Step 3.1.2) and a re-optimizing strategy (Step 3.1.3). 
The degrading strategy destroy the solution at hand by 
removing some elements randomly and produced a 
reduced sub-problem. The re-optimizing strategy tries 
to enhance the reduced sub-problem by applying a local 
search procedure. Step 4 update the best solution 
achieved by all processes. Finally, the best solution 
obtained so far is returned.  
4. Computational Results 
This section investigates the effectiveness of the 
proposed parallel heuristic neighborhood search 
method (abbreviated to PHNS) on instances generated 
by the author. The instances consists of 200 variants of 
plants, and a limited finance 𝑐 = 1200$. The results 
obtained by the proposed PHNS are compared to those 
results obtained by the sequential version of the 
proposed method. The proposed PHNS was coded in 
C++ and MPI library and tested on core i5 2.5 GHz. 
There are two parameters should be taken into account 
with respect to neighborhood search: the percentage of 
the removed elements regarding the reduced problem 
(noted as ∝) and the stopping criteria. Both of them are 

important in developing an efficient algorithm. For the 
first step in the computational results, we tune our 
algorithm as following: we initialize four processes 
in four different cores in the used personal 
computer. Each process handle a variant of ∝. The 
first process handle ∝= 10, the second ∝= 20, the 
third ∝= 30, and the fourth process handle ∝= 40. 
In the other hand, for all processes the stopping 
criteria has been fixed to 2000 iteration. In other 
words, neighborhood search method iterates 2000 
times before it gives its better solution. Table 1 
displays the variation of the average solutions 
values and the solution time achieved by PHNS 
over the treated instances. 
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Table (1) : The effect of the variable ∝ on the solution quality and time 

No. of 
trials 

α=10 α=20 α=30 α=40 

 t (s) Av. Val t (s) Av. Val t (s) Av. Val t (s) Av. Val 

1st 0.109 9318 0.124 8322 0.126 7854 0.158 7798 

2nd 0.106 8022 0.094 8920 0.124 8208 0.156 7772 

3rd 0.124 9044 0.124 8796 0.14 8354 0.14 8020 

4th 0.11 8522 0.095 9244 0.126 7828 0.126 7684 

5th 0.109 8654 0.094 8516 0.156 8154 0.171 7676 

Av. Tot 0.1116 8712 0.1062 8759.6 0.1344 8079.6 0.1502 7790 

 
Table 1 illustrates the effectiveness of the proposed 
parallel heuristic on the tested instances. The first 
column (No. of trials) shows the number of trials, where 
we did 5 trials. Column 2 (𝛼 = 10) illustrates the 
average time and the average solutions obtained with 
different trails. As it is clear from the table, the best 
solution achieved is when 𝛼 = 20. So, we tune our 
algorithm with this value for the next step regarding 
our computational results. For the next step in the 
computational results, we use the same number of 
processes, (i.e. four processes in four different cores). 
We tune all processes with 𝛼 = 20. At the same time, we 
extend the stopping criteria to 400000 iteration. This 
extension in the number of iteration, normally, 
improves the solution quality at the expense of required 
runtime, as shown in Table 2. 
 

Table (2) : Performance of PHNS with compare with a 
sequential algorithm 

No. of 
trials 

Seq. Algo. PHNS:  α=20 

 t (s) Value t (s) Value 

1st 5.184 9192 1.435 9316 

2nd 5.22 9240 1.513 9200 

3rd 5.193 9170 1.466 9352 

4th 5.166 9260 1.482 9242 

5th 5.122 9428 1.45 9278 

Av. 
Val. 

5.177 9258 1.469 9277.6 

 
Table 2 illustrates the performance of the PHNS.  
Column 1 (No. of trials) shows the number of trails. 
Column 2 (Seq. Algo.) shows the solutions obtained and 
the time required for a sequential form of the 
neighborhood search algorithm. Column 3 (PHNS: 
α=20) illustrates the solutions and time required for 
PHNS. One can observe that, the sequential algorithm 
required about 5.177 s in order to yields its solutions 
values while, the parallel version, yields its solutions 
values within average runtime equals to 1.469 s. That’s 
mean, the parallel algorithm is faster than the sequential 

one, about 
5.177

1.469
= 3.52 times faster than the sequential 

one. At the same time, the performance of the parallel 
algorithm and the sequential one are nearly the same. 
That is because, the both used the same neighborhood 
search techniques. For the third and last step in the 
computational results, we compare the PHNS, with the 
greedy algorithm that produce the initial solution, as 
illustrated in Table 3.  
 

Table (3) : Performance of PHNS with compare with a 
greedy algorithm 

 

Greedy 
algorithm PHNS: α=20 

 t (s) Val. t (s) Val. 

Av. 
Val. 0.031 3322 1.469 9277.6 

 
As shown in Table 3, the average solution value 
obtained by PHNS is better than the initial solution 
obtained by the greedy algorithm. Indeed, PHNS is able 
to realize an average value about 9277.6 in 1.469 second, 
whereas Greedy algorithm realizes 3322 in 0.031. In 
spite of PHNS required more solution time than the 
greedy algorithm, but the solution quality is better. 
5. Conclusion: 
In this paper, a parallel heuristic method was proposed 
for approximately solving a real life problem arises in 
agriculture, agricultural land investment problem. The 
problem was first modeled as a combinatorial 
optimization problem, the knapsack problem. In 
addition, a mathematical programming model was 
introduced to represent it. Then, a parallel heuristic 
method is proposed. The proposed method based on 
the principles of parallel computing and neighborhood 
search techniques. The neighborhood method is based 
upon destroying and re-optimizing strategies. 
Destroying strategy involves remove α% of items from 
the solution at hand, whereas re-optimizing strategy 
involves re-optimize the reduced problem. This is 
exploited in parallel computing, where several search 
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processes are performed simultaneously. The Message 
Passing Interface was used to build the parallel 
program in a multicore environment. The work realized 
here highlighted the effectiveness of integrating 
neighborhood search techniques in parallel processing. 
Computational results showed that, the proposed 
method performed better than a greedy algorithm and a 
sequential version of neighborhood search. The 
proposed method yields high quality solutions in short 
solution time. 
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