Some Theorems in the Existence, Uniqueness and Stability solutions of Volterra Integrals Equations

Raad N. Butris 1, Sebar T. Qader 2

1,2Department of Mathematics, Collage of Basic Education, University of Duhok, Kurdistan Region, Iraq

ABSTRACT

The aim of this work is to study the existence, uniqueness and stability solutions of Volterra integrals equations by using both Picard approximation and Banach fixed point theorems. This study leads to develop and extend the above theorems and to expand the results obtained by Butris.

Keywords: Uniqueness, Stability, Volterra Integrals.

1. Introduction

1.1 Literature Review

Some results on the existence, uniqueness and stability solutions of Volterra integrals equations have been obtain by Picard approximation and Banach fixed point theorems that were proposed by [7]. As well as, these results applied in many studies [2,4,5,6,8].

Vito Volterra (1860-1940) worked on integral equations and especially in finding inverse of integral operators, particularly in theory of integral equations and are contribution concerning nonlinear functional analysis [3]. Butris [1] used Picard approximation and Banach fixed point theorems for studying the existence and uniqueness solutions of the following integral equation of Volterra type.

$$ u(t) = f(t) + \int_{0}^{t} F(t,s)u(s) ds, \quad (t \in [0, h]) $$

In this equation the functions $f(t)$ and $F(t,s)$ are continuous on finite interval $0 \leq t \leq h$ and the square region $0 \leq t \leq h, 0 \leq s \leq h$, respectively.

This work extended some results of Butris [1] to Volterra types, by using also both Picard approximation and Banach fixed point theorems which are given by [7].

Consider the following integrals equations of Volterra types

$$ u(t) = u_0 + f(t) + \int_{-\infty}^{t} K(t,s)F(s,u(s),w(s)) ds \quad \ldots (1) $$

and

$$ w(t) = w_0 + g(t) + \int_{-\infty}^{t} H(t,s)G(s,u(s),w(s)) ds \quad \ldots (2) $$

where

$$ u \in D_1 \subseteq R^n, w \in D_2 \subseteq R^m, D_1, D_2 \text{ are a compact domains.} $$

The vector functions $f(t), g(t), F(t,u,w)$ and $G(t,u,w)$ continuous on the domain

$$ D = \{(t,u,w); t \in R^1, u \in D_1, w \in D_2\}. \quad \ldots (3) $$

Suppose that the vector functions $F(t,u,w)$ and $f(t,u,w)$ satisfy the following inequalities

$$ \|F(t,u,w)\| \leq M_1, \quad \|G(t,u,w)\| \leq M_2 $$

$$ \|F(t,u_1,w_1) - F(t,u_2,w_2)\| \leq K_1 \|u_1 - u_2\| + K_2 \|w_1 - w_2\| $$

$$ \|G(t,u_1,w_1) - G(t,u_2,w_2)\| \leq L_1 \|u_1 - u_2\| + L_2 \|w_1 - w_2\| $$

For all $t \in R^1$, $u, u_1, u_2 \in D_1, w, w_1, w_2 \in D_2$ where M_1, M_2, K_1, K_2 and L_1, L_2 are positive constant. This provides

$$ \|K(t,s)\| \leq \delta_1 e^{-\lambda_1(t-s)} $$

$$ \|G(t,s)\| \leq \delta_2 e^{-\lambda_2(t-s)} \quad \ldots (5) $$

where $\delta_1, \delta_2, \lambda_1, \lambda_2 > 0$. With $\|\| = max_{t \in [a,b]} |\|$. The non-empty sets is defined by:-

$$ D_f = D_1 - M_1 \frac{\delta_1}{\lambda_1} $$

$$ D_g = D_2 - M_2 \frac{\delta_2}{\lambda_2} \quad \ldots (6) $$

Furthermore, assume that the largest Eigen-value of the matrix

$$ D_f = D_1 - M_1 \frac{\delta_1}{\lambda_1} $$

$$ D_g = D_2 - M_2 \frac{\delta_2}{\lambda_2} \quad \ldots (6) $$

doi : 10.25007/ajnu.v8n3a351

Academic Journal of Nawroz University (AJNU)
Volume 8, No 3 (2019).
Regular research paper : Published 11 June 2019
Corresponding author’s e-mail : raad.n@gmail.com
Copyright ©2018 Raad N. Butris 1, Sebar T. Qader 2. This is an open access article distributed under the Creative Commons Attribution License.
\[Q = \begin{pmatrix} K_1 \frac{\delta_1}{\lambda_1} h & K_2 \frac{\delta_1}{\lambda_1} h \\ L_1 \frac{\delta_2}{\lambda_2} h & L_2 \frac{\delta_2}{\lambda_2} h \end{pmatrix} \]

less than one, i.e \(\lambda \max(Q) < 1 \) \(\ldots(7) \)

where \(\lambda_{\max} = \frac{(a+d)\sqrt{a+d} - 4(ad-bc)}{2} \)

where \(a = K_1 \frac{\delta_1}{\lambda_1} h, \ b = K_2 \frac{\delta_1}{\lambda_1} h, \ c = L_1 \frac{\delta_2}{\lambda_2} h, \ d = L_2 \frac{\delta_2}{\lambda_2} h. \)

Define the sequence of a functions \(\{u_m(t), w_m(t)\}_{m=0}^{\infty} \) by the following

\[u_m(t) = u_0 + f(t) + \int_{t_0}^{t} K(t, s)F(s, u_{m-1}(s), w_{m-1}(s)) ds \] \(\ldots(8) \)

\[u_0(t) = u_0 + f(t) \]

and

\[w_m(t) = w_0 + g(t) + \int_{t_0}^{t} H(t, s)G(s, u_{m-1}(s), w_{m-1}(s)) ds \] \(\ldots(9) \)

Existence Solutions of (1) and (2).

The investigation of the existence solution of (1) and (2) will be introduced by the following theorem:-

Theorem 3. Let the vector functions \(f(t), g(t) \) and \(F(t, u, w), G(t, u, w) \) be defined and continuous on the domain (3) suppose these functions are satisfying the inequalities (4)-(5) and the conditions (6), (7). Then there exist a sequence of functions (8) and (9) converges uniformly on the domain

\[G^* = \{(t, u_0, w_0) \in [0, h] \times D_1 \times D_2 \} \] \(\ldots(10) \)

to the limit vector function \(\left(\frac{u(t)}{w(t)} \right) \) which is a continuous on the domain (3) and satisfies the following integral equations:-

\[\left(\begin{array}{c} u(t) \\ w(t) \end{array} \right) = \left(\begin{array}{c} u_0 + f(t) + \int_{t_0}^{t} K(t, s)F(s, u_0(t, u_0, w_0), w_0(t, u_0, w_0)) ds \\ w_0 + g(t) + \int_{t_0}^{t} H(t, s)G(s, u_0(t, u_0, w_0), w_0(t, u_0, w_0)) ds \end{array} \right) \]

and it is exist solution of (1) and (2).

Provide that

\[\left(\begin{array}{c} \|u_m(t) - u_0\| \\ \|w_m(t) - w_0\| \end{array} \right) \leq \left(\begin{array}{c} M_1 \frac{\delta_1}{\lambda_1} \\ M_2 \frac{\delta_2}{\lambda_2} \end{array} \right) \] \(\ldots(12) \)

and

\[\left(\begin{array}{c} \|u_{m+1}(t) - u_0(t)\| \\ \|w_{m+1}(t) - w_0(t)\| \end{array} \right) \leq Q^m(E - Q)^{-1}\psi_0 \] \(\ldots(13) \)

for all \(t \in [0, h] \) and \(u_0 \in D_1, w_0 \in D_2, \ m = 0, 1, 2, \ldots \)

where

\[\psi_0 = \left(\begin{array}{c} M_1 \frac{\delta_1}{\lambda_1} \\ M_2 \frac{\delta_2}{\lambda_2} \end{array} \right) \]

By mathematical indication we can prove that
\[\|u_m(t) - u_0\| \leq M_1 \frac{\delta_1}{\lambda_1} \quad ... (14)\]

That is \(u_m(t) \in D_F\), for all \(t \in [0, h]\) and \(u_0 \in D_F\).

Similarly, from the sequence of functions (9) and we obtain that
\[\|w_m(t) - w_0\| \leq M_2 \frac{\delta_2}{\lambda_2} \quad ... (15)\]

That is \(w_m(t) \in D_G\), for all \(t \in [0, h]\) and \(w_0 \in D_G\).

Next we shall prove that the sequences of functions (8) and (9) converge uniformly on the domain (10). Then by mathematics induction we have
\[\|u_{m+1}(t) - u_m(t)\| \leq \frac{\delta_1}{\lambda_1} h (K_1 \|u_m(t) - u_{m-1}(t)\| + K_2 \|w_m(t) - w_{m-1}(t)\|) \quad ... (16)\]

and
\[\|w_{m+1}(t) - w_m(t)\| \leq \frac{\delta_2}{\lambda_2} h (L_1 \|u_m(t) - u_{m-1}(t)\| + L_2 \|w_m(t) - w_{m-1}(t)\|) \quad ... (17)\]

Rewrite (14) and (15) in a vector form we get
\[\Psi_{m+1} \leq Q(t) \Psi_m \quad ... (18)\]

where
\[\Psi_{m+1} = \left(\|u_{m+1}(t) - u_m(t)\| \right) \quad \Psi_m = \left(\|u_m(t) - u_{m-1}(t)\| \right),\]
and
\[Q(t) = \begin{pmatrix} K_1 \frac{\delta_1}{\lambda_1} t & K_2 \frac{\delta_1}{\lambda_1} t \\ L_1 \frac{\delta_2}{\lambda_2} t & L_2 \frac{\delta_2}{\lambda_2} t \end{pmatrix}.\]

Now we take the maximum value for the both sides of the inequality (18)
\[\Psi_{m+1} \leq Q \Psi_m \quad ... (19)\]

where \(Q = \max_{t \in [0, h]} Q(t)\).

By repetition of (19) we find that \(\Psi_{m+1} \leq Q^m \Psi_0\) and also we get
\[\sum_{i=1}^{m} \Psi_i \leq \sum_{i=1}^{\infty} Q^{i-1} \Psi_0 \quad ... (20)\]

Using the condition (17), thus the sequence of functions (8) and (9) are uniformly convergent, that is
\[\lim_{m \to \infty} \sum_{i=1}^{m} Q^{m-1} \Psi_0 = \sum_{i=1}^{\infty} Q^{i-1} \Psi_0 = \begin{pmatrix} 1 \quad (1 - Q)^{-1} \Psi_0 \end{pmatrix} \quad ... (21)\]

Let
\[\lim_{m \to \infty} \frac{u_m(t)}{w_m(t)} = \begin{pmatrix} u(t) \\ w(t) \end{pmatrix} \quad ... (22)\]

Since the sequence of function (8) and (9) are defined and continuous in the domain (3) then the limit vector function \(\begin{pmatrix} u(t) \\ w(t) \end{pmatrix}\) is also defined and continuous in the domain (3).

By using the conditions and inequalities of a theorem, we can prove that the inequalities (12) and (13) will be satisfied for all \(t \in [0, h]\), \(u_0 \in D_F, w_0 \in D_G, m = 0, 1, 2, \ldots \).

2. Uniqueness Solutions of (1) and (2)

The investigation of the uniqueness solutions of (1) and (2) will be introduced by :

Theorem 4. Let all assumptions and conditions of Theorem 3 be satisfied.

Then the solution \(\begin{pmatrix} u(t) \\ w(t) \end{pmatrix}\) is a unique of (1) and (2).

Proof. Let \(\begin{pmatrix} \tilde{u}(t) \\ \tilde{w}(t) \end{pmatrix}\) be another solution of (1) and (2), that is
\[\tilde{u}(t) = u_0 + f(t) + \int_{-\infty}^{t} K(t,s)F(s, \tilde{u}(s), \tilde{w}(s)) ds\]
and
\[\tilde{w}(t) = w_0 + g(t) + \int_{-\infty}^{t} H(t,s)G(s, \tilde{u}(s), \tilde{w}(s)) ds\]

Assuming
\[\|u(t) - \tilde{u}(t)\| \leq \frac{\delta h}{\lambda_1} (K_1 \|u(s) - \tilde{u}(t)\| + K_2 \|w(s) - \tilde{w}(t)\|) \quad ... (23)\]

and
\[\|w(t) - \tilde{w}(t)\| \leq \frac{\delta h}{\lambda_2} (L_1 \|u(t) - \tilde{u}(t)\| + L_2 \|w(t) - \tilde{w}(t)\|) \quad ... (24)\]

\[\left(\|u(t) - \tilde{u}(t)\| \right) \leq Q \left(\|u(t) - \tilde{u}(t)\| \right) \quad ... (25)\]

By iterating the inequality (23) we have
\[\|u(t) - \tilde{u}(t)\| \leq Q^m \|u(t) - \tilde{u}(t)\| \quad \|w(t) - \tilde{w}(t)\| \leq Q^m \|w(t) - \tilde{w}(t)\| \]

Then by the condition (17), we find that
\[\lim_{m \to \infty} \frac{u(t) - \tilde{u}(t)}{w(t) - \tilde{w}(t)} = 0 \quad \lim_{m \to \infty} \|u(t) - \tilde{u}(t)\| \to 0 \]

Thus \(\begin{pmatrix} u(t) \\ w(t) \end{pmatrix} = \begin{pmatrix} \tilde{u}(t) \\ \tilde{w}(t) \end{pmatrix}\).

Hence the solutions \(\begin{pmatrix} u(t) \\ w(t) \end{pmatrix}\) of (1) and (2) is a unique on the domain (3).

3. Stability Solutions of (1) and (2)

In this section, we can study the stability solutions of Volterra integral equations (1) and (2) respectively.

Theorem 5. Suppose that the functions \(F(t, u, w)\) and \(f(t, u, w)\) be continuous in the domain (3) and satisfy the inequalities (4) and (6). Then the solution (11) is stable for all \(t \geq 0\).

Proof: Taking
\[
\| u(t) - \bar{u}(t) \| \leq \frac{\delta_1}{L_1} \| u_0 - \bar{u}_0 \| + \frac{\delta_2 M_1}{L_2} [K_1 \| u(t) - \bar{u}(t) \| + K_2 \| w(t) - \bar{w}(t) \|] \quad \text{ (26)}
\]

and
\[
\| w(t) - \bar{w}(t) \| \leq \frac{\delta_2}{L_2} t \| w_0 - \bar{w}_0 \| + \frac{\delta_2 M_2}{L_2} [L_1 \| u(t) - \bar{u}(t) \| + L_2 \| w(t) - \bar{w}(t) \|] \quad \text{ (27)}
\]

where
\[
\bar{u} = u_0 + f(t) + \int_{-\infty}^{t} K(t,s)F(s,\bar{u}(s),\bar{w}(s))\,ds
\]

and
\[
\bar{w} = w_0 + g(t) + \int_{-\infty}^{t} H(t,s)G(s,\bar{u}(s),\bar{w}(s))\,ds
\]

Rewrite (26) and (27) in a vector form that is
\[
\begin{align*}
\| u(t) - \bar{u}(t) \| & \leq \frac{\| u_0 - \bar{u}_0 \|}{\| w_0 - \bar{w}_0 \|} + Q \left(\| u(t) - \bar{u}(t) \| \right) \\
\| w(t) - \bar{w}(t) \| & \leq \frac{1}{\| w_0 - \bar{w}_0 \|} + Q \left(\| w(t) - \bar{w}(t) \| \right)
\end{align*}
\]

For \(\| u_0 - \bar{u}_0 \| \leq \delta_1, \| w_0 - \bar{w}_0 \| \leq \delta_2 \) then
\[
\begin{align*}
\| u(t) - \bar{u}(t) \| & \leq \frac{\delta_1}{\delta_2} + Q \left(\| u(t) - \bar{u}(t) \| \right) \\
\| w(t) - \bar{w}(t) \| & \leq \frac{1}{\| w_0 - \bar{w}_0 \|} + Q \left(\| w(t) - \bar{w}(t) \| \right)
\end{align*}
\]

By using the condition (17) we have
\[
\begin{align*}
\| u(t) - \bar{u}(t) \| & \leq \frac{\epsilon_1}{\epsilon_2}, \quad \epsilon_1, \epsilon_2 \geq 0. \\
\| w(t) - \bar{w}(t) \| & \leq \frac{\epsilon_1}{\epsilon_2}
\end{align*}
\]

and also by using the definition of the stability [8] we find that \(\bar{u}(t) \) is a stable solution \(t \geq 0 \) of (1) and (2).

4. Another results of the solutions (1) and (2)

In this section, we can study the solution of Volterra integrals equations (1) and (2) by using:-

Theorem 6. With the hypotheses and all conditions of theorem (1) the solutions of integral equations (1) and (2) are unique on the domain (3).

Proof: Assume that \((C[0,h],\| \|) \) is a Banach spaces. Define a mapping \(T \) on \(C[0,h] \) by:

\[
Tu^*(t) = u_0 + f(t) + \int_{-\infty}^{t} K(s,t)F(s,u(s),w(s))\,ds
\]

and

\[
Tw^*(t) = u_0 + g(t) + \int_{-\infty}^{t} H(s,t)G(s,u(s),w(s))\,ds
\]

then
\[
\begin{align*}
\| Tu(t) - Tu^*(t) \| & \leq \frac{\delta_1}{L_1} (K_1 \| u(s) - u^*(s) \| + K_2 \| w(s) - w^*(s) \|) \\
\| Tw(t) - Tw^*(t) \| & \leq \frac{\delta_2 h}{L_2} (L_1 \| u(t) - u^*(t) \| + L_2 \| w(t) - w^*(t) \|)
\end{align*}
\]

Rewrite (28) and (29) in a vector form

\[
\begin{align*}
\| Tu(t) - Tu^*(t) \| & \leq \frac{K_1}{L_1} [\| u(t) - u^*(t) \|] \\
\| Tw(t) - Tw^*(t) \| & \leq \frac{L_1}{L_2} [\| w(t) - w^*(t) \|]
\end{align*}
\]

By using the condition (7), so that

\[
\begin{align*}
\| Tu^*(t) \| & \leq \| Tu(t) \| \\
\| Tw^*(t) \| & \leq \| Tw(t) \|
\end{align*}
\]

References

[5]. F.G Tricomi, Integral Equations, Turin University, Turin, Italy.