
doi : 10.25007/ajnu.v8n4a459

158 Academic Journal of Nawroz University (AJNU)

PRNG Implementation Based on Chaotic Neural
Network (CNN)
Mohammed Jassim Mohammed

Department of Computer & Communication Engineering, Nawroz University, Duhok, Kurdistan Region – Iraq

ABSTRACT

In this work, a neural network with chaos activation function has been applied as a pseudo-random number

generator (PRNG). Chaotic neural network (CNN) is used because of its noise like behaviour which is important for

cryptanalyst to know about the hidden information as it is hard to predict. A suitable adaptive architecture was

adopted to generate a binary number and the result was tested for randomness using National Institute of Standard

Technology (NIST) randomness tests.

Although the applications of CNN in cryptography have less effective than traditional implementations, this is

because these systems need large numbers of digital logic or even a computer system. This work will focus on

applications that can use the proposed system in an efficient way that minimize the system complexity.

1. Introduction

1 Random number generation algorithms are very

important in many practical applications of the

cryptographic. Although, all of these algorithms are

deterministic and produce sequences of numbers that

are not statistically random, but the algorithm produces

sequences pass many reasonable tests of randomness,

such numbers are referred to as pseudorandom

numbers [1].

One of the most important applications used the PRN is

the stream cipher, in which ciphertext output is

produced bit-by-bit or byte-by-byte from a stream of

plaintext input, where the PRNG used instead of True

Random Number Generator (TRNG) because:

• The sender need only to deliver the key (or the

seed), which is typically 54 or 128 bit, to receiver in the

secure fashion.

• It able to generate much faster than the true random

number generator.

Academic Journal of Nawroz University
(AJNU) Volume 8, No 4 (2019).
Regular research paper : Published 4 Nov 2019
Corresponding author’s e-mail : mjm562000@yahoo.com
Copyright ©2018 Mohammed Jassim Mohammed.
This is an open access article distributed under the Creative
Commons Attribution License.

The necessarily compatible requirements for a sequence

of random number [1] and [2].

1. Next random bit must be forward and backward

unpredictable, where in both cases we cannot

determine the next or previous bits from knowledge for

any generated values.

1. Random bit stream appear random even

though it is deterministic and must pass the

statistical tests of randomness (e.g. NIST 800-22

test suite [3])

2. The same random bit stream must not be able

to be reproduced

Chaotic systems can provide those requirements, where

the main characteristics of chaotic systems are [4] and

[5]:

• Dynamical systems that highly sensitive to initial

condition, i.e. a small differences in initial

conditions cause unpredicted output.

• Noise-like behavior, a small differences in initial

conditions cause unpredicted output

• Unstable periodic orbits with long periods

Due to these features, chaotic systems are extensively

incorporated into encryption systems as a random

generator [2] and [6-9], or block cipher application [10].

doi : 10.25007/ajnu.v8n4a459

Academic Journal of Nawroz University (AJNU) 159

On the other hand, Artificial Neural Network (ANN)

represents highly nonlinear systems able to handle

noisy data and fault tolerance and difficult decrypting

by brute-force attack [11], make it more suitable choice

in cryptosystem. So we can find several application of

neural network in cryptosystem like:

- PRNG [12]

- Image and data encryption [13]

- Public key generation [14]

- Block cipher [15]

And many other applications can be reviewed in [6]

and [17].

The goal of this work is to implement the proposed

PRNG based Chaotic Neural Network using Matlab

and test the performance of the proposed generator

using NIST 800-22 test suite.

The rest of the paper is organized as follows: related

works in section 2, basics of ANN and its learning in

section 3, section 4 describes the behaviour of some

chaotic equations implementation, PRNG structure

using chaotic neural network given in section 5, at last

the system implementation and conclusions given in

sections 6 and 7 respectively.

2. Related Work

The major weakness of the most present random

number generators is linearity. In other words, if we

obtained portion of a random sequence, the successive

numbers may be calculated using the associated linear

function [17]. We can find different applications of the

neural network in cryptography in [18]; this review

gives some examples of highly nonlinear PRNGs and

some applications of different neural networks

architecture in cryptography.

Singla et al. [5] merged the features and strengths of

chaos and neural network are combined to design a

pseudo-random binary sequence generator. The

statistical performance was examined against the NIST

SP800-22 randomness tests. The results of investigations

are promising and depict its relevance for

cryptographic applications.

The structure of artificial neural network was used as a

key as a solution of synchronization in cryptography

[11]. The proposed method was employed for text,

audio and image data. The results were compared with

k nearest neighbor and wavelet transforms and showed

that his algorithm faster than the others with 100%

decryption accuracy.

Yayik and Kutlu [12], proposed a neural network-based

pseudo-random numbers. The performance of this

generator was tested for randomness using National

Institute of Standard Technology (NIST) randomness

tests. After they built two identical ANNs, one for non-

linear encryption was modeled using relation building

functionality. The encrypted data was decrypted with

the second neural network using decision-making

functionality.

A recurrent neural network was used to design a

symmetric cipher able to resisting different attacks [19].

The weight distribution of the hidden layers was totally

depends on the original key. The proposed system

supports variable key and block length.

In this work a PRNG using the CNN, as described in

[5], was implemented using Matlab, at same time

several programs was built to test the generator

performance based on the NIST SP800-22 [3].

3. PRNG Based on Chaotic Neural Network

In this section the proposed PRNG architecture will

discuss. Figure 8 shows the general structure of the

proposed system. The network consists of 4 layers:

input layer, the first hidden layer, the second hidden

layer and the output layer. The function of each layer

(or so called forward computation) given by:

Input Layer:

The input for this network is 64 bits represent the seed

doi : 10.25007/ajnu.v8n4a459

160 Academic Journal of Nawroz University (AJNU)

(P = 64 bit) of the PRNG, and the output of this layer

given by:

𝑛𝑒𝑡0 = 𝑊0𝑃 + 𝐵0 … (1)

𝑌0(0) = 𝑓(𝑛𝑒𝑡0, 𝑄0) … (2)

𝑌0(𝑘 + 1) = 𝐹(𝑌0(𝑘), 𝑄0) 𝑘 = 1: 𝑛0 … (3)

Hidden Layer 1:

𝑛𝑒𝑡1 = 𝑊1𝑌0 + 𝐵1 … (4)

𝑌1(0) = 𝑓(𝑛𝑒𝑡1, 𝑄1) … (5)

𝑌1(𝑘 + 1) = 𝐹(𝑌1(𝑘), 𝑄1) 𝑘 = 1: 𝑛1 … (6)

Hidden Layer 2:

𝑛𝑒𝑡2 = 𝑊2𝑌1 + 𝐵2 … (7)

𝑌2(0) = 𝑓(𝑛𝑒𝑡2, 𝑄2) … (17)

𝑌2(𝑘 + 1) = 𝐹(𝑌2(𝑘), 𝑄2) 𝑘 = 1: 𝑛2 … (8)

Output Layer:

𝑛𝑒𝑡3 = 𝑊3𝑌2 + 𝐵3 … (9)

𝑂𝑝(0) = 𝑓(𝑛𝑒𝑡3, 𝑄3) … (10)

𝑂𝑝(𝑘 + 1) = 𝐹(𝑂𝑝(𝑘), 𝑄3) 𝑘 = 1: 𝑛3 … (11)

Normalize the output

𝑂𝑝 = (𝑂𝑝 × 1010)𝑚𝑜𝑑(256) = {
0 𝑖𝑓 < 127
1 𝑖𝑓 ≥ 127

 … (12)

Where:

W0(8×8), W1(4×8), W2(2×4), W3(1×2) :Weight matrices< 1

B0(8×1), B1(4×1), B2(2×1), B3(1×1) : Bias vectors < 1

Q0(8×1), Q1(4×1), Q2(2×1), Q3(1×1): Control parameters

0.4 < q < 0.6

0 < n0, n1, n2, n3 <=10: number of iteration 1 <= n <= 10

All these values are initialized using 64 bit key as

describe in the next section.

Figure 1. Neural Network Architecture

3.1 Key Generator and Initial Values

A 64 bit key with a 1-D chaotic cubic map used to

generate the initial values of the CNN. As described in

the following algorithm [5]:

i. K = K1 K2 K3 K4

Where Ki is a 16- bit component of the key K (64 bit)

ii. Calculate the initial condition:

𝑥(1) = ∑
𝐾𝑖

216
𝑚𝑜𝑑(1) … (13)

iii. Calculate the state of the cubic map:

𝑥(𝑘 + 1) = . 𝑥(𝑘). (1 − 𝑥(𝑘)2) … (14)

Where

 : control parameter ( = 2.59)

x(k) : the state (0 <= x(k) <=1)

3.2 Backward Adaptation

The only adapted values are the control parameter

matrices Qi by [5]:

𝑄0 = 0.2 × 𝑌1 + 0.4

𝑄1 = 0.2 × 𝑌2 + 0.4

𝑄2 = 0.2 × 𝑌3 + 0.4

𝑄3 = 0.2 × 𝑂𝑝 + 0.4

4. PRNG based on CNN Implementation

The proposed generator was implemented and

evaluated using Matlab programming, where the

general steps given by:

i. Input K and calculate x form (Eqs 13 and 14):

𝑥(𝑘 + 1) = 2.59. 𝑥(𝑘). (1 − 𝑥(𝑘)2)

Where:

𝑥(1) = ∑
𝐾𝑖
216

𝑚𝑜𝑑(1)

• Initialize matrices based on value of x

Weight matrices: W0(8*8), W1(4*8),

W2(2*4), W3(1*2)

Bias vectors: B0(8*1), B1(4*1), B2(2*1), B3(1*1)

Control parameters: Q0(8*1), Q1(4*1), Q2(2*1),

Q3(1*1)

Layer iteration: n0, n1, n2, n3

doi : 10.25007/ajnu.v8n4a459

Academic Journal of Nawroz University (AJNU) 161

Where:

0 < Wi, Bi, Qi < 1 and 1 <= ni <= 10

- Input Seed (P = 64 bit)

- Operate the neural network to calculate the Op

(Forward Computation)

- Update the values of (Q0, Q1, Q3, and Q4)

- Repeat steps 4, 5 and 6 to obtain the PRN

sequence of desired length.

5. Performance Evaluation

In this section, the performance of the system was

measured which include: the 0/1 balance test and the

NIST Randomness tests.

5.1 0/1 Balance Test

The function named (BalanceTest.m) based on Matlab

used to count number of ones and compute the average

as shown in table 1. The equality distribution measures

are found close to 50% shown in that the proposed

generator satisfy the equality distribution property.

Table 1: Equality distribution of the PRNG

Sequence Length Count of 1s %age

1000 510 51

10000 5175 51.75

20000 10226 51.13

50000 25420 50.84

100000 50525 50.52

200000 101153 50.58

500000 252176 50.44

5.2 NIST Randomness Test

Many of the statistical test suite proposed by NIST [19]

implemented using Matlab programming language

(NISTtest.m). The randomness results of the proposed

generator for first 1000 and 10000 bits are listed in table

2. According to Singla et. al. [5], this generator passes

all the NIST tests for 100,000 samples. But for my

simulation results the sequence of generated bits didn’t

pass all these tests for 1000 and even 10000 bits, it failed

in at least one p-value. But most of my tests output the

p-values obtained were greater than 0.01, which

ensures the high randomness of the generated

sequence.

Table 2: Some of NIST randomness tests

6. Conclusions

After implementation of the PRNG base on CNN using

Matlab and perform several statistical tests on the

generated binary sequence, I can summarize the main

pros of this algorithm into:

• This generator uses the high sensitivity and

randomness property of chaotic functions (Piece-

wise linear chaotic map).

• The four-layer Neural Network increase the

nonlinear complexity of the generator.

• The key space proposed in this simulator is (128 bit)

where:

o The 64 bit Key used to initialize the network

components.

o The 64 bit Seed used as an input to the

network.

• According to Singla et. al. [19] and my

implementation of some of the NIST

randomness tests, this generator passes most of

the NIST tests.

• The generated sequence pass equality

distribution (equal numbers of 0’s and 1’s) i.e.

Uniform distributed.

Randomness

Test
p-values(1000) p-values(10000)

Frequency Test 0.5271 0.2327

Block Frequency

Test

0.3857 0.6882

Run Test 0.4786 0.2135

Longest Run of

Ones in a Block

0.7532 0.0210

Discrete Fourier

Transform

0.5617 0.1989

doi : 10.25007/ajnu.v8n4a459

162 Academic Journal of Nawroz University (AJNU)

• It satisfy the two necessary compatible

requirements for a sequence of random number

(Randomness and unpredictability)

While the main cons of the proposed generator in my

point of view:

• This scheme is not efficient because of the relatively

large number of iteration steps involved in its

implementation.

• Difficult hardware implementation.

• The learning rate, which has critical effect of the

neural network performance, didn’t adopt in this

architecture. This makes the weight adaptation

relatively unstable or oscillated.

• It’s difficult to estimate the period of the sequence,

because the number of iterations in each layer

depends on the initial conditions, which is

generated by the key. In other words, the key and

seed values effect on the performance of the

generator.

7. References

1. W. Stallings, Cryptography and Network Security:

Principles and Practice, 5th Edition, Pearson Education

Inc., 2011.

2. Ü. Güler and S. Ergün, “A high speed, fully digital IC

random number generator,” International Symposium on

Circuits and Systems (ISCAS 2010), Paris, France. May

30-June 2, 2010.

3. A. Rukhin, et al. "A Statistical Test Suite for Random and

Pseudo-random Number Generators for Cryptographic

Applications”, NIST Special Publication 800-22, 2001.

4. S. Chatzidakis, P. Forsberg, and L. H. Tsoukalas,

“Chaotic neural networks for intelligent signal

encryption,” IEEE 5th International Conference on

Information, Intelligence, Systems and Applications, IISA

2014.

5. P. Singla, P. Sachdeva, and M. Ahmad, “A chaotic neural

network based Cryptographic pseudo-random sequence

design,” 4th International Conference on Advanced

Computing & Communication Technologies, ACCT '14,

2014.

6. F. Hsiao, Y. Tsai, K. Hsieh and Z. Lin, “Fuzzy Control for

Exponential H∞ Synchronization of Chaotic

Cryptosystems Using an Improved Genetic Algorithm,”

11th IEEE.

International Conference on Control & Automation

(ICCA), Taichung, Taiwan. June 18-20, 2014.

7. S. Behnia, A. Akhavan, A. Akhshani, and A. Samsudin ,“

A novel dynamic model of pseudo random number

generator,” Journal of Computational and Applied

Mathematics 235 (2011) 3455–3463.

8. A. Akhshani, A. Akhavan, A. Mobaraki, S.-C. Lim, and Z.

Hassan, “Pseudo random number generator based on

quantum chaotic map,” Commun Nonlinear Sci Numer

Simulat 19 (2014) 101–111.

9. A. S. Mansingka, A. G. Radwan, and K. N. Salama, “

Fully digital 1-D, 2-D and 3-D multiscroll chaos as

hardware pseudo random number generators,” 55th

IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS) Circuits and Systems (MWSCAS),

pp 1180-1183. August 2012.

10. Shiguo Lian, “A block cipher based on chaotic neural

networks,” Neurocomputing 72, pp. 1296–1301, 2009.

11. Ö. F. Ertuğrul, “A Novel Approach to Synchronization

Problem of Artificial Neural Network in Cryptography,”

American Association for Science and Technology,

AASCIT Communications, Volume 1, Issue 2, pp. 27-32,

July 2014.

12. A. Yay and Y. Kutlu, “Neural network based

cryptography,” Neural Network World 24 (2), 177-192,

2014.

13. S. D. Joshi, V. R. Udupi, and D. R. Joshi, “A novel neural

network approach for digital image data

encryption/decryption,” IEEE International Conference

on Power, Signals, Controls and Computation

(EPSCICON), June 2012.

14. S. Jhajharia, S. Mishra, and S. Bali, “Public key

cryptography using neural networks and genetic

algorithms,” IEEE 6th International Conference on

Contemporary Computing (IC3), pp. 137-142. Aug. 2013.

15. P. Kotlarz and Z. Kotulski, “Neural network as a

doi : 10.25007/ajnu.v8n4a459

Academic Journal of Nawroz University (AJNU) 163

programmable block cipher,” Advances in Information

Processing and Protection, pp 241-250, 2007.

16. A. A. El-Zoghabi, A. H. Yassin, and H. H. Hussien,

“Survey report on cryptography based on neural

network,” International Journal of Emerging Technology

and Advanced Engineering, vol. 3, Issue 12, Dec 2013.

17. A. G. Bafghi, R. Safabakhsh, and B. Sadeghiyan, “Finding

the differential characteristics of block ciphers with

neural networks,” Information Sciences 178, pp. 3118–

3132, 2008.

18. L. P. Yee and L. C. De Silva, “Application of multilayer

perceptron networks in symmetric block ciphers,”

International Symposium on Neural Networks - ISNN ,

vol. 2, pp. 1455-1458, 2002.

19. M. Arvandi, S. Wu and A. Sadeghian, “On the use of

recurrent neural networks to design symmetric ciphers,”

IEEE Computational Intelligence Magazine, vol. 3, no. 2,

pp. 42-53, May 2008.

20. J. M. Zurada, Introduction to Artificial Neural Systems,

West Publishing Company, 1992.

21. (2014, Dec 15). Chaotic System, Available:

http://www.businessdictionary.com/definition/chaotic-

system.html#ixzz3LujgV3Th.

22. P. Y. Kostenko, A. N. Barsukov, A. V. Antonov, and S. I.

Sivachinko, “Recovery of binary message, masked with

derivative of mackey–glass chaotic process,”

Radioelectronics and Communications Systems, vol. 52,

no. 2, pp. 89–9, 2009.

23. D. Viswanath, “The fractal property of the Lorenz

attractor,” Physica D 190, pp.115–128, 2004.

24. E. McEvoy, “Using Matlab to integrate ordinary

differential equations (ODEs),” June 17, 2009.

25. (2014, Dec 15). Lorenz system, available:

http://en.wikipedia.org/wiki/Lorenz_system.

26. [Y. Li, D. Xiao, S. Deng, Q. Han, and G. Zhou, “Parallel

Hash function construction based on chaotic maps with

changeable parameters,” Neural

Computing and Applications, 20, pp.1305–1312, 2011.

