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ABSTRACT 

In this work, a neural network with chaos activation function has been applied as a pseudo-random number 

generator (PRNG). Chaotic neural network (CNN) is used because of its noise like behaviour which is important for 

cryptanalyst to know about the hidden information as it is hard to predict. A suitable adaptive architecture was 

adopted to generate a binary number and the result was tested for randomness using National Institute of Standard 

Technology (NIST) randomness tests.  

Although the applications of CNN in cryptography have less effective than traditional implementations, this is 

because these systems need large numbers of digital logic or even a computer system. This work will focus on 

applications that can use the proposed system in an efficient way that minimize the system complexity. 

 

1. Introduction 

1 Random number generation algorithms are very 

important in many practical applications of the 

cryptographic. Although, all of these algorithms are 

deterministic and produce sequences of numbers that 

are not statistically random, but the algorithm produces 

sequences pass many reasonable tests of randomness, 

such numbers are referred to as pseudorandom 

numbers [1]. 

One of the most important applications used the PRN is 

the stream cipher, in which ciphertext output is 

produced bit-by-bit or byte-by-byte from a stream of 

plaintext input, where the PRNG used instead of True 

Random Number Generator (TRNG) because: 

• The sender need only to deliver the key (or the 

seed), which is typically 54 or 128 bit, to receiver in the 

secure fashion. 

• It able to generate much faster than the true random 

number generator. 
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The necessarily compatible requirements for a sequence 

of random number [1] and [2]. 

1. Next random bit must be forward and backward 

unpredictable, where in both cases we cannot 

determine the next or previous bits from knowledge for 

any generated values. 

1. Random bit stream appear random even 

though it is deterministic and must pass the 

statistical tests of randomness (e.g. NIST 800-22 

test suite [3]) 

2. The same random bit stream must not be able 

to be reproduced 

Chaotic systems can provide those requirements, where 

the main characteristics of chaotic systems are [4] and 

[5]: 

• Dynamical systems that highly sensitive to initial 

condition, i.e. a small differences in initial 

conditions cause unpredicted output. 

• Noise-like behavior, a small differences in initial 

conditions cause unpredicted output 

• Unstable periodic orbits with long periods  

Due to these features, chaotic systems are extensively 

incorporated into encryption systems as a random 

generator [2] and [6-9], or block cipher application [10].  
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On the other hand, Artificial Neural Network (ANN) 

represents highly nonlinear systems able to handle 

noisy data and fault tolerance and difficult decrypting 

by brute-force attack [11], make it more suitable choice 

in cryptosystem. So we can find several application of 

neural network in cryptosystem like: 

- PRNG [12] 

- Image and data encryption [13] 

- Public key generation [14] 

- Block cipher [15] 

And many other applications can be reviewed in [6] 

and [17]. 

The goal of this work is to implement the proposed 

PRNG based Chaotic Neural Network using Matlab 

and test the performance of the proposed generator 

using NIST 800-22 test suite. 

The rest of the paper is organized as follows: related 

works in section 2, basics of ANN and its learning in 

section 3, section 4 describes the behaviour of some 

chaotic equations implementation, PRNG structure 

using chaotic neural network given in section 5, at last 

the system implementation and conclusions given in 

sections 6 and 7 respectively. 

2. Related Work 

The major weakness of the most present random 

number generators is linearity. In other words, if we 

obtained portion of a random sequence, the successive 

numbers may be calculated using the associated linear 

function [17]. We can find different applications of the 

neural network in cryptography in [18]; this review 

gives some examples of highly nonlinear PRNGs and 

some applications of different neural networks 

architecture in cryptography.  

Singla et al. [5] merged the features and strengths of 

chaos and neural network are combined to design a 

pseudo-random binary sequence generator. The 

statistical performance was examined against the NIST 

SP800-22 randomness tests. The results of investigations 

are promising and depict its relevance for 

cryptographic applications. 

The structure of artificial neural network was used as a 

key as a solution of synchronization in cryptography 

[11]. The proposed method was employed for text, 

audio and image data. The results were compared with 

k nearest neighbor and wavelet transforms and showed 

that his algorithm faster than the others with 100% 

decryption accuracy. 

Yayik and Kutlu [12], proposed a neural network-based 

pseudo-random numbers. The performance of this 

generator was tested for randomness using National 

Institute of Standard Technology (NIST) randomness 

tests. After they built two identical ANNs, one for non-

linear encryption was modeled using relation building 

functionality. The encrypted data was decrypted with 

the second neural network using decision-making 

functionality. 

A recurrent neural network was used to design a 

symmetric cipher able to resisting different attacks [19]. 

The weight distribution of the hidden layers was totally 

depends on the original key. The proposed system 

supports variable key and block length.  

In this work a PRNG using the CNN, as described in 

[5], was implemented using Matlab, at same time 

several programs was built to test the generator 

performance based on the NIST SP800-22 [3]. 

3. PRNG Based on Chaotic Neural Network  

In this section the proposed PRNG architecture will 

discuss. Figure 8 shows the general structure of the 

proposed system. The network consists of 4 layers: 

input layer, the first hidden layer, the second hidden 

layer and the output layer. The function of each layer 

(or so called forward computation) given by: 

Input Layer: 

The input for this network is 64 bits represent the seed 
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(P = 64 bit) of the PRNG, and the output of this layer 

given by: 

𝑛𝑒𝑡0 = 𝑊0𝑃 + 𝐵0   … (1) 

𝑌0(0) = 𝑓(𝑛𝑒𝑡0, 𝑄0)   … (2) 

𝑌0(𝑘 + 1) = 𝐹(𝑌0(𝑘),  𝑄0)    𝑘 = 1:  𝑛0 … (3) 

Hidden Layer 1: 

𝑛𝑒𝑡1 = 𝑊1𝑌0 + 𝐵1          … (4) 

𝑌1(0) = 𝑓(𝑛𝑒𝑡1, 𝑄1)   … (5) 

𝑌1(𝑘 + 1) = 𝐹(𝑌1(𝑘),  𝑄1)    𝑘 = 1: 𝑛1 … (6) 

Hidden Layer 2: 

𝑛𝑒𝑡2 = 𝑊2𝑌1 + 𝐵2   … (7) 

𝑌2(0) = 𝑓(𝑛𝑒𝑡2, 𝑄2) … (17) 

𝑌2(𝑘 + 1) = 𝐹(𝑌2(𝑘),  𝑄2)    𝑘 = 1: 𝑛2 … (8) 

Output Layer: 

𝑛𝑒𝑡3 = 𝑊3𝑌2 + 𝐵3   … (9) 

𝑂𝑝(0) = 𝑓(𝑛𝑒𝑡3, 𝑄3) … (10) 

𝑂𝑝(𝑘 + 1) = 𝐹(𝑂𝑝(𝑘),  𝑄3)    𝑘 = 1: 𝑛3 … (11) 

Normalize the output 

𝑂𝑝 = (𝑂𝑝 × 1010)𝑚𝑜𝑑(256) = {
0            𝑖𝑓       < 127
1           𝑖𝑓         ≥ 127

  

 … (12) 

Where: 

W0(8×8), W1(4×8), W2(2×4), W3(1×2) :Weight matrices< 1  

B0(8×1), B1(4×1), B2(2×1), B3(1×1) : Bias vectors  < 1 

Q0(8×1), Q1(4×1), Q2(2×1), Q3(1×1): Control parameters  

0.4 < q < 0.6 

0 < n0, n1, n2, n3  <=10: number of iteration  1 <= n <= 10 

All these values are initialized using 64 bit key as 

describe in the next section. 

Figure 1. Neural Network Architecture 

3.1 Key Generator and Initial Values  

A 64 bit key with a 1-D chaotic cubic map used to 

generate the initial values of the CNN. As described in 

the following algorithm [5]: 

i. K = K1 K2 K3 K4 

Where Ki is a 16- bit component of the key K (64 bit) 

ii. Calculate the initial condition: 

𝑥(1) = ∑
𝐾𝑖

216
𝑚𝑜𝑑(1)   … (13) 

iii. Calculate the state of the cubic map: 

𝑥(𝑘 + 1) = . 𝑥(𝑘). (1 − 𝑥(𝑘)2)  … (14) 

Where  

  : control parameter ( = 2.59) 

x(k) : the state (0 <= x(k) <=1) 

3.2 Backward Adaptation  

The only adapted values are the control parameter 

matrices Qi by [5]: 

𝑄0 = 0.2 × 𝑌1 + 0.4 

𝑄1 = 0.2 × 𝑌2 + 0.4 

𝑄2 = 0.2 × 𝑌3 + 0.4 

𝑄3 = 0.2 × 𝑂𝑝 + 0.4 

4. PRNG based on CNN Implementation 

The proposed generator was implemented and 

evaluated using Matlab programming, where the 

general steps given by: 

i. Input K and calculate x form (Eqs 13 and 14): 

𝑥(𝑘 + 1) = 2.59. 𝑥(𝑘). (1 − 𝑥(𝑘)2) 

Where: 

𝑥(1) = ∑
𝐾𝑖
216

𝑚𝑜𝑑(1) 

• Initialize matrices based on value of x 

Weight matrices:  W0(8*8), W1(4*8), 

W2(2*4), W3(1*2)   

Bias vectors:  B0(8*1), B1(4*1), B2(2*1), B3(1*1) 

Control parameters:   Q0(8*1), Q1(4*1), Q2(2*1), 

Q3(1*1)  

Layer iteration: n0, n1, n2, n3 
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Where: 

0 < Wi, Bi, Qi < 1 and 1 <= ni <= 10 

- Input Seed (P = 64 bit) 

- Operate the neural network to calculate the Op 

(Forward Computation) 

- Update the values of (Q0, Q1, Q3, and Q4) 

- Repeat steps 4, 5 and 6 to obtain the PRN 

sequence of desired length.  

5. Performance Evaluation  

In this section, the performance of the system was 

measured which include: the 0/1 balance test and the 

NIST Randomness tests. 

5.1 0/1 Balance Test  

The function named (BalanceTest.m) based on Matlab 

used to count number of ones and compute the average 

as shown in table 1. The equality distribution measures 

are found close to 50% shown in that the proposed 

generator satisfy the equality distribution property. 

Table 1: Equality distribution of the PRNG 

Sequence Length Count of 1s %age 

1000 510 51 

10000 5175 51.75 

20000 10226 51.13 

50000 25420 50.84 

100000 50525 50.52 

200000 101153 50.58 

500000 252176 50.44 

5.2 NIST Randomness Test  

Many of the statistical test suite proposed by NIST [19] 

implemented using Matlab programming language 

(NISTtest.m). The randomness results of the proposed 

generator for first 1000 and 10000 bits are listed in table 

2. According to Singla et. al. [5], this generator passes 

all the NIST tests for 100,000 samples. But for my 

simulation results the sequence of generated bits didn’t 

pass all these tests for 1000 and even 10000 bits, it failed 

in at least one p-value. But most of my tests output the 

p-values obtained were greater than 0.01, which 

ensures the high randomness of the generated 

sequence.  

Table 2: Some of NIST randomness tests 

 

6. Conclusions 

After implementation of the PRNG base on CNN using 

Matlab and perform several statistical tests on the 

generated binary sequence, I can summarize the main 

pros of this algorithm into: 

• This generator uses the high sensitivity and 

randomness property of chaotic functions (Piece-

wise linear chaotic map). 

• The four-layer Neural Network increase the 

nonlinear complexity of the generator. 

• The key space proposed in this simulator is (128 bit) 

where: 

o The 64 bit Key used to initialize the network 

components. 

o The 64 bit Seed used as an input to the 

network. 

• According to Singla et. al. [19] and my 

implementation of some of the NIST 

randomness tests, this generator passes most of 

the NIST tests. 

• The generated sequence pass equality 

distribution (equal numbers of 0’s and 1’s) i.e. 

Uniform distributed.  

Randomness 

Test 
p-values(1000) p-values(10000) 

Frequency Test 0.5271 0.2327 

Block Frequency 

Test 

0.3857 0.6882 

Run Test 0.4786 0.2135 

Longest Run of 

Ones in a Block 

0.7532 0.0210 

Discrete Fourier 

Transform 

0.5617 0.1989 
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• It satisfy the two necessary compatible 

requirements for a sequence of random number 

(Randomness and unpredictability)   

While the main cons of the proposed generator in my 

point of view: 

• This scheme is not efficient because of the relatively 

large number of iteration steps involved in its 

implementation.  

• Difficult hardware implementation. 

• The learning rate, which has critical effect of the 

neural network performance, didn’t adopt in this 

architecture. This makes the weight adaptation 

relatively unstable or oscillated.   

• It’s difficult to estimate the period of the sequence, 

because the number of iterations in each layer 

depends on the initial conditions, which is 

generated by the key. In other words, the key and 

seed values effect on the performance of the 

generator. 
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