
 

doi : 10.25007/ajnu.v8n4a464 

216                                            Academic Journal of Nawroz University (AJNU) 

    

Academic Journal of Nawroz University (AJNU) Volume 
8, No 4 (2019). 
Regular research paper : Published 20 Nov 2019 
Corresponding author’s e-mail : renas_rekany@yahoo.com 
Copyright ©2018 Renas Rajab Asaad, Rasan Ismael Ali. 
This is an open access article distributed under the 
Creative Commons Attribution License. 

Back Propagation Neural networks(BPNN) and 
Sigmoid Activation Function in Multi-Layer 

Networks 
Renas Rajab Asaad, Rasan Ismael Ali 

Department of Computer Science, Nawroz University, Duhok, Kurdistan Region – Iraq 
 

ABSTRACT 
Back propagation neural networks are known for computing the problems that cannot easily be computed (huge 
datasets analysis or training) in artificial neural networks. The main idea of this paper is to implement XOR logic gate 
by ANNs using back propagation neural networks for back propagation of errors, and sigmoid activation function. 
This neural networks to map non-linear threshold gate. The non-linear used to classify binary inputs (𝑥1, 𝑥2) and 
passing it through hidden layer for computing 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡_𝑒𝑟𝑟𝑜𝑟𝑠 and 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑒𝑟𝑟𝑜𝑟𝑠 (𝐶𝑒𝑟𝑟𝑜𝑟𝑠, 𝐺𝑒𝑟𝑟𝑜𝑟𝑠), after 
computing errors by (𝑒𝑖 =  𝑂𝑢𝑡𝑝𝑢𝑡_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −  𝑂𝑢𝑡𝑝𝑢𝑡_𝑎𝑐𝑡𝑢𝑎𝑙) the weights and thetas (𝛥𝑊𝑗𝑖 =  (𝛼)(𝑋𝑗)(𝑔𝑖), 𝛥𝛳𝑗 =
 (𝛼)(−1)(𝑔𝑖)) are changing according to errors. Sigmoid activation function is = 𝑠𝑖𝑔(𝑥) = 1/(1 + 𝑒 − 𝑥) and Derivation 
of sigmoid is = 𝑑𝑠𝑖𝑔(𝑥)  =  𝑠𝑖𝑔(𝑥)(1 − 𝑠𝑖𝑔(𝑥)). The sig(x) and Dsig(x) is between 1 to 0. 
Keywords: Artificial Neural networks, Sigmoid Function, Backpropagation ANNs, Neural networks.

1. Introduction 

Solving mathematics cases and algorithms are easy to 
define and compute from computer. But the science 
nowadays can’t easily deal with facial recognition, 
language processing  and every huge datasets, and 
these aren’t easily quantified into an algorithm. The 
key to ANN is process the data in a same way to our 
bio-brains.  An artificial neural networks is a system is 
inspired on the biological neural networks, as our brain 
[1]. 
Multi-Layer Neural networks, are neural networks in 
which input neurons pass signals and information to 
other processing elements inside a hidden layer, 
afterwards information is passed to the output 
neurons. These are called back propagation neurons, 
which usually solve complex problems.  
Building back propagation neural networks in digital 
logic gates where the where an input is passed to the 
hidden layers between and passed to the output layer 
where an output is generated. To make logical 
decisions with Boolean logics are electronic device 
according to different merges of signals shows on its 
inputs. Digital logic gates mat contains more than one 
inputs and passing through hidden layer to generate 
more than one output and the process will continue to 
finally generate the output with lower errors by 
 
 
 

 
 

calculating (error coefficient, error gradient, weights, 
theta, desired and actual output, and derivation of 
sigmoid activation function in hidden layer) [2]. 
2. A Biological Neuron 
A biological neuron is most basic information 
processing unit in the nervous system. a biological 
neuron consists of the following parts: (Dendrites 
(input), Cell body, Axon (output)). A biological neuron 
takes signals from it’s dendrites and processes the 
signal and outputs a signal from it’s axon based on the 
input signal [5].  
3. Artificial Neural networks 
A neural networks is a group of connected I/O units 
where each connection has a weight associated with its 
computer programs. It helps you to build predictive 
models from large databases. This model builds upon 
the human nervous system. It helps you to conduct 
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image understanding, human learning, computer 
speech, etc [9]. 

Fig 1: Structure of a Typical Neuron [5] 

A model of ANNs: 

a. Inputs X, arrive through the preconnected 

path. 

b. Input is modeled using real weights W. The 

weights are usually randomly selected. 

c. Calculate the output for every neuron from the 

input layer, to the hidden layers, to the output 

layer. 

d. Calculate the error in the outputs. 

Error= Actual Output – Desired Output 

e. Travel back from the output layer to the 

hidden layer to adjust the weights such that the 

error is decreased. 

Fig 2: Artificial Neural networks Model [3] 

3.1 Advantages of Backpropagation 

1 Backpropagation is fast, simple and easy to 
program. 

2 It has no parameters to tune apart from the 
numbers of input. 

3 It is a flexible method as it does not require 
prior knowledge about the network. 

4 It is a standard method that generally works 
well. 

5 It does not need any special mention of the 
features of the function to be learned. 

4. Implementation of Back Propagation Neural 

networks 

Back propagation is shorthand for back propagation of 

errors, because in back propagation neural networks, 

the error factor must be propagated to the responsible 

nodes. A back propagation neural networks is a multi-

layer network where an input is passed to the hidden 

layers between and passed to the output layer where 

an output is generated. Back propagation neural 

networks are used to map non-linear classifiers, in 

which outputs belong to different classes. These neural 

networks are trained using supervised or non-

supervised learning methods, and is usually provided 

with the sigmoid activation function [4]. 

4.1 The Sigmoid Activation Function 

The main problem with the step activation function is 

that it is non-differentiable. therefor it cannot be used 

to calculate error coefficients in a back propagation 

neural networks [6]. 

The sigmoid activation function is used instead. 

𝑠𝑖𝑔(𝑥) = 1/(1 + 𝑒 − 𝑥) 

𝑠𝑖𝑔(∞)  =  1    𝑒^(−∞)  =  0 

𝑠𝑖𝑔(0.5)  =  0.622 

𝑠𝑖𝑔(0)  =  0.5 𝑒0 =  1 

𝑠𝑖𝑔(−0.5)  =  0.377 

𝑠𝑖𝑔(−∞)  =  0 𝑒^∞ =  ∞ 
 

 
Fig 3: Sigmoid Function 

4.2 Derivative of The Sigmoid Activation Function 

The derivative of the Sigmoid function is used to 

calculate the error coefficient, which is used to 

propagate the error back on the neural networks [8]. 

𝒅𝒔𝒊𝒈(𝒙)  =  𝒔𝒊𝒈(𝒙)(𝟏 − 𝒔𝒊𝒈(𝒙)) ….(1)
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Fig 4: Multi-layer Perceptron 
4.3 Back propagation Learning 

Back propagation learning is based on calculating the 

error coefficient using the below equation in the output 

layer [7]: 

 

𝑒𝑖 =  𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −  𝑜𝑢𝑡𝑝𝑢𝑡_𝑎𝑐𝑡𝑢𝑎𝑙…..(2) 

then we calculate the error gradient (g) at the output 

layer. 

𝑔𝑖 =  𝐷𝑠𝑖𝑔(𝑌𝑖)(𝑒𝑖) …..(3) 

Afterwards, we update the network weights and thetas 

at the output layer, based on the below equation: 

 

𝛥𝑊𝑗𝑖 =  (𝛼)(𝑌𝑗)(𝑔𝑖) …..(4) 

𝛥𝛳𝑖 =  (𝛼)(−1)(𝑔𝑖) …..(5) 

at the hidden layers, the error gradient is calculated 

using the below equation: 

𝑔𝑗 =  𝐷𝑠𝑖𝑔(𝑌𝑗)(𝑊𝑗𝑖)(𝑔𝑖) …..(6) 

Afterwards, we update the network weights and 

thetas, based on the below equation: 

 

𝛥𝑊𝑗𝑖 =  (𝛼)(𝑋𝑗)(𝑔𝑖) …..(7) 

𝛥𝛳𝑗 =  (𝛼)(−1)(𝑔𝑖) …..(8) 

the deltas acquired are added as below: 

 

𝑊𝑗 =  𝑊𝑗 +  𝛥𝑊 …..(9) 

𝛳𝑗 =  𝛳𝑗 +  𝛥𝛳 …..(10) 
 
4.4 XOR gate using back propagation neural 

networks 

The input matrix is                         The output matrix is 

𝑝 =  { 0 0, 01, 10, 11}                               𝑡 =  { 0, 1, 1, 0} 
 
Bias1(ϴ1), Bias2(ϴ3), and Bias3(ϴ3) is equal to -1.
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Fig 5: XOR Gate with Weights and Errors 
 

Table 1: List of Abbreviations 
 

Abbreviations Variables Name 

𝑒𝑖 Error Coefficient  

𝑔𝑖 Error Gradient  

𝛥𝑊𝑗𝑖 The Changes in Weights  

𝛥𝛳𝑗 The Changes in Theta 

p Perceptron 

t Target 

𝑂𝑢𝑡𝑝𝑢𝑡𝑖_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 Desired Output  

𝑂𝑢𝑡𝑝𝑢𝑡𝑖_𝑎𝑐𝑡𝑢𝑎𝑙 Actual Output 

𝑠𝑖𝑔 Sigmoid Activation Function 

𝐷𝑠𝑖𝑔 Derivative of Sigmoid Activation Function 

neti The Networks 

yi The Network’s Output 

𝛼 Alpha 

𝑋𝑖 Network’s Input 

𝑌𝑖 Network’s Input 

𝑒𝑖 Network’s Error 

5. Results and Implementations 
The result shows that XOR logic gate trained in hidden 
layer and the results compute two iterations in first 
epoch. 

𝐴𝑠𝑠𝑢𝑚𝑒 𝑊11 = 0.5, 𝑊12 = 0.9, 𝑊21 = 0.4, 𝑊22

= 1, 𝑊31 = −1.2, 𝑊32 = 1.1, 𝛳1

= 0.8, 𝛳2 = −0.1, 𝛳3 = 0.3, 𝛼 = 0.1. 

So: 

𝑛𝑒𝑡3 =  (𝑥1 ∗  𝑤11 +  𝑥2 ∗  𝑤21)  −  𝛳1 

        = (1 * 0.5 + 1 * 0.4) - 0.8    =0.1 

𝑦3 =  𝑠𝑖𝑔(𝑛𝑒𝑡3) 

      = 0.5249 
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𝑛𝑒𝑡4 =  (𝑥1 ∗  𝑤12 +  𝑥2 ∗  𝑤22)  −  𝛳2 

        = (1 * 0.9 + 1 * 1) - (-0.1)   =2 

𝑦4 =  𝑠𝑖𝑔(𝑛𝑒𝑡4) 

      = 0.8808 

𝑛𝑒𝑡5 =  (𝑦3 ∗  𝑤31 +  𝑦4 ∗  𝑤32)  −  𝛳3 

= (0.5249 * -1.2 + 0.8808 * 1.1) - 0.3   = (-0.62988 * 0.96888) 

- 0.3  = 0.039  

𝑦5 =  𝑠𝑖𝑔(𝑛𝑒𝑡5) 

      = 0.5097 

𝑒5 =  𝑦𝑑 −  𝑦𝑎𝑐𝑡  

    = 0 - 0.5097   = -0.5097 

𝑔5 =  𝑑𝑠𝑖𝑔(𝑦5)  ∗  𝑒5 

    =  𝑠𝑖𝑔(𝑦5)  ∗  (1 −  𝑠𝑖𝑔(𝑦5))  ∗  𝑒5 

    = 0.5097 * (1 - 0.5097) * -0.5097   = -0.1274 

𝑔3 =  𝑑𝑠𝑖𝑔(𝑦3)  ∗  𝑤31 ∗  𝑔5 

    =  𝑠𝑖𝑔(𝑦3)  ∗  (1 −  𝑠𝑖𝑔(𝑦3))  ∗  𝑤35 ∗  𝑔5 

    = 0.5249 * (1 - 0.5249) * -1.2 * -0.1274  = 0.0381 

𝑔4 =  𝑑𝑠𝑖𝑔(𝑦4)  ∗  𝑤32 ∗  𝑔5 

    =  𝑠𝑖𝑔(𝑦4)  ∗  (1 −  𝑠𝑖𝑔(𝑦4))  ∗  𝑤45 ∗  𝑔5 

    = 0.8808 * (1 - 0.8808) * 1.1 * -0.1274  = -0.0147 

𝛥𝑤11 =  𝛼 𝑥1 𝑔3 

          = 0.1 * 1 * 0.0381   = 0.00381 

𝛥𝑤12 =  𝛼 𝑥1 𝑔4 

          = 0.1 * 1 * -0.0147  = -0.00147 

𝛥𝑤21 =  𝛼 𝑥2 𝑔3 

          = 0.1 * 1 * 0.0381   = 0.00381 

 

𝛥𝑤22 =  𝛼 𝑥2 𝑔4 

          = 0.1 * 1 * -0.0147  = -0.00147 

𝛥𝑤31 =  𝛼 𝑦3 𝑔5 

          = 0.1 * 0.5249 * -0.1274   = -0.0066 

𝛥𝑤32 =  𝛼 𝑦4 𝑔5 

          = 0.1 * 0.8808 * -0.1274  = -0.0112 

𝛥𝛳1 =  𝛼 (−1) 𝑔3 

          = 0.1 * -1 * 0.0381   = -0.00381 

𝛥𝛳2 =  𝛼 (−1) 𝑔4 

          = 0.1 * -1 * -0.0147  = 0.00147 

𝛥𝛳3 =  𝛼 (−1) 𝑔5 

          = 0.1 * -1 * -0.1274  = 0.01274 

𝑤11 =  𝑤11 +  𝛥𝑤11 

       = 0.5 + 0.00381  = 0.50381 

𝑤12 =  𝑤12 +  𝛥𝑤12 

       = 0.9 + -0.00147 = 0.89853 

𝑤21 =  𝑤21 +  𝛥𝑤21 

       = 0.4 + 0.00381  = 0.40381 

𝑤22 =  𝑤22 +  𝛥𝑤22 

       = 1 + -0.00147   = 0.99853 

𝑤31 =  𝑤31 +  𝛥𝑤31 

       = -1.2 + -0.0066  = -1.2066 

𝑤32 =  𝑤32 +  𝛥𝑤32 

       = 1.1 + -0.0112  = 0.0888 

𝛳1 =  𝛳1 +  𝛥𝛳1 

       = 0.8 + -0.00381 = 0.79619 

𝛳2 =  𝛳2 +  𝛥𝛳2 

       = -0.1 + 0.00147  = -0.09853 

𝛳3 =  𝛳3 +  𝛥𝛳3 

       = 0.3 + 0.01274   = 0.31274

6. Conclusion  
This paper implemented XOR logic gate in a multi-

layer artificial neural networks by passing in activation 

function and used to map non-linear classifiers (x1, x2) 

as an inputs then through the hidden layer by 

computing errors.  This study explain and implement a 

back propagation neural networks for back 

propagation of errors (coefficient and gradient error) to 

generalize the output. These trainings neural networks 
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are used supervised or non-supervised learning 

methods by calculating the sigmoid activation function 

were realized.  
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