

doi : 10.25007/ajnu.v8n4a464

216 Academic Journal of Nawroz University (AJNU)

Academic Journal of Nawroz University (AJNU) Volume
8, No 4 (2019).
Regular research paper : Published 20 Nov 2019
Corresponding author’s e-mail : renas_rekany@yahoo.com
Copyright ©2018 Renas Rajab Asaad, Rasan Ismael Ali.
This is an open access article distributed under the
Creative Commons Attribution License.

Back Propagation Neural networks(BPNN) and
Sigmoid Activation Function in Multi-Layer

Networks
Renas Rajab Asaad, Rasan Ismael Ali

Department of Computer Science, Nawroz University, Duhok, Kurdistan Region – Iraq

ABSTRACT
Back propagation neural networks are known for computing the problems that cannot easily be computed (huge
datasets analysis or training) in artificial neural networks. The main idea of this paper is to implement XOR logic gate
by ANNs using back propagation neural networks for back propagation of errors, and sigmoid activation function.
This neural networks to map non-linear threshold gate. The non-linear used to classify binary inputs (𝑥1, 𝑥2) and
passing it through hidden layer for computing 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡_𝑒𝑟𝑟𝑜𝑟𝑠 and 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑒𝑟𝑟𝑜𝑟𝑠 (𝐶𝑒𝑟𝑟𝑜𝑟𝑠, 𝐺𝑒𝑟𝑟𝑜𝑟𝑠), after
computing errors by (𝑒𝑖 = 𝑂𝑢𝑡𝑝𝑢𝑡_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑂𝑢𝑡𝑝𝑢𝑡_𝑎𝑐𝑡𝑢𝑎𝑙) the weights and thetas (𝛥𝑊𝑗𝑖 = (𝛼)(𝑋𝑗)(𝑔𝑖), 𝛥𝛳𝑗 =
 (𝛼)(−1)(𝑔𝑖)) are changing according to errors. Sigmoid activation function is = 𝑠𝑖𝑔(𝑥) = 1/(1 + 𝑒 − 𝑥) and Derivation
of sigmoid is = 𝑑𝑠𝑖𝑔(𝑥) = 𝑠𝑖𝑔(𝑥)(1 − 𝑠𝑖𝑔(𝑥)). The sig(x) and Dsig(x) is between 1 to 0.
Keywords: Artificial Neural networks, Sigmoid Function, Backpropagation ANNs, Neural networks.

1. Introduction

Solving mathematics cases and algorithms are easy to
define and compute from computer. But the science
nowadays can’t easily deal with facial recognition,
language processing and every huge datasets, and
these aren’t easily quantified into an algorithm. The
key to ANN is process the data in a same way to our
bio-brains. An artificial neural networks is a system is
inspired on the biological neural networks, as our brain
[1].
Multi-Layer Neural networks, are neural networks in
which input neurons pass signals and information to
other processing elements inside a hidden layer,
afterwards information is passed to the output
neurons. These are called back propagation neurons,
which usually solve complex problems.
Building back propagation neural networks in digital
logic gates where the where an input is passed to the
hidden layers between and passed to the output layer
where an output is generated. To make logical
decisions with Boolean logics are electronic device
according to different merges of signals shows on its
inputs. Digital logic gates mat contains more than one
inputs and passing through hidden layer to generate
more than one output and the process will continue to
finally generate the output with lower errors by

calculating (error coefficient, error gradient, weights,
theta, desired and actual output, and derivation of
sigmoid activation function in hidden layer) [2].
2. A Biological Neuron
A biological neuron is most basic information
processing unit in the nervous system. a biological
neuron consists of the following parts: (Dendrites
(input), Cell body, Axon (output)). A biological neuron
takes signals from it’s dendrites and processes the
signal and outputs a signal from it’s axon based on the
input signal [5].
3. Artificial Neural networks
A neural networks is a group of connected I/O units
where each connection has a weight associated with its
computer programs. It helps you to build predictive
models from large databases. This model builds upon
the human nervous system. It helps you to conduct

doi : 10.25007/ajnu.v8n4a464

Academic Journal of Nawroz University (AJNU) 217

image understanding, human learning, computer
speech, etc [9].

Fig 1: Structure of a Typical Neuron [5]

A model of ANNs:

a. Inputs X, arrive through the preconnected

path.

b. Input is modeled using real weights W. The

weights are usually randomly selected.

c. Calculate the output for every neuron from the

input layer, to the hidden layers, to the output

layer.

d. Calculate the error in the outputs.

Error= Actual Output – Desired Output

e. Travel back from the output layer to the

hidden layer to adjust the weights such that the

error is decreased.

Fig 2: Artificial Neural networks Model [3]

3.1 Advantages of Backpropagation

1 Backpropagation is fast, simple and easy to
program.

2 It has no parameters to tune apart from the
numbers of input.

3 It is a flexible method as it does not require
prior knowledge about the network.

4 It is a standard method that generally works
well.

5 It does not need any special mention of the
features of the function to be learned.

4. Implementation of Back Propagation Neural

networks

Back propagation is shorthand for back propagation of

errors, because in back propagation neural networks,

the error factor must be propagated to the responsible

nodes. A back propagation neural networks is a multi-

layer network where an input is passed to the hidden

layers between and passed to the output layer where

an output is generated. Back propagation neural

networks are used to map non-linear classifiers, in

which outputs belong to different classes. These neural

networks are trained using supervised or non-

supervised learning methods, and is usually provided

with the sigmoid activation function [4].

4.1 The Sigmoid Activation Function

The main problem with the step activation function is

that it is non-differentiable. therefor it cannot be used

to calculate error coefficients in a back propagation

neural networks [6].

The sigmoid activation function is used instead.

𝑠𝑖𝑔(𝑥) = 1/(1 + 𝑒 − 𝑥)

𝑠𝑖𝑔(∞) = 1 𝑒^(−∞) = 0

𝑠𝑖𝑔(0.5) = 0.622

𝑠𝑖𝑔(0) = 0.5 𝑒0 = 1

𝑠𝑖𝑔(−0.5) = 0.377

𝑠𝑖𝑔(−∞) = 0 𝑒^∞ = ∞

Fig 3: Sigmoid Function

4.2 Derivative of The Sigmoid Activation Function

The derivative of the Sigmoid function is used to

calculate the error coefficient, which is used to

propagate the error back on the neural networks [8].

𝒅𝒔𝒊𝒈(𝒙) = 𝒔𝒊𝒈(𝒙)(𝟏 − 𝒔𝒊𝒈(𝒙)) ….(1)

doi : 10.25007/ajnu.v8n4a464

218 Academic Journal of Nawroz University (AJNU)

Fig 4: Multi-layer Perceptron
4.3 Back propagation Learning

Back propagation learning is based on calculating the

error coefficient using the below equation in the output

layer [7]:

𝑒𝑖 = 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡_𝑎𝑐𝑡𝑢𝑎𝑙…..(2)

then we calculate the error gradient (g) at the output

layer.

𝑔𝑖 = 𝐷𝑠𝑖𝑔(𝑌𝑖)(𝑒𝑖) …..(3)

Afterwards, we update the network weights and thetas

at the output layer, based on the below equation:

𝛥𝑊𝑗𝑖 = (𝛼)(𝑌𝑗)(𝑔𝑖) …..(4)

𝛥𝛳𝑖 = (𝛼)(−1)(𝑔𝑖) …..(5)

at the hidden layers, the error gradient is calculated

using the below equation:

𝑔𝑗 = 𝐷𝑠𝑖𝑔(𝑌𝑗)(𝑊𝑗𝑖)(𝑔𝑖) …..(6)

Afterwards, we update the network weights and

thetas, based on the below equation:

𝛥𝑊𝑗𝑖 = (𝛼)(𝑋𝑗)(𝑔𝑖) …..(7)

𝛥𝛳𝑗 = (𝛼)(−1)(𝑔𝑖) …..(8)

the deltas acquired are added as below:

𝑊𝑗 = 𝑊𝑗 + 𝛥𝑊 …..(9)

𝛳𝑗 = 𝛳𝑗 + 𝛥𝛳 …..(10)

4.4 XOR gate using back propagation neural

networks

The input matrix is The output matrix is

𝑝 = { 0 0, 01, 10, 11} 𝑡 = { 0, 1, 1, 0}

Bias1(ϴ1), Bias2(ϴ3), and Bias3(ϴ3) is equal to -1.

doi : 10.25007/ajnu.v8n4a464

Academic Journal of Nawroz University (AJNU) 219

Fig 5: XOR Gate with Weights and Errors

Table 1: List of Abbreviations

Abbreviations Variables Name

𝑒𝑖 Error Coefficient

𝑔𝑖 Error Gradient

𝛥𝑊𝑗𝑖 The Changes in Weights

𝛥𝛳𝑗 The Changes in Theta

p Perceptron

t Target

𝑂𝑢𝑡𝑝𝑢𝑡𝑖_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 Desired Output

𝑂𝑢𝑡𝑝𝑢𝑡𝑖_𝑎𝑐𝑡𝑢𝑎𝑙 Actual Output

𝑠𝑖𝑔 Sigmoid Activation Function

𝐷𝑠𝑖𝑔 Derivative of Sigmoid Activation Function

neti The Networks

yi The Network’s Output

𝛼 Alpha

𝑋𝑖 Network’s Input

𝑌𝑖 Network’s Input

𝑒𝑖 Network’s Error

5. Results and Implementations
The result shows that XOR logic gate trained in hidden
layer and the results compute two iterations in first
epoch.

𝐴𝑠𝑠𝑢𝑚𝑒 𝑊11 = 0.5, 𝑊12 = 0.9, 𝑊21 = 0.4, 𝑊22

= 1, 𝑊31 = −1.2, 𝑊32 = 1.1, 𝛳1

= 0.8, 𝛳2 = −0.1, 𝛳3 = 0.3, 𝛼 = 0.1.

So:

𝑛𝑒𝑡3 = (𝑥1 ∗ 𝑤11 + 𝑥2 ∗ 𝑤21) − 𝛳1

 = (1 * 0.5 + 1 * 0.4) - 0.8 =0.1

𝑦3 = 𝑠𝑖𝑔(𝑛𝑒𝑡3)

 = 0.5249

doi : 10.25007/ajnu.v8n4a464

220 Academic Journal of Nawroz University (AJNU)

𝑛𝑒𝑡4 = (𝑥1 ∗ 𝑤12 + 𝑥2 ∗ 𝑤22) − 𝛳2

 = (1 * 0.9 + 1 * 1) - (-0.1) =2

𝑦4 = 𝑠𝑖𝑔(𝑛𝑒𝑡4)

 = 0.8808

𝑛𝑒𝑡5 = (𝑦3 ∗ 𝑤31 + 𝑦4 ∗ 𝑤32) − 𝛳3

= (0.5249 * -1.2 + 0.8808 * 1.1) - 0.3 = (-0.62988 * 0.96888)

- 0.3 = 0.039

𝑦5 = 𝑠𝑖𝑔(𝑛𝑒𝑡5)

 = 0.5097

𝑒5 = 𝑦𝑑 − 𝑦𝑎𝑐𝑡

 = 0 - 0.5097 = -0.5097

𝑔5 = 𝑑𝑠𝑖𝑔(𝑦5) ∗ 𝑒5

 = 𝑠𝑖𝑔(𝑦5) ∗ (1 − 𝑠𝑖𝑔(𝑦5)) ∗ 𝑒5

 = 0.5097 * (1 - 0.5097) * -0.5097 = -0.1274

𝑔3 = 𝑑𝑠𝑖𝑔(𝑦3) ∗ 𝑤31 ∗ 𝑔5

 = 𝑠𝑖𝑔(𝑦3) ∗ (1 − 𝑠𝑖𝑔(𝑦3)) ∗ 𝑤35 ∗ 𝑔5

 = 0.5249 * (1 - 0.5249) * -1.2 * -0.1274 = 0.0381

𝑔4 = 𝑑𝑠𝑖𝑔(𝑦4) ∗ 𝑤32 ∗ 𝑔5

 = 𝑠𝑖𝑔(𝑦4) ∗ (1 − 𝑠𝑖𝑔(𝑦4)) ∗ 𝑤45 ∗ 𝑔5

 = 0.8808 * (1 - 0.8808) * 1.1 * -0.1274 = -0.0147

𝛥𝑤11 = 𝛼 𝑥1 𝑔3

 = 0.1 * 1 * 0.0381 = 0.00381

𝛥𝑤12 = 𝛼 𝑥1 𝑔4

 = 0.1 * 1 * -0.0147 = -0.00147

𝛥𝑤21 = 𝛼 𝑥2 𝑔3

 = 0.1 * 1 * 0.0381 = 0.00381

𝛥𝑤22 = 𝛼 𝑥2 𝑔4

 = 0.1 * 1 * -0.0147 = -0.00147

𝛥𝑤31 = 𝛼 𝑦3 𝑔5

 = 0.1 * 0.5249 * -0.1274 = -0.0066

𝛥𝑤32 = 𝛼 𝑦4 𝑔5

 = 0.1 * 0.8808 * -0.1274 = -0.0112

𝛥𝛳1 = 𝛼 (−1) 𝑔3

 = 0.1 * -1 * 0.0381 = -0.00381

𝛥𝛳2 = 𝛼 (−1) 𝑔4

 = 0.1 * -1 * -0.0147 = 0.00147

𝛥𝛳3 = 𝛼 (−1) 𝑔5

 = 0.1 * -1 * -0.1274 = 0.01274

𝑤11 = 𝑤11 + 𝛥𝑤11

 = 0.5 + 0.00381 = 0.50381

𝑤12 = 𝑤12 + 𝛥𝑤12

 = 0.9 + -0.00147 = 0.89853

𝑤21 = 𝑤21 + 𝛥𝑤21

 = 0.4 + 0.00381 = 0.40381

𝑤22 = 𝑤22 + 𝛥𝑤22

 = 1 + -0.00147 = 0.99853

𝑤31 = 𝑤31 + 𝛥𝑤31

 = -1.2 + -0.0066 = -1.2066

𝑤32 = 𝑤32 + 𝛥𝑤32

 = 1.1 + -0.0112 = 0.0888

𝛳1 = 𝛳1 + 𝛥𝛳1

 = 0.8 + -0.00381 = 0.79619

𝛳2 = 𝛳2 + 𝛥𝛳2

 = -0.1 + 0.00147 = -0.09853

𝛳3 = 𝛳3 + 𝛥𝛳3

 = 0.3 + 0.01274 = 0.31274

6. Conclusion
This paper implemented XOR logic gate in a multi-

layer artificial neural networks by passing in activation

function and used to map non-linear classifiers (x1, x2)

as an inputs then through the hidden layer by

computing errors. This study explain and implement a

back propagation neural networks for back

propagation of errors (coefficient and gradient error) to

generalize the output. These trainings neural networks

doi : 10.25007/ajnu.v8n4a464

Academic Journal of Nawroz University (AJNU) 221

are used supervised or non-supervised learning

methods by calculating the sigmoid activation function

were realized.

References
[1] Jacobson, L. (2013). Introduction to Artificial Neural
networks.
[2] Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni,
L. H. B., & dos Reis Alves, S. F. (2017). Artificial neural
networks. Cham: Springer International Publishing.
[3] Alan P. O. et al (). Adaptive Boolean Logic Using
Ferroelectrics Capacitors as Basic Units of Artificial
Neurons. www.electronic-tutorials.ws. [Accessed
Date: Nov 2019].
[4] Sibi, P., S. Allwyn Jones, and P. Siddarth. (2013).
"Analysis of different activation functions using back
propagation neural networks." Journal of Theoretical
and Applied Information Technology 47.3: 1264-1268.
[5] Li, H., Zhang, Z., & Liu, Z. (2017). Application of
artificial neural networks for catalysis: a
review. Catalysts, 7(10), 306.

[6] haq Shaik, E., & Rangaswamy, N. (2017). Multi-
mode interference-based photonic crystal logic gates
with simple structure and improved contrast
ratio. Photonic Network Communications, 34(1), 140-
148.
[7] Wanto, A., Windarto, A. P., Hartama, D., & Parlina,
I. (2017). Use of Binary Sigmoid Function And Linear
Identity In Artificial Neural networks For Forecasting
Population Density. International Journal Of
Information System & Technology, 1(1), 43-54.
[8] Chung, H., Lee, S. J., & Park, J. G. (2016, July). Deep
neural networks using trainable activation functions.
In 2016 International Joint Conference on Neural
networks (IJCNN) (pp. 348-352). IEEE.
[9] Bhattacherjee, A., Roy, S., Paul, S., Roy, P., Kausar,
N., & Dey, N. (2020). Classification approach for breast
cancer detection using back propagation neural
networks: a study. In Deep Learning and Neural
networks: Concepts, Methodologies, Tools, and
Applications (pp. 1410-1421). IGI Global.

