
doi : 10.25007/ajnu.v8n4a488

Academic Journal of Nawroz University (AJNU) 415

Academic Journal of Nawroz University (AJNU) Volume
8, No 4 (2019).
Regular research paper : Published 31 Dec 2019
Corresponding author’s e-mail : hawar_duhoki88@yahoo.com

Copyright ©2018 Nisreen Luqman Abdulnabi1, Hawar
Bahzad Ahmad2. This is an open access article distributed
under the Creative Commons Attribution License.

Data type Modeling with DFA and NFA as a
Lexical Analysis Generator

Nisreen L. Abdulnabi1, Hawar B. Ahmad2
1Department of Economics and Administration, Duhok University, Duhok, Kurdistan Region – Iraq

2Department of Computer Science, Nawroz University, Duhok, Kurdistan Region – Iraq

ABSTRACT
Lexical analysis helps the interactivity and visualization for active learning that can improve difficult concepts in automata.
This study gives an implementation of two frequently used model, NFA for combination of Real and Integer data type and DFA
for Double Data Type in Java this chosen model will be implemented using JFLAP. The model will also be tested using JFLAP that
will accept at least FIVE (5) inputs and rejected FIVE (5) inputs. These two models are some of the different lexical analyzer
generators that have been implemented for different purposes in finite automata.
Keywords: (DFA), (NFA), JFLAP, Lexical Analysis.

1. Introduction

JFLAP (Java Formal Languages and Automata
Package) can be defined as an interactive educational
software written in Java for experimenting with topics
in the computer science area of formal languages and
automata theory, JFLAP gives an opportunity to create
and simulate structures, such as experiment with
proofs , programming a finite state machine, and,
converting a deterministic finite automaton (DFA)
and a Non-deterministic finite automaton (NFA) (B.
Bhowmik & A. Kumar, 2010).
Real number data type had been used in many
programming languages for the data types float,
double as well as long which are used for storing
decimal numbers with different length. Meanwhile,
integer data type is used to store only non- decimal
number and it is adopted in every programming
language such as Java, C# and C++ (H. Luo, 2012). In
this example, I would combine these two data types
into one single data type by using non deterministic
automaton. Maybe this designed could be adopted in
other programming languages so that every type of
number could be adopted by just using single data
types without having to interchange it. An NFA is
similar to DFA in a way that it receives input and move
from one transition state to another transition state.
However, unlike DFA, it can route to two possible
transitions based on similar single input and transition
state could be performed without receiving any input
(∑) which it is known as transitions.

In this simulation, the NFA can be described based on
5 elements (K, ∑, f, S and Z) (A. Mateescu & A. Salomaa,
1995).

However, double data type in java represented in
integer or decimal numbers and all the decimal
numbers have a Decimal Point. Moreover, Decimal
point goes between units and tenths. Unit is the first
number from the left of decimal point and tenths is the
first number from the right of decimal point. In fact, the
right and left side of decimal point could be numbers
from (0-9) and these numbers can be repeated as the
user wants. In addition, double data type in java does
not accept any letters or more than one decimal point.
Furthermore, our project is represented how the
double data type works in java (Z. Gejun, S. Yuqiang,
2009). We apply DFA model to do the decimal
numbers procedures which is used in java programs.
DFA is a data processing technique that allows for the
detection of scaling behaviors in observational time
series. Our DFA has a five-tuples, (K, ∑, f, S and Z).
2. RELATED WORKS
Lexical analyzer is extensively used in a lot of area of
research. These are the many of the researched that had
been done. It is a very challenging approach in query
matching on XML stream as the query data is
enormous and requires a lot of processing time.
Syntactic Twig-Query Matching (STQM) that used
the concept of parser and lexical analyzer is able to
process the queries on XML and returning the results
immediately and continuously (C.-P. Chou, K.-F. Jea
and H.-H. Liao, 2011, p. 993–1007) . Mongolian
language is adhesive and contains huge amount of

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Formal_languages
http://en.wikipedia.org/wiki/Automata
http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton

doi : 10.25007/ajnu.v8n4a488

416 Academic Journal of Nawroz University (AJNU)

dictionary. In order to identify the words in speech
recognition, a lexical analyzer is required. A
Mongolian lexical analyzer with the usages of
dictionaries and NFA methods is proposed to improve
the speed of analyzing the language (S. Loglo, Sarula
and HuaShabao, 2010). GLAP model had been
proposed to reduce the analysis of time complexity
and the design of lexical analyzer (B. Bhowmik & A.
Kumar, 2010). In this model, it focuses on a very
restricted sub-set of the entire dictionary in least cost
(B. Bhowmik & A. Kumar, 2010). Lexical analyzer
translates lexemes into token via Lex which
communicates with parser for serving token requests.
After that, it removes the comments and skips over
white spaces. It also will monitor the current line
number so that the parser can identify incoming error
(G. Dodig Crnkovic and M. Burgin,2012).(HE Yan-
xiang, WU Chun-xiang,, 2010) in this study describes
learning software that visualizes the different
transformations; on the other hand, it used a fixed
instance and consequently it amounted to a “canned
demo” only. JFLAP (Alfred V.Aho, Ravi Sethi, 2007) is
interactive learning software meant to focus on
automata theory. It visualizes the main algorithms but
only partly automates the construction and instead
guides the students during the algorithms, warning
them about any errors. The GaniFA applet (Torben
Ægidius Mogensen, 2009) focused on the compiler
construction rather than aiming at automata theory.
The HaLeX library (William M. Waite, Assad
Jarrahian, 2006) provides some functions to represent
, manipulate REs and FAs and Haskell data types .
on the other hand, its focus is on a particular
formalization of the algorithms, instead of
visualization, and it provides a built-in dot graph and
output that is not appropriate for interactive
visualization. jFAST (T. M. White and T. P. Way,
2006)did not support lexical specifications using REs
and did not visualize any of the transformations
between the different representations. it only allowed
the simulation of different types of finite state machines
(including DFAs and NFAs) and interactive
construction.
3. Implementation of DFA /NFA in JFLAP
3.1 DFA for Double Data Type in Java by JFLAP
The DFA/NFA is implemented using JFLAP. The
implementation is done step by step as follows:
A. DFA Definition
DFA is a data processing technique that allows for
the detection of scaling behaviors in observational
time series. Figure 1 shows DFA Models in JFLAP.

Figure 1- DFA Models in JFLAP

Our DFA has a five-tuples:

M = (Q, ∑, , q0,q1, q3)

Where

Q is a finite set of states,

∑ is a finite set of input symbols; q0 is a

start state,

q1, q3 is a set of final state,

Is the transition function, which is mapped

Q = {q0,q1,q2,q3,q4 },

∑= {.,0,1,2,3,4,5,6,7,8,9}

doi : 10.25007/ajnu.v8n4a488

Academic Journal of Nawroz University (AJNU) 417

q0 = start, F = {{q1}, {q4} }

B. Model Details
In this part we are going to explain the procedures of
this model:
i. Accepted (DFA) model
We have taken five scenarios which include all
situations of double data type that accepted by java
programming. Figure 2 shows the cases that have been
accepted. In general, the cases which we test are
achieving the condition of the DFA Model which is:

(a) It has one decimal point.
There are numbers of integer value from (0-9) in right
and left decimal point.

Figure 2- The Cases That Accepted by DFA Modal

The explanations of all cases that accepted:

1. Case 1 the input is (1.8)
The system is in q0 state initially. Then it will detect
the first integer which is 1 after that go to q1 in (dot)
will go to state q2 although 8 is accepted because it from
the range (0-9) then it goes to state q3 which is the final
state.

2. Case 2 the input is (1.11)
At first q0 is state initially. Then it will detect the first
integer which is 1 after that go to state q1, and when
(dot) is coming the transition goes to state q2. By 1 and
5 goes to state q3, this is the final state.

3. Case 3 the input is (23.87)
The system is in q0 state initially. Then it will detect the
first integer which is 2 after that go to state q1, and
when 3 is coming it remains in state q1 in (dot) will
go to state q2 . By 8 the transition goes to state q3, and
then stay in state q3 due to 7 is accepted because it from
the range (0-9) which q3 is the final state.

4. Case 4 the input is (451.732)
First of all, q0 state initially. The system will detect the
first integer which is 4 after that go to state q1, and
when 5 and 1 is coming it remains in state q1 because
this state has loop, in (dot) will go to state q2. By 7
the transition goes to state q3, and then stay in state q3

due to 3, 2 is accepted because it from the range (0-9),
which q3 is the final state.

5. Case 5 the input is (72341.34872)
Firstly, q0 state initially. The system will receive the
first integer which is 7 after that go to state q1, and
when 2, 3, 4, 1 are coming it remains in state q1 because
this state has loop, in (dot) will go to state q2. By 3 the
transition goes to state q3, and then stay in state q3 due
to 4,8,7,2 are accepted because it from the range (0-9) ,
which q3 is the final state.
ii. Rejected (DFA) model

We have taken five scenarios which include some cases
of double data type that not accepted by java
programming. Figure 3 shows the cases that have been
rejected.

Figure 3- The Cases That Rejected by DFA Moda

In general , from figure 3 we can notice that the
system reject some cases due to there are more than
one dot or when start from dot that is because it does
not achieve the condition of decimal numbers in the
DFA Model.
The explanations of all cases that has been rejected
from DFA Model:

1. Case 1 the input is (5.)

The system is in q0 state initially. Then it will detect

the first integer which is 5 after that go to q1 in (dot)

will go to state q2 due to state q2 is not final state so

the systems reject that.

2. Case 2 the input is (.42)
The system is in q0 state initially. Then it will not
detect the first input which is dot because there is not
transition from q0 that can be detected; therefore it is
rejected.

3. Case 3 the input is (53.4.1)
At first q0 is state initially. Then it will detect the first
integer which is 5 after that go to state q1, and when
3 is coming it remains in state q1 because this state
has loop, in (dot) will go to state q2 and when 4 is

doi : 10.25007/ajnu.v8n4a488

418 Academic Journal of Nawroz University (AJNU)

come, the transition goes to state q3. Finally (dot) is
coming the situation is stopped.

4. Case 4 the input is (138.461.)
First of all, q0 state initially. The system will detect the
first integer which is 1 after that go to state q1, and
when 3 and 8 is coming it remains in state q1 because
this state has loop, in (dot) will go to state q2. By 4, 6, 1
the transition goes to state q3, due to there is not
transition from q3 so dot is not inter this model.

5. Case 5 the input is (.1542111)
Firstly, q0 state initially. Then it will not detect the first
input which is dot because there is not transition from
q0 that can be detected; therefore it is rejected.

3.2 NFA for combination of Real and Integer data type
by JFLAP
a. In this simulation, the NFA can be describing based
on 5 elements (K, ∑, f, S and Z) such as Figure 4:

Figure 4: NFA for the combination of real and integer
number

K : Finite symbol sets (Q)
o The NFA model consists of 8 states
o o Q = {q0, q1, q2, q3, q4, q5, q6, q7 }

∑: Alphabets
o ∑= {[0-9], . }

F: Transition functions (Q
 Q × (S ∪ {Z}) → subsets of Q is a transition

function
 Example : Q (q1, 5) → q3 As Figure 5 shows.
S: initial state (q0)
 The initial state is q0
Z: Accepting state or final state Z= {q3, q6, q7}

Figure 5- NFA Models in JFLAP

B. Model Details
This section would explain the concept of the NFA
and what are the accepted and rejected values for the
NFA. Generally, the regular expression for this model
is [0-9][0-9]* | ([0-9][0-9]*.[0-9]) | (.[0-9][0-9]*) which
the model would accept any input that satisfy this
regular expression and reject any input that violate
this regular expression. The following are the test cases
for accepting test and rejecting test.
1) Accepting test
In this test, there are 5 inputs which are tested with
positive results. The 5 inputs values are different style
from each other in order to test the accepting states of
the NFA. Figure 6 are the test values:

Figure 6: The cases that accepted in JFLAP

The explanations of all cases that accepted:
1) Case 1 the input is (2.36)

Before input the value of 2.36, the value is separated
into few input values (tokens). The tokens are “2”, “.”,
“3” and “6”.

 Token 1 = 2
o (q0, 0) → {q3 or q4}

 Token 2 = .
o (q4, .) → {q6}

o (q3, .) → rejected

 Token 3 = 3
o (q6, 3) → {q6}

doi : 10.25007/ajnu.v8n4a488

Academic Journal of Nawroz University (AJNU) 419

 Token 4 = 6
o (q6, .) → {q6}

Since token 4 is the last input and q6 is the accepting
state, the input value 2.36 is accepted.
2) Case 2 the input is (84)
Before input the value of 84, the value is separated into
few input values (tokens). The tokens are “8” and “4”.

 Token 1 = 8

o (q0, 8) → {q3 or q4}

 Token 2 = 4

o (q3, 4) → {q3}

o (q4, 4) → {q4}

Since the token 2 is the last input and q4 is the accepting
state, the input value 84 is accepted. Meanwhile, the q3
is not accepting state. So, the transition ends there
without accepting it.
3) Case 3 the input is (81.0)
Before input the value of 81.0, the value is separated
into few input values (tokens). The tokens are “8”, “1”,
“.” and “0”.

 Token 1 = 8
o (q0, 8) → {q3 or q4}

 Token 2 = 1
o (q3, 1) → {q3}
o (q4, 1) → {q4}

 Token 3 = .
o (q3, .) → {q6}
o (q4, .) → rejected

 Token 4 = 0
o (q6,0) → {q6}

Since the token 4 is the last input and q6 is an accepting
state/ final state, the input value 81.0 is accepted.
4) Case 4 the input is (00.01)
Before input the value of 00.01, the value is separated
into few input values (tokens). The tokens are “0”, “0”,
“.”, “0” and “1”.

 Token 1 = 0
o (q0, 0) → {q3 or q4}

 Token 2 = 0
o (q3, 0) → {q3}
o (q4, 0) → {q4}

 Token 3 = .
o (q4, .) → {q6}

o (q3, .) → rejected

 Token 4 = 0
o (q6, 0) → {q6}

 Token 5 = 1
o (q6, 1) → {q6}

Since token 5 is the last token and q6 is the accepting
state, the input value 00.01 is accepted.
5) Case 5 the input is (.2)
Before input the value of .2, the value is separated into
few input values (tokens). The tokens are “.” and “2”.

 Token 1 = .
o (q0, .) → {q5}

 Token 2 = 2
o (q0, 9) → {q5 or q7}

Since token 2 is the last token and q7 is the accepting
state, the input value .2 is accepted.
2) Rejecting test in NFA
In this test, there are 5 inputs which are tested with
negative results. The 5 inputs values are different style
from each other in order to test the accepting states of
the NFA. Figure 7 are the test values:

Figure 7: The cases that rejected in JFLAP

The explanations of all cases that rejected:
1) Case 1 the input is (..9)
Before input the value of...9, the value is separated into
few input values (tokens). The tokens are “.”, “.”, “9”.

a. Token 1 =.

o (q0, .) → {q5}
b. Token 2 =.

i. (q5,) → rejected
Although token 2 is not the last token but since all the
possible transition is rejected, then the input value...12
is rejected.
2) Case 2 the input is (1.2.3)
Before input the value of 1.2.3, the value is separated
into few input values (tokens). The tokens are “1”, “2”,
“3”.

a. Token 1 = 1
o (q0, 0) → {q3 or q4}

b. Token 2 = .
o (q4, .) → {q6}
i. (q3, .) → rejected

doi : 10.25007/ajnu.v8n4a488

420 Academic Journal of Nawroz University (AJNU)

c. Token 3 = 2
o (q6, 0) → {q6}

d. Token 4 = .
i. (q6, .) → rejected

Although token 4 is not the last token but since all the
possible transition is rejected, then the input value 1.2.3
is rejected.
3) Case 3 the input is (C22.11)
Before input the value of C22.11, the value is separated
into few input values (tokens). The tokens are “C”, “2”,
“2”, “.”, “1” and “1”.

a. Token 1 = C
i. (q0, C) → rejected

The input value for token 1 did not meet any transition
value. So the token 1 is already rejected which cause
the following token won’t be executed. Therefore, the
input value C22.11 is rejected.
4) Case 4 the input is (.A8)
Before input the value of .A8, the value is separated
into few input values (tokens). The tokens are “.”, “A”
and “A”.

a. Token 1 = .
o (q0, .) → {q5}

b. Token 2 = A
i. (q5,A) → rejected

ii. (q7,A) → rejected
c. Token 3 = 8

o (q5,8) → {q5}
o (q5,8) → {q7}

Since both possible transitions are rejected, then the
input value .A8 is rejected.

5) Case 5 the input is (3B.A)
Before input the value of 3B.A, the value is separated
into few input values (tokens). The tokens are “3”, “B”,
“A”.

a. Token 1 = 3
o (q0, 0) → {q3 or q4}

b. Token 2 = B
i. (q4,B) → rejected

Although token 2 is not the last token but since all the
possible transition is rejected, then the input value 3B.A
is rejected.
4. CONCLUSION
JFLAP is a usable and valuable software tool that
assists in teaching and learning about finite state
machines, a concept some students find particularly
challenging and initially impenetrable. Teachers and
students found the software to be easy to learn and
use, allowing the focus to be on the concepts rather
than the software classrooms in the coming year. We
have shown how visualization and interaction can be
integrated into a DFA and NFA using JFLAP as a tool.

Such tools provide a visual picture, making it easier
to see relationships between objects, and provide
interaction, allowing the student to experiment with the
picture and receive immediate feedback.

REFERENCES
C.-P. Chou, K.-F. Jea and H.-H. Liao, "A syntactic
approach to twig-query matching on XML streams,"
The Journal of Systems and Software, vol. 84, p. 993–
1007, 2011.
H. Luo, "Research of Using Finite Automaton in the
Modeling of Lexical Analyzer," in International
Conference on Information Management, Innovation
Management and Industrial Engineering, 2012.
S. Loglo, Sarula and HuaShabao, "Research on
Mongolian Lexical Analyzer Based on NF A," in IEEE,
2010.
Z. Gejun, S. Yuqiang, Y. Ruimin and G. Yuwan, "A
Simplification Algorithm of Regular Grammar
Production," in International Conference on
Information Science and Engineering, 2009.
Bhowmik, A. Kumar, A. K. Jha and R. Kumar
Agrawal, "A New Approach of Complier Design in
Context of Lexical Analyzer and Parser Generation for
NextGen Languages," International Journal of
Computer Applications, vol. 6, no. 11, pp. 21-25, 2010.
Mateescu, A. Salomaa, K. Salomaa and S. Yu,
"Lexical Analysis with a Simple Finite-Fuzzy-
Automaton Model," Journal of Universal Computer
Science, vol. 1, no. 5, pp. 292-311, 1995.
William M. Waite, Assad Jarrahian, Michele H.
Jackson, Amer Diwan, 2006. Design and
Implementation of a Modern Compiler Course, ACM
1595930558/06/0006.
Braune, S. Diehl, A. Kerren, and R. Wilhelm.Animation
of the generation and computation of finite automata
for learning software. In Proc. 4th Intl. Workshop
Implementing Automata, LNCS 2214, pp. 39–47.
Springer, 2001.
R. Cavalcante, T. Finley, and S. H. Rodger. A visual
and interactive automata theory course with JFLAP
4.0. In Proc. SIGCSE’04, pp. 140–144. ACM Press, 2004.
S. Diehl, A. Kerren, and T. Weller. Visual exploration
of generation algorithms for finite automata on the
web. In Proc. 5th Intl. Conf. Implementation and
Application of Automata, LNCS 2088, pp. 327–328.
Springer, 2000.
J. Saraiva. HaLeX: A Haskell Library to Model,
Manipulate and Animate Regular Languages. In Proc.
ACM Workshop on Functional and Declarative
Programming in Education, pp. 133–140. University of
Kiel Technical Report 0210, 2002.
T. M. White and T. P. Way. jFAST: A Java finite
automata simulator. In Proc. SIGCSE’06, pp. 384–388.
ACM Press, 2006.

