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ABSTRACT 
Two non-parametric statistical methods are studied in this work. These are the nearest neighbor regression and the Nadaraya 

Watson kernel smoothing technique. We have proven that under a precise circumstance, the nearest neighborhood estimator 

and the Nadaraya Watson smoothing produce a smoothed data with a same error level, which means they have the same 

performance. Another result of the paper is that nearest neighborhood estimator performs better locally, but it graphically 

shows a weakness point when a large data set is considered on a global scale.  
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1. Introduction 

In general, a data set collected from a continuous and 

stable process has a trend. Such data set is referred to 

as parametric data set. When clearly identified, trend 

in data set is often used for forecasting. Beside there 

exist process that produce trendless data set, which is 

also call non-parametric data set. A special branch of 

statistics called non-parametric statistics is dedicated 

to study of non-parametric data set. In general, data 

are analyzed with the aims to extract knowledge and 

information.  Automatic system, recommended 

system and machine learning algorithm [6] are built 

upon existing collected data set, that are used to 

predict or forecast a system behavior. In this regard, 

scientists are often interested in finding trend in the 

data. Such trend would definitely help in predicting 

next outcome depending on the feature of the data set. 

In statistical data analysis, there exists a classification 

of a data set depending on whether or not it has a 

known trend. In this regard, a parametric data analysis 

approach is used when a data set has a known trend; 

these methods are concerned but not limited with 

simple linear and multi-linear regression [7-9], logistic 

model [10-13], quadratic regression [14-16]. It is also 

common in practice to have a data set that doesn’t 

show any of the above mentioned trends. In such case, 

a non-parametric method is used to fit the data set. 

Existing non-parametric include but not limited, 

nearest neighbor nonparametric regression [17-19], 

Nadaraya Watson regression [20-21] , Kernel 

smoothing [23-24]. In this work we focused on two 

nonparametric regression methods namely the 

Nadaraya Watson regression and the nearest neighbor 

nonparametric regression. We studied their 

specificities and their performance in fitting 

nonparametric data set.  

2. Preliminaries  

In this section a review of Nearest Neighbor regression 

and the Nadaraya Watson regression for the 

smoothing of nonparametric data set is discussed. As 

a reminder, these are both nonparametric regression 

methods that are used to fit data set that doesn’t show 

any known parametric trend.  

2.1 Nearest Neighbor estimator   

The K nearest neighbor regression also known as K-

NN is one of the commonly used nonparametric 

regression algorithms. It helps to build a smooth trend 

of a data set by averaging the most K nearest neighbors 

of a selected point. Considering a set of bijective 
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correspondence between an input variable and its 

response denote ( ) 
1

,
n

i i i
X Y

=
,  where iY  form a vector 

and each iX  can be a single element in the univariate 

or a vector in the multivariate case [19-25].  

The K-NN aims to fit the experimental data  set using 

a model which analytically written as follow  

( ) 
1i i i i n

Y g X 
 

= +                                 (1) 

Where g is an unknown function which is assumed to 

be is continuous and it is at least twice differentiable, 

2g C . The variable i  represent the errors terms, 

and it is randomly distributed with null expectation, 

( ) 0i iE X = . This setting motivates the estimation 

on the response of a point x by simply averaging iY ’s 

values that are such that iX  ‘s are close or surround 

the point x. The number K, of nearest neighbors to be 

sum up is an important parameter in the whole 

process. That is why the method often referred to ask 

K-nearest neighbor.  

Theorem 1: [19] Given a data set ( ) 
1

,
n

i i i
X Y

=
, 

obtained through a stochastic process, where iY  is 

considered as the predicted value obtained from a 

random variable iX , through an unknown function f. 

An estimation of the unknown function is defined 

using K Nearest Neighbor estimator as follow  

( )
1

1ˆ ( )
n

NN ik i

i

f x x Y
k


=

=                                     (2) 

where ( )( ) ( )ik i kx I X x =   is the Kronecker 

symbol returning 1 if  ( )i kX x and 0 otherwise. 

Moreover, ( )k x  represent the set of the k nearest 

neighbor data points to x.  

One usually refers to Eq(2) as a smoothing function 

and its main parameter k is called the smoothing 

parameter.  The consistency of this parameter is given 

by nk k= → +  and 0
k

n
→  for n→+ .  It is 

important to select suitable value of k in the process. In 

fact, depending on the data size, a too large value of k 

may lead to an over smoothed process whereas the 

otherwise case will lead to an under smoothed process.   

In application and during implementation of the K 

nearest neighbor algorithm, different metrics are used 

to enable the identification of the k nearest neighbor 

points, such as Euclidian distance, maximum linkage 

distance, minimum linkage distance, Dirac distance, 

among others. It is worthy noted that the Euclidean 

distance is by far preferred by scientists to implement 

K nearest neighbor algorithm.  

Definition 1 [1-2]: Euclidean distance, given two 

elements ( )1, , px a a

and ( )1, , py b b


of the 

normed space 
p

, the Euclidean distance between x 

and y is given by  

( ) ( )
2

1

,
p

Eucl i i

i

dist x y a b
=

= −                         (3) 

Below is the K nearest neighbor algorithm. Commonly 

used machine learning nomenclature is used in this 

algorithm. In fact the initial data set ( ) 
1

,
n

i i i
X Y

=
is 

considered as the train data set, subset of the train data 

set is then used to test the algorithm. This is useful to 

select the test set as a subset of the train set because 

knowing the real outcome value, that will help to 

measure the error level and thus to evaluate the 

performance of the algorithm. Later on it will be 

possible to predict the outcome of any other data point 

in the domain. The following is a K nearest neighbor 

algorithm that evaluates the outcome y of a given point 

x based on its K nearest neighbor. 

Algorithm 1:  K nearest neighbor 

 

Input:   x point to estimate outcome, 

 

             
( ) 

1
,

n

i i i
X Y

=
 the train data set, 

             k number of neighbor to consider. 
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Output: y estimated value 

 

BEGIN 

      S 0, mt0;  

        While (mt < = k) 

            Return ( ),j jx y  such that

( )  ( ) min 1
, ,

n mt

Eucl j Eucl j i
dist x x Arg dist x x

−

=
= ; 

             SS+yj ; 

             delete ( ),j jx y ; 

              mtmt+1; 

          End While 

     yAverage(S); 

     return y; 

END 

Algorithm 1 is used in sequel for the evaluation of 

predictor values using a train data set.  

2.2 Kernel Estimator  and Nadaraya Watson 

Estimator 

This method is used to fit pairs of data set ( ) 
1

,
n

i i i
X Y

=

obtained through stochastic process. The unknown 

function is fitted based on two main parameters. These 

are the smoothing parameter h, which is also called the 

bandwidth and the kernel function K, which is a 

function with some specifics characteristics. There 

exist various approaches and formulae through which 

a kernel estimator function is built. In this work we will 

focus on two of them. The first formula [22] is given by  

( )
1

1 1ˆ
n

i
KE

i

x X
f x K

n h h=

− 
=  

 
             (4) 

where ( ).K  is called the kernel function or smoother 

function and h is the bandwidth.  

The second approach is called the Nadaraya-Watson 

smoothing [21] function and is given by the formula  

( ) 1

1

ˆ

n
i

i

i
NW n

i

i

x X
K Y

h
f x

x X
K

h

=

=

− 
 
 =

− 
 
 




               (5) 

Picking a suitable bandwidth value h for Eq.(5) is 

crucial for the model. Hence, in this work we also 

focused on selection of suitable bandwidth. The kernel 

function ( ).K  has some properties that are found in 

detail in literature (see[22]). So far seven functions 

which fulfill the bandwidth requirements have been 

exhibited by researchers. These are Uniform, Triangle, 

Epanechnikov, Quadratic, Triweight, Gaussian, 

Cosinus. The Gaussian Kernel is the most used kernel. 

Further studies on kernel are given in the experimental 

part below.  

2.3 Relationship between Nearest Neighbor 

estimator and Kernel Estimators  

There exists a large literature on how to select the 

bandwidth h in Eq.(4) and  Eq.(5). However, there isn’t 

a steady formula that computes the number of nearest 

neighborhood points to be used in the process of 

smoothing using Eq.(2). In this regard, the said 

selection is either done by a simple rule of thumb or 

even a try and error method. Fortunately, there is a 

relationship between the number of nearest 

neighborhood points k, to be used (see Eq.(2) ) and the 

bandwidth (see Eq.(4) and  Eq.(5)).  The said relation is 

given by  

k
h

n
                                    (6) 

where k, n, and h are the parameters as referred to in 

Eq.(2) , Eq.(4) and  Eq.(5). 

3. Experimental Studies 

In this section an experimental study is carried out to 

investigate the performance of Nearest Neighbor 

estimator and the Nadaraya Watson estimator. In 

order to ease computation and without loss of 

generality, the Gaussian Kernel function will be used 

in sequel.  
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The experimental data set is obtained through a 

stochastic process simulated as ( ) 
1

,
n

i i i
X Y

=
, 

100n =  from the regression model defined by 

( ) 0.5i i iY m X = + , 1, ,i n= . Where 

( )0.8, 2
iid

iX a b = = and  ( )0,1
iid

i N  , and 

( ) ( )( )
3

3sin 2m x x= . 

Before investigating the performance of the nearest 

neighbor estimator and the kernel estimator, let us first 

of all show the random effect of the stochastic data 

generation.   

 

 

 

 

Figure 1:  4 samples of stochastic data set. 

Figure 1 shows 4 samples of stochastically generated 

data sets. Indeed the aim of this figure is sure evidence 

of the random behavior of the process. It clearly 

appeared that the randomness in the generated data 

sets is obvious. At this point, a single sample data will 

be generated and will be used in what will follow for 

experiment on the K nearest neighbor and Nadaraya 

Watson methods.  

3.1 Illustration of Kernel estimation and Nearest 

Neighbor Estimation 

In this section illustration of kernel estimation and 

Nearest Neighbor estimator are given. One round 

simulation is performed to generate the stochastic data 

set and then both the Nearest Neighbor and the 

Nadaraya estimators are used to fit the data set  
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Figure 2:  (a) Nadaraya estimator , (b) Nearest Neighbor 

Estimator 

Figure 2 is an illustration of Nadaraya estimator and 

Nearest Neighbor Estimator, in which their smoothing 

parameters are respectively h=0.0448 and k=4 .  More 

over these smoothing parameters are chosen in a way 

to be related by Eq(6). Note that the optimal value of 

h=0.0448, was first of all obtained using the function 

dpill() of R programming language . After using the 

smoothing parameters to fit the data sets, further 

studies are done to evaluate the performance of both 

estimators. For this purpose, the Bias (see [5]), MSE 

(see [3]), Variance and MISE (see [4]) of each method 

are computed for performance evaluation purposes.   

Table 1: Comparative study 

 Bias MSE Variance MISE 

Nadaraya 0.1239 0.4514 0.1883 2.0330 

Nearest N 0.1361 0.5172 0.2661 2.3452 

 

Given that the Nearest Neighbor estimator shown on 

Figure 2(b) looks under-smoothed, different larger 

bandwidth values were used to analysis the process, in 

order to observe the behavior of the graph as a function 

of k. R-programming language was used to generate 

all plots. 

 

 

 

 

Figure 3:  Sample of Nearest Neighbor estimators for 

different values of k. 

From Figure 3, it is clear that despite the variation of 

the k values, the obtained curves don’t have global 

smooth shapes. Rather they are globally stretched. As 

a matter of fact, the Nearest Neighbor is suitable for 

local estimation but not for global estimation.  

3.2 Monte Carlo Simulation 

In this section the experiment carried in section 3-1, is 

repeated many times in order to appraise the behavior 

of the two estimators. The assumptions are the 

following, the optimal bandwidth for kernel 

smoothing is computed using the R function dpill(), 

and the optimal k value for Nearest Neighbor is 

obtained from Eq(6).  

Simulation 1: In this simulation the random process 

used to generate the stochastic data is repeated a 

number of N=40 times. Each time, the Nadaraya 

Watson regression is used to fit the random data set 

and some metrics of the fitted data set are recorded. 

These metrics are the Bias, MSE, Variance and MISE. 

The 40 records of each of those metrics are considered 

as observations of random variables. Moreover, their 

mean and standard deviation are computed.  

Table 2: Monte Carlo of size N=40 with  Nadaraya Watson 

Estimator 
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 Bias MSE Variance MISE 

Mean 0.0683 0.4252 0.1206 2.6527 

Standard 

Deviation 

0.0626 0.1185 0.0616 0.3028 

 

Figure 4 is the histograms of the Bias, MSE, Variance 

and MISE obtained from the 40 rounds Monte Carlo 

simulation, followed by Nadaraya Watson data fitting. 

These histograms aim is to graphically determine the 

distribution of each of those parameters. Although it is 

not clear enough, one can see that the bias tends to be 

normally distributed, whereas the MSE and Variance 

follow a chi-square distribution. A higher frequency 

simulation would probably illustrate with higher 

precision.   

Simulation 2:  In this simulation the random process 

used to generated the stochastic data is repeated a 

number of N=1000 times. Each time, the Nadaraya 

Watson regression is used to fit the random data set 

and some metrics of the fitted data set are recorded. 

These metrics are the Bias, MSE, Variance and MISE. 

The 1000 records of each of those metric are considered 

as observations of random variables. Moreover, their 

means and standards deviations are computed. 

 

 

 

 

Figure 4:  Bias, Variance, MSE, MISE for N=40, with 

Nadaraya Watson 

 

Table 3: Monte Carlo of size N=1000 with  Nadaraya 

Watson Estimator 

 Bias MSE Variance MISE 

Mean 0.0746 0.3897 0.0865 2.7114 

Standard 

Deviation 

0.0467 0.0868 0.0381 0.3066 
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Figure 5: Bias, Variance, MSE, MISE for N=1000, with 

Nadaraya Watson 

 

Figure 5 is the histograms of the Bias, MSE, Variance 

and MISE obtained from the 1000 rounds Monte Carlo 

simulation followed by Nadaraya Watson data fitting. 

These histograms aim is to graphically determine the 

distribution of each of those parameters. With 1000 

rounds of simulations, it is clear enough to see which 

distributions theses parameters follow; one can see 

that the bias is normally distributed, whereas the MSE 

and Variance follow a chi-square distribution. The 

MISE doesn’t clearly show the shape of a known 

distribution; however it can be fitted with a normal 

curve.    

Simulation 3: In this simulation the random process 

used to generate the stochastic data is repeated a 

number of N=50 times. Each time, the Nearest 

Neighbor regression is used to fit the random data set 

and some metrics of the fitted data set are recorded. 

These metrics are the Bias, MSE, Variance and MISE. 

The 50 records of each of those metric are considered 

as observations of random variables. Moreover, their 

means and standards deviations are computed. 

Table 4: Monte Carlo of size N=50 with Nearest 

Neighbor 

 Bias MSE Variance MISE 

Mean 0.0675 0.3981 0.0896 2.7539 

Standard 

Deviation 
0.0417 0.0845 0.0363 0.3099 

 

 

 

 

 

Figure 6: Bias, Variance, MSE, MISE for N=50, with 

Nearest Neighbor 

Figure 6 is the histograms of the Bias, MSE, Variance 

and MISE obtained from the 50 rounds Monte Carlo 

simulation, followed by data fitting using the nearest 

neighbor estimator. These histograms aim is to 

graphically determine the distribution of each of those 

parameters. Although it is not clear enough, one can 

see that the bias tends to be normally distributed, 

whereas the MSE and Variance follow a chi-square 

distribution. A higher frequency simulation would 

probably illustrate with higher precision.   

Simulation 4: In this simulation the random process 

used to generated the stochastic data is repeated a 

number of N=1000 times. Each time, the Nearest 

Neighbor regression is used to fit the random data set 

and some metrics of the fitted data set are recorded. 

These metrics are the Bias, MSE, Variance and MISE. 

The 1000 records of each of those metric are considered 

as observations of random variables. Moreover, their 

means and standards deviations are computed. 

Table 5: Monte Carlo of size N=1000 with  Nearest 

Neighbor 

 Bias MSE Variance MISE 

Mean 0.0749 0.3993 0.0896 2.7238 
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Standard 

Deviation 
0.0479 0.0924 0.0416 0.3027 

 

 

 

 

 

Figure 7: Bias, Variance, MSE, MISE for N=1000, with 

Nearest Neighbor 

 

Figure 5 is the histograms of the Bias, MSE, Variance 

and MISE obtained from the 1000 rounds Monte Carlo 

simulation followed by Nearest Neighbor data fitting. 

These histograms aim is to graphically determine the 

distribution of each of those parameters. With 1000 

rounds of simulations, it is clear enough to see which 

distributions theses parameters follow; one can see 

that the bias is normally distributed, whereas the MSE 

and Variance follow a chi-square distribution. The 

MISE doesn’t clearly show the shape of a known 

distribution; however it can be fitted with a normal 

curve.     

3.3 Hypothesis Tests 

From the simulations done in the previous section, 

hypothesis tests are performed to determine which 

method is the best between Nadaraya Watson 

estimator and Nearest Neighbor estimator. For both 

methods and in both cases, we performed the test 

using data obtained from the 1000 rounds Monte Carlo 

simulation to be more reliable. On one hand test of 

difference between two population means is used to 

check whether or not there is a significant difference 

between the BIAS obtained from both methods. On the 

other hand, a test of difference between two 

population variances is applied to check if there is a 

significant difference between the variance of the MSE 

of both methods. 

 

Table 6: Test of difference between Nearest N. and 

Nadaraya W. BIAS population means 

 Neare
st N. 

Nadaray
a W. 

A two tails normal test 
revealed at level 0.05 that 
the difference between the 
two population means 

1 20.004 0.004 −  −   

might be equal to  0, hence

1 2 = .  

Mean  0.0749 0.0746 

Std 
Dev 

0.0479 0.0467 

Sampl
e size  

1000 1000 

   

 

Table 7: Test of difference between Nearest N. and 

Nadaraya W. MSE population variance 

 Nearest 
N. 

Nadaraya 
W. 

A two tails test of 
ratio between the 
two population 
variance revealed 
that they are equal 

1 2 = . 

Mean  0.3393 0.3897 
Std Dev 0.0924 0.0868 
Sample 
size  

1000 1000 

   

Tables 6 and 7 display the results of the hypothesis 

tests. Form these results; one can observe that, there is 

no significant difference between the means of BIAS 

obtained from both methods. On the other hand, it is 

also clear that there is no significant difference 

between the variances of MSE obtained from both 

methods.  

4. Conclusion 

Based on the Monte Carlo simulation, it appears from 

the histograms that for both methods (Nearest 

Neighbor & Nadaraya Watson), the bias are normally 

distributed, Variance and Mean Squared Error (MSE) 

follow a Chi-square distribution, but Mean Integrated 
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Squared Error (MISE) doesn’t present a shape of any of 

the commonly known distribution. However, it is 

more likely to be normally distributed.  More 

important is that under the condition of Eq(6), that 

establishes the relationship between the Nadaraya 

Watson optimal bandwidth h and the optimal number 

of K-Nearest Neighbor to be used, both methods 

perform equally.   
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