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ABSTRACT 
Statistics practitioners depends on the Ordinary Least Squares (OLS) method to estimate the parameters because of its optimal 

properties and simplicity to Computation. However, the OLS estimator can be strongly affected by the existence of 

multicollinearity. Even though in the presence of multicollinearity the OLS estimate still remained unbiased. But the standard 

errors of the estimated parameter become inaccurate. In this paper, we proposed some alternative methods to estimate the 

parameters in presence of multiple high leverage points which cause the multicollinearity problem. The procedure used the 

ordinary least squares method to estimate the parameters as the initial followed by ridge regression estimator. We incorporated 

the robust Least Trimmed Squares (LTS) estimator to down weight the effects of multiple high leverage points which leads to 

the reduction of the effects of multicollinearity. The result seemed that the suggested method Ridge Least Trimmed Square 

(RLTS) gives a substantial improvement over the Ridge Regression. 
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1. Introduction 

The ordinary least squares method (OLS) is one of the 

oldest statistical method dating back to the age of slide 

rules.  Today computer is abundant, high-quality 

statistical software are free, and statisticians have 

developed several estimation techniques making it 

easier to understand., The linear regression is still 

popular (Toutenburg 2008). The estimate   is 

determined by minimizing the function 

( ) ( ) 
2n n

2
T

i i i

i=1 i=1

y - x β = r and the estimator of the   is 

given by, 

( )ˆ -1
T T

LSβ = x x x y  

OLS estimate is unbiased and minimum variance 

among all unbiased linear estimators provided that the 

errors are independent and identical. The presences of 

multicollinearity in the data set produce poor 

estimates in the regression coefficient although OLS 

estimate is unbiased in the presence of 

multicollinearity.  

Multicollinearity is a problem where two or more 

explanatory variables are correlated with each other or 

they are highly linearly related and give an inaccurate 

prediction about the dependent variable. The 

collinearity may involve more than two variables and 

are more difficult to detect and the consequences may 

be harder to explain (Hocking 2003). We may modify 

ridge regression estimator which may improve the 

reliability of the regression coefficients.  

The ridge regression (RIDGE) method was first 

proposed by Hoerl (1962) and was improved by Hoerl 

and Kennard (1970). Whilst method of ridge regression 

is not very strong about deviation from the outliers. 

Outliers are a value in a data set that is far from the 

other values and far from the line implied by the rest 

of the data. Outlying data points may have 

inappropriate effect on the OLS and the ridge 

estimates. There are different types of outliers.  

However, outliers can be categorized into two types; 

the observations with large residuals are also known 

as vertical outliers. The second type is high leverage 

points which are horizontal outliers. (Molina et al., 

2009).  

The problem has become more complicated when both 

multicollinearity and outliers are present in the data 

set. In the recent years many efforts have been made to 

obtain dependable estimates especially in the presence 

https://doi.org/10.25007/ajnu.v10n1a996


Academic Journal of Nawroz University (AJNU), Vol.10, No.1, 2021                                               

327 
 
 

of heavy– tailed error distribution and 

multicollinearity.  

Robust regression is an alternative procedure to 

ordinary least squares that dampen the influence of 

outlying cases, it can be properly used when there is 

evidence that the distribution of the error term is 

abnormal, and/ or there are outliers that affect the 

model. It is also resistant which is less affected by the 

outliers. Ridge regression method improved the 

estimates when there is multicollinearity problem.  

(Midi and Zahari 2007) did a simulation study to test 

the robustness of six estimators on a multiple linear 

regression model with joint problems of 

multicollinearity and non-normal errors. The 

achievement of the six estimators, that is the Ordinary 

Least Squares (OLS), Ridge Regression (RIDGE), Ridge 

Least Absolute Value (RLAV), Weighted Ridge 

(WRID), MM and a robust ridge regression estimator 

based on MM estimators (RMM) are compared.  

The RMM is a modification of the Ridge Regression 

(RIDGE) by combining robust MM estimator. The 

experimental evidence shows that RMM is the best 

between the six estimators for many combinations of 

disturbance distribution and degree of 

multicollinearity. They guess that the modified 

method would be less sensitive to the existence of 

outliers and has a high breakdown point. They have 

deleted the influence of outliers by the highly robust 

and efficient MM estimator and also deleted the 

problem of multicollinearity by ridge regression.  

They concluded that the simulation studies obviously 

display that ridge MM-estimator RMM estimator 

shows the general practical option over other 

estimators when both multicollinearity and outliers 

exist. (Meriam et al., 2012) improved a robust ridge 

regression estimator by using Weighted Ridge MM-

Estimator (WRMM) and that is possible to handle the 

multicollinearity problem. 

Thus they suggested to compare many present 

estimators with this technique called ordinary least 

squares (OLS), robust regression based on MM 

estimator, ridge regression (RIDGE), weighted ridge 

(WRID) and ridge MM-estimator (RMM) using two 

norms to compare root mean square error (RMSE) and 

biasness. Generally, it has been found that the 

suggested estimator scores will be good in contrast the 

five present estimators when the error term is 

abnormal. 

Finally, they conclude that the OLS estimator is better 

than other estimators when there is no 

multicollinearity in the data. On the other hand 

WRMM and WRID estimators prefer the other 

estimator when multicollinearity is moderate and 

high, thus WRMM is the most efficient to all existing 

estimators when multicollinearity is high. 

2. Methodology  

2.1 Ridge Regression Estimators 

It is an analytic technique to be used when the 

predictor variables in a multiple linear regression are 

highly correlated a situation which may result in 

unstable regression coefficients and difficulties in 

interpretation.  

Ridge regression is one of several methods that have 

been proposed to handle multicollinearity problems 

by modifying the method of least squares to allow 

biased estimators of the regression coefficients. When 

an estimator has only a small bias and is substantially 

more precise than an unbiased estimator, it may well 

be the preferred estimator since it will have a larger 

probability of being close to the true parameter value.   

(Nachtsheim, 2004). The ridge regression estimator is 

defined as follows.  

ˆ -1

Ridgeβ = (X'X+KI) X'Y  

where K is the biasing constant and I is the pxp identity 

matrix. 

In the exercise, the optimal value of K is unknown 

constant adding to the diagonal of the correlation 

matrix. Different methods in finding K have appeared 
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in the literature like described by Hoerl and kenard 

(1970). The estimator of K by Hoerl et al. (1975) is given 

by                                         

 

where  is the correlation coefficient? 

 

ˆ ˆ

n p
=

−

'
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Where n is the sample size, p is the number of 

parameters and if K= 0, ˆ ˆ
RID OLSβ =β , when K> 0 , 

ˆ
RID  is biased but more stable and precise than the 

OLS estimator and when Hoerl and Kennard (1970) 

have shown that there always exist a value K> 0such 

that MSE ˆRID  is less than MSE ˆOLS . 

2.2 Robust Regression Estimators 

Robust regression estimators have been confirmed to 

be more reliable and efficient than least squares 

estimator especially when disturbances are non-

normal distribution. Non-normal disturbances are 

disturbance distributions that have heavy or fatter tails 

than the normal distribution and are tends to produce 

outliers. Habsha Midi et al. (2007), Kafi, (2020). 

Since outliers greatly affect the estimated coefficients, 

standard errors and test statistics,   Therefore, the 

usual statistical procedure is more effective in 

estimating parameters with the presence of outliers. 

So the robust procedure it is better process to reduce 

the effect in presence of outliers. Robust procedure fit 

a regression by using estimators that dampen the 

impact of influential points. To detect outliers, we look 

for those points that lying far away from the pattern 

formed and have large residuals from the line 

regression. Several works on robust estimation have 

been proposed in the literature. 

Among them Habshah Midi et al. (2007) who proposed 

the Least Absolute Values (LAV) estimator. But we can 

use least Trimmed squares (LTS) to replace LAV since 

it has a highest possible breakdown point, that is 50%. 

LTS is a robust estimator having the highest possible 

breakdown point, that is 50% . 

2.3 Least Trimmed Squares (LTS) 

The formula of LTS is the same as OLS and the only 

difference being that the largest squared residuals are 

not used in the summation, thus allowing the fit to stay 

away from the outliers. (Rousseeuw 2003), (Kafi et al 

2014). 

The LTS estimates are obtained by finding the 

regression model parameters to achieve min 


2

h

i 0 i i

i=1

(y -β -β x ) .In other words, minimizing 

where   
h
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e e e .......... e  are the 

ordered squared residuals and the value of h must be 

defined by 
1

2 2

n p
h

 +   
= +    
    

 to obtain the 

number of observations in each subsample, select a 

subsample of h observation of the original data as 

follows  ( )n
h  with replacement of the data set.  

After the summation squared residuals for each 

subsample to obtain the single value, select the 

minimum residuals for each subsample and use the 

parameter for these residuals for the original 

observation to obtain the fitted regression to remove 

the high leverage point.  

3. Results and Discussion 

In this paper we proceeding least trimmed squares 

method to estimate parameter using suitable data; the 

multicollinearity and outliers data taken from the body 

fat example are to be used. This example contains 

twenty observation of (y) with corresponding 

explanatory variables of (x1, x2, x3) is used. The 

analysis begins by effects of multicollinearity and 

outliers using diagnostic plot, The OLS, Ridge 

ˆ ˆ
OLS OLS

2

OLS

'

ρS
K =

β β
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Regression, LTS, RLTS were used in the original and 

transformed data. The results are presented in the 

graphs and the tables below. 

In the first plot, OLS residual plot of the original data 

against the regression fitted values which are 

presented in Figure (1). The situation for existence of 

multicollinearity and outliers and this can be identified 

when the residuals are not randomly distributed 

around the zero residual, with an indication of 

systematic trend on the plot. Based on this concept, the 

plots clearly indicate multicollinearity and outliers, the 

data for the purpose to remedy the short Coming of 

OLS problems of multicollinearity and outliers.  

To use this technique for this data, we first need to plot 

the residual against the explanatory variables with a 

data that contain multicollinearity and outliers. The 

plot of Fig. 2 gives the diagnostic plot of the residual 

against the fitted values obtains the transformed data, 

while Fig 3 gives the linear regression models obtain 

from the Ridge regression techniques. From this plot 

we notice that there are some differences between the 

estimators.  This is evidence that the performance of 

the methods was satisfactory. So that to test the 

consequence of multicollinearity in the existence of 

outliers. 

Fig 4 gives the linear regression models obtain from 

the robust estimation techniques is used. The plot of 

linear regression models obtains from the robust 

estimation techniques using the transformed data give 

a clear idea for comparison of Figure 1 of OLS plot.The 

result from the plot indicate the performance of this 

transformation can assist in producing a outliers. 

From Table 1 we observe estimate of parameter is 

performance of the proposed ridge parameter is better 

than other OLS for all combinations of correlation 

between predictors, and give the summary results of 

statistics. The result of Table 1 reveal the influence of 

outleirs on the regression model, when OLS is used to 

estimate  the regression parameter comepared with the 

regression parameter obtain from the LTS estimate. 

On the other hand, when considering the estimate of 

the result obtain from the body fat data that involve 

three explanatory variables. These tables provide the 

breakdown point result of the estimated parameter 

using OLS and Ridge Regression, LTS, Ridge LTS 

regression. 

The criterion used to evaluate the best regression 

model is using the standard error and t-value 

estimated from the body fat data involving all the 

explanatory variables. Base on the results obtain in 

Table 1 and Table 2, The RLTS posses the least 

standard errors with largest t-values compared  to the 

t-value obtain from LTS and OLS.    

TABLE 1: SUMMARY OF STATISTICS FOR THE BODY FAT 

EXAMPLE 

 

TABLE 2: SUMMARY STATISTICS OF STANDARD ERROR AND T-

VALUE FOR THE BODY FAT EXAMPLE 

 

Method 0  1  2  3  

OLS/original 11.709 0.433 -0.286 -0.219 

OLS/Transformed 0.001 0.426 -0.293 -0.156 

Ridge 0.005 0.046 0.044 -0.010 

LTS 0.003 0.471 -0.332 -0.174 

RLTS 0.001 0.176 -0.069 -0.060 

Method S.E. 

0  

S.E. 

1  

S.E. 

2  

S.E. 

3  

t-value 

0  

t-value  

1  

t-value  

2  

t-value 

3
 
 

OLS/ 
original 

9.978 0.302 0.258 0.160 0.117 0.144 -0.111 -0.137 

OLS/ 
Transformed 

0.002 0.297 0.265 0.114 0.000 0.144 -0.111 -0.137 

LTS 0.003 0.337 0.301 0.130 -0.004 0.140 -0.110 -0.134 

RLTS 0.003 0.297 0.265 0.114 0.000 0.144 -0.111 -0.137 
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Fig. 1.  Plot of OLS residual versus fitted values  

(original data) 

 

 

Fig. 2. Plot of OLS residual versus fitted values 

(Transformed data) 

 

Fig. 3. Plot of Ridge Regression residual versus fitted 

values (Transformed data) 

 

 

Fig. 4. Plot of LTS residual versus fitted values 

(Transformed data) 

 

Fig. 5.  Plot of RLTS residual versus fitted values 

(Transformed data) 

4. Conclusion  

First required in the data is to detection the 

multicollinearity. Ridge Regression (RR) is an 

alternative estimation method when has an extremely 

high of multicollinearity in the data therefore RR is a 

more advanced solution of multicollinearity but in 

general greatly reduces the standard error and giving 

more reliable estimates of β. 

The robust ridge regression estimator allows to protect 

the data against outliers and shrink the regression 

coefficients. Replaced RR with the new proposed 

estimation method used ridge least trimmed squares-
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based number of the data points and strength of 

multicollinearity in it. 

The performance of the proposed method is better 

than other estimators used. Then principal focus in this 

paper would be to produce reliable techniques for 

solve the problem of multicollinearity in the presence 

of outliers. Even though empirical study discloses the 

OLS estimation is often impacted by the outliers.  

Conclude that OLS it isn't reliable in presence of 

multicollinearity. However, the RLTS arises to become 

basic all data efficiency and much reliable because it is 

less impacted by the outliers. Finally, the outcomes 

appeared the point out the LTS and RLTS methods 

provides a substantial improvement within the other 

existing technique for solve the problems of 

multicollinearity in the data. 
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