
Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

This is an open access article distributed under the Creative Commons Attribution License

Copyright ©2017. e-ISSN: 2520-789X

https://doi.org/10.25007/ajnu.v11n3a673

162

OFFLINE OCR ALGORITHM TO DETECT KURDISH/ ARABIC

CHARACTERS IN SCANNED DOCUMENT

Sardar Omar Salih 1

1 Department of Information Technology, Polytechnic University, Kurdistan Region –Iraq

ABSTRACT
In this paper, Algorithm named (MRWL) Max Rightmost White Line is proposed to detect Kurdish/ Arabic characters’

segmentation in scanned document (printed document), it works in preprocess and segmentation stages of OCR processes,

these two stages are significant parts of OCR and affect the accuracy of algorithm. The MRWL starts to remove text margins

around document to reduce processing time, then, scans to find Top Line (TL) and Bottom Line (BL) for each sentence in

paragraph which be used to measure height of characters. Based on TL and BL, the Base Line (BSL) can be detected using

horizontally Most Frequency Black Pixel (MFBP) which is useful to find characters’ segmentation.

Finding TL, BL and BSL of each sentence help to find characters location in document. Six phases involve in algorithm, ea ch

phase has its own functionally. The Algorithm is tested with different input documents and the average accurate rate of detected

segmentations is recorded 96.93%.

KEYWORDS: Script, Character, Top Line (TL) and Bottom Line (BL), Base Line (BSL), OCR, Kurdish/ Arabic characters.

1. Introduction

In some situation scanned document (hand written

and printed text) are required to encoded to the text

form for modifying, coping, searching, sorting and

other text manipulating process. The algorithm is

designed to find location of characters in scanned

document, then, detected characters can be compared

with the Kurdish / Arabic characters’ using such

available comparation algorithm like Fourier analysis,

boundary line encoding, polygonal approximation

and Chain encoding (Shridhar and Badreldin, 1984).

Detecting Kurdish/ Arabic characters’ segmentations

are the challenge compared to Latin characters like

English, reasons , Kurdish/ Arabic script

characteristics, such that , characters are cursive,

ligatured , overlapped and no such regular patterns

between each character, for instance, white line in

between which exist in English script, differ in size and

diacritics (special mark over or under characters),

characters can be written in many glyphs, depend on

location in word begin, middle , end and isolate. See

Table1 Glyphs of characters in Kurdish/Arabic script.

(Althobaiti and Lu, 2017; Shatnawi, 2015)

Table 1: Glyph of characters in Kurdish/Arabic script

2. RELATED WORK

There are many attempts to increase accuracy rate of

recognition characters in Kurdish / Arabic scanned

documents, in 1988 Al-Badr proposed method named

“shape primitives” and obtain accurate rate 94.1% for

scanned symbols (Al-Badr & Haralick, 1998).

 After that, 2004, Haraty,and Ghaddar use algorithm

based on neural networks , the accuracy rate is

recorded 73% (Haraty,and Ghaddar 2004).

 In 2004, Tomeh, Nadi, et al. Apply linguistically and

semantically features to pre-achieved OCR system

https://doi.org/10.25007/ajnu.v11n3a673

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

163

followed an n-best list re-ranking approach. The result

shows by 10.1% to 11.4%-word error rate on both

scanned and handwrite document (Tomeh et al., 2013).

 Another related work, in 2012, conducted to

recognize Kurdish/ Arabic text by Aljarrah, Inad, et al.

they use “Lookup Dictionary” to correctly classify

characters. This method improves accuracy rate

ranging from 93.5% and 96.1% (AL jarrah et al., 2012).

 Moreover, in 2018, Rasty and Hossein proposed the

algorithm to enhance characters recognition in

Kurdish characters, they come up with accuracy result

90.82%.

 During this journey, proposed MRWL algorithm in

this paper come up with a result of accuracy 96.93% of

scanned documents according to the cases exclude

non-hand write documents.

3. PHASES OF DESIGNING MRWL

MRWL has six main phases in order to locate

characters in document, the followings are the

explanation of each of them.

3.1 PHASE ONE: CONVERTING SCANNED

DOCUMENT TO THE MATRIX OF BINARY DATA

RESPRESENTS WHITE AND BLACK PIXELES

In order to detect characters, scanned image is

converted to binary with bunch of ‘0’s and ‘1’s and

save in the array of two dimensions (width by height).

‘0’ indicates to black pixel (characters) and ‘1’ white

pixel (document background). Figure 1 shows how

characters are represented in matrix. The algorithm

checks scanned image , in case, if it is a RGB image

(colored), then, it converts to grayscale image using

formula 0.30*R + 0.59*G + 0.11*B or this can be done

using MATLAB (8.3.0.532 (R2014a)) build in functions

, then, ,gray image can be converted to binary using

threshold is a constant, which it is value calculated

using threshold methods (Sezgin and Sankur, 2004) .

Fig. 1: characters represent as bunch of 0s and 1s

3.2 PHASE TWO: CROPPING TOP, RIGHT AND

LEFT MARGINS OF SCANNED DOCUMENT

Cropping margins (white space from edge of the

document to the text) help to reduce time of scanning.

The figure bellow shows margins of scanned

document.

Fig. 2: Top, left and right margins of scanned document

To find, Right Margin (RM), it scans from right to left

and looks at black pixel (0), if it is detected, then, first

right black pixel location (distance of pixels from right

edge of document) is stored in temporary array , then,

it goes to next row and same process is applied till to

reach end of rows (height of array), and minimum

number in temporary array is considered to be (RM) .

the following Figure 3 pseudocode of RM.

function RightMargin():

 temArray[height]

 K=1;

 for i=1 to height do

 for j=1 to width do

 if image[i,j]== 0 then

 temArray[k++] = j /* j is a distance from right

 e. dge of document to rightmost black pixel */

 break;

 end

 end

 end

 return Min(temArray)

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

164

end

Fig. 3: Finding right margin

Same process is applied to find Left Margin (LM) but,

scanning is opposite to RM, it scans from left to right

and stores leftmost black pixel, then maximum

number is considered LM. See the following Figure 4

pseudocode of LM.

function LeftMargin():

 temArray[height];

 K=1;

 for i=1 to height do

 for j=width to RM do

 if image[i,j]== 0 then

 temArray[k++] = j

/* j is a distance from left edge of document to leftmo

st black pixel */

 break;

 end

 end

 end

 return Max(temArray)

end

Fig. 4: Finding left margin

 For Top Margin (TM), it scans from up to down until

find black pixel and store in temporary array, then it

goes to next columns and same process is applied until

reach LM, then, minimum number in temporary array

is TM. See the following Figure 5 pseudocode of TM.

function TopMargin():

 temArray[height];

 K=1;

 for i=1 to height do

 for j=RM to LM do

 if image[j,i]== 0 then

 temArray[k++] = j

/* j is a distance from top edge of document to topmo

st black pixel */

 break;

 end

 end

 end

 return Min (temArray)

end

Fig. 5: Finding top margin

 Last sentence bottom’s line is considered a Bottom

Margin (BM), this can be finding with bottom line (BL)

function will be explained later. The following Figure

6 is margins cropped of document in Figure 2 above,

after applying above functions.

Fig. 6: Figure two after margins cropped

3.3 PHASE THREE: TOP, BOTTOM, MIDDLE AND

BASE LINES OF EACH SENTENCE IN SCANNED

DOCUMENT

 TL, BL, ML and BSL in each sentence are the keys to

detect characters in scanned document for this

algorithm. See figure 7 TL, BL, ML and BSL in

sentence. To find BSL (is a horizontally line across

sentence that has highest intensive black pixel, see

Figure 7) in each sentence, the TL and BL first need to

be located. if BSL is assumed as ML between TL and

BL (TL – BL / 2), in most cases, this ML is not crossed

in BSL, there for, it calls Inaccurate Base Line (IBL), see

Figure 7 ML is not crossed in BSL. Next phase explains

how to find accurate BSL?

Fig. 7: TL, BL, ML and BSL of scanned document

 To find TL, it scans from bottom line of previous

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

165

sentence (column by column) by constant value 100

pixels and store topmost black pixel in temporary

array, the minimum number among temporary array

is assigned as TL. 100 pixels constant is chosen in

behave of height of document, due to, BL of previous

sentence is closed to TL of next sentence. therefore, 100

pixels is enough to find TL, also, if image height is used

and sentences length are not equal in paragraphs, this

causes to unexpected ML which will be used in BL

function. See Figure 8 pseudocode of TL.

function TopLine ()

 BL = TM // Bottom Line = Top Margin

 while BL < Height do

 temArray [LM] /*create arrat ,

size of temp array = Left Margin = document width */

 K=1

 if BL + 100 < Height then

 HE =BL+100 /* HE = Hight Estimated is 100 fro

m BL */

 else

 HE =row

 end

 for j=RM to LM do

 for i=BL+1 to HE do

 if image[i,j]== 0 then

 temArray[k++] = I /*

i is a distance from top of sentence to black pixel */

 break

 end

 end

 end

 end

 ML = median(temArray) /*

Middle line = Median value, ML will be used to find

bottom*/

 return Min(temArray) /*

Min number in array which is considered Top Line */

end

Fig. 8: Top line function

To detect BL, it scans from assume line ML (ML

calculates as Median from Top Line function) row by

row until reached to first white line bellow sentence

and assigned as BL. See Figure 9 pseudocode of BL.

Function BottomLine()

 for i= ML to height do

 findBlack=0

 for j= RM to LM do

 if image[i,j]== 0 then // Black Pixel = 0

 findBlack = true

 break

 end

 end

 if findBlack == false then //find white line is

bottom of sentence

 BL = i // i is a bottom line

 end

 end

 if i == heigh then

 BL = heigh // BL = heigh means Bottom Margin (

BM) (Last sentence bottom)

 end

 return BL /* return bottom Line

end

Fig. 9: Bottom line function

3.4 PHASE FOUR: ACCURATE BASE LINE IN

EACH SENTENCE

As mentioned, the horizontally ML passes between

both top and bottom line may not cross sentence’s BSL

(AlKhateeb et al., 2008). See Figure 10, in case, ML is

used as BSL in algorithm, it causes to find inaccurate

characters segments. Therefore, BSL is required to

locate in sentences, to find it, algorithm scans from BL

up to ML and stores detected black pixel position in

array, then, Most Frequency Black Pixel (MFBP) is

chosen as BSL, reason, BSL is the line has highest

intensive black pixel. See Figure 10. but in some cases,

this is not best choose due to, in case, characters are

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

166

isolated and not ligatured, see Figure 6, thus, highest

intensive black pixel cannot be best choice, therefore,

the distance in sentence from top to bottom is divided

into four equal area with four lines, top and bottom

lines are included named (L1, L2, L3 and L4) see Figure

10. In case MFBP line is located under L2 and above L4

is a best choose. otherwise L3 is considered best choose

not MFBP. In the algorithm, BSL itself is not used for

finding character location but line above it is uses for

characters segmentation, the next phase explains how

to find above BSL line.

Fig. 10: Most Frequency Black Pixel (MFBP) with L1, L2,

L3 and L4.

Fig. 11: MFBP is not cross BSL in isolated glyphs.

3.5 PHASE FIVE CALCULATE ABOVE BSL

To calculate above BSL, the algorithm scans from BSL

up to ML (column by column). If white pixel is

found, it stops and goes to next column and scans

again, if black pixel is found and continuing to go

up until reach white pixel, then, topmost black

pixel is stored in temporary array. (MFBP) in

array is assigned as above BSL. See Figure 12

above BSL.

Fig. 12: Above BSL

3.6 PHASE SIX: DETECTING CHARACTER ONE

BY ONE BASED ON THE ABOVE FINDINGS (TL,

BL AND ABOVE BSL)

After TL, BL and above BSL are detected for each

sentence in document, the process of finding character

segmentation for each of sentence as follow.

The algorithm starts to detect rightmost white pixels

from TL to above BSL minus one quarter (above BSL

minus one quarter is used in scanned instead above

BSL, to reduce two ligatured character detected as

one), see Figure 13, and stores the rightmost white

pixels in temporary array, the maximum number in

array is assumed start point (SP) to find end of

character. Two cases are considerable in this process:

Case one: if character is (isolated/white space after

character) (Figure 13, character 1 and 2) : In this case

SP is forwarded to first next white line from TL to BL,

then, calculate total of white lines until reach to next

black line , if they are less than five white lines, the line

before black line is end of character, see Figure 13

character (1). Otherwise, start point is end of character

if next white lines are more than five line (there is a

space after character), see Figure 13 character (2).

Case two: if character is ligatured no white space after

character (Figure 13, character 3 and 4):

in this case, SP is forwarded and continue to reach next

black line from TL to above BSL minus one quarter and

assigned white line before black line as end of

character see Figure 13 characters (3) and (4).

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

167

Fig. 13: Detected characters in sentence.

4. CASES TEST

The following documents (Figure 14 to 18) of no

handwrite documents are the output of algorithm and

their results shown in bellow Table 2. The highlight

locations indicate that the two neighbored characters

are detected as one (inaccurate detection) and others

are correctly detected. The Figure 19 handwrite

document is the output with highlights location

indicate that the more than neighbored characters are

detected as one and others are correctly detected.

Fig. 14: Random paragraph from RUDAW website

Fig. 15: Random paragraph from NRT website

Fig. 16: Modified paragraph with differ font size in each
sentence from KNNC website

Fig. 17: Random paragraph with glyphs is not ligatured

sentences

Fig. 18: Random paragraph in Latin (English) paragraph

from BBC website

Fig. 19: Handwrite scanned document

The above six random documents (Figure 14­19) with

different cases (font characteristics (name, size),

language and handwrite) are used as an input of

algorithm, the results are concluded in the following

Table 2. The following equation is used to calculate

rate of accuracy in each document.

The rate of accuracy =

Number of Correct characters detected in document

Total of Characters in document

SP

Next white

line
Next black

line

SP

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

168

Table 2: Testing Table

5. DISCUSSION

The MRWL algorithm is tested with output 97.05% of

correct detection segmentations in the paragraphs that

are taken randomly from RUDAW website, 96.14%

and 95.66% correct detection segmentations in

paragraphs that are taken from NRT and KNN website

in respectively, KNN paragraphs’ sentences are

modified to different font size for each sentence. The

98.52% correct located from English paragraphs and

97.29% with glyphs are not ligatured. These values

indicate that the average of accuracy in algorithm for

no handwrite is 96.93%, while, scanned handwrite text

is used in the test and 39.78% accurate rate of

characters are detected. Therefore, MRWL is not best

choose for paragraph written in handwrite.

by looking at (Figure 14 to 18), two common inaccurate

patterns are detected, first, two neighbored characters

that are in the end of words, like (كی) (نی) (می), are

detected as one, reason, last characters of them (ی) falls

under BSL, second, two neighbored characters that are

overlapped such that (هم)(هب)(گا) are detected as one,

this occur, as a result of, not white line over BSL

between two characters. Figure 16, the modified

sentences to variant font sizes are not affecting the

algorithm accuracy compared to (Rasty and Hossein)

proposed algorithm. These two inaccurate patterns,

can be developed with more researches to increase

accuracy of MRWL up to 99.99%.

The highest inaccurate locations are detected, in the

handwrite document (see Figure 19), the reasons, the

sentences are not in a straight line, therefore,

algorithm cannot detect TL, BL and BSL which are the

backbone of algorithm, therefore, MRWL is not

working correctly with handwrite scripts. More that,

MRWL can work with other than Kurdish/Arabic

such as English and 98.52% of accuracy is recorded.

6. CONCLUSION

The MRWL passes six phases, in each of them, there is

a function, starts from cutting margin, and to functions

of finding TL, BL, BSL and above BSL, These Lines are

considered the backbone for detecting characters’

segmentation. The algorithm is tested with six random

documents with specific cases as input and the output

of each of them is measured to find accuracy of MRWL,

the average of accuracy of non­handwrite document is

recorded as 96.93% is more than the average of

accuracy reported by (Rasty, Hossein, et al.) which is

90.82% (Yaseen and Hassani, 2018) and (Omar

Al­Jarrah, Al­Kiswany , et al.) is 87% (Al­Jarrah et al.,

2006) and 96.1% with lookup dictionary . This rate can

be increased, if two inaccuracy patterns mentioned in

discussion be addressed. For the hand write

documents, MRWL cannot be used, due to, fewer

correct characters are detected which is 39.78%.

7. REFERENCES

1. AL­Shatnawi Atallah and Khairuddin Omar. Methods

of arabic language baseline detection the state of art.

IJCSNS, 8(10):137, 2008. Malayappan Shridhar and A.

Badreldin. High accuracy character recognition

algorithm using fourier and topological descriptors.

Pattern Recognition, 17(5):515–524, 1984.

2. Hassan Althobaiti and Chao Lu. A survey on arabic

optical character recognition and an isolated

handwritten arabic character recognition algorithm

using encoded freeman chain code. In 2017 51st Annual

Conference on Information Sciences and Systems (CISS),

pages 1–6. IEEE, 2017.

3. Al-Badr, B., & Haralick, R. M. (1998). A segmentation-

free approach to text recognition with application to

Arabic text. International Journal on Document Analysis

and Recognition, 1(3), 147–166.

4. Haraty, R., & Catherine G., (2004). Arabic text

recognition.

5. Tomeh, N., Habash, N., Roth, R., Farra, N., Dasigi, P., &

Diab, M. (2013). Reranking with linguistic and semantic

Academic Journal of Nawroz University (AJNU), Vol.11, No.3, 2022

169

features for Arabic optical character recognition.

Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), 549–

555.

6. Aljarrah, I., Al-Khaleel, O., Mhaidat, K., Alrefai, M.,

Alzu’bi, A., & Rabab’ah, M. (2012). Automated system

for Arabic optical character recognition. Proceedings of

the 3rd International Conference on Information and

Communication Systems, 1–6.

7. Maad Shatnawi. Off­line handwritten arabic character

recognition: a survey. In Proceedings of the international

conference on image processing, computer vision, and

pattern recognition (IPCV), page 52. The Steering

Committee of The World Congress in Computer

Science, Computer …, 2015.

8. Optimizing the color­to­gray­scale conversion for

image classification.

9. Mehmet Sezgin and Bülent Sankur. Survey over image

thresholding techniques and quantitative performance

evaluation. Journal of Electronic imaging, 13(1):146–166,

2004.

10. Jawad H. AlKhateeb, Jinchang Ren, Stan S. Ipson, and

Jianmin Jiang. Knowledge­based baseline detection

and optimal thresholding for words segmentation in

efficient pre­processing of handwritten Arabic text. In

Fifth International Conference on Information Technology:

New Generations (itng 2008), pages 1158–1159. IEEE,

2008.

11. Rasty Yaseen and Hossein Hassani. Kurdish optical

character recognition. UKH Journal of Science and

Engineering, 2(1):18–27, 2018.

12. Omar Al­Jarrah, Samer Al­Kiswany, Mohammad

Fraiwan, and Hani Khasawneh. A new algorithm for

arabic optical character recognition. WSEAS Transactions

on Information Science and Applications, 3, 2006.

