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1. INTRODUCTION

Cryptography is the science oriented with privacy and 
security. Which is made up of several cryptosystems, 
these cryptosystems are basically a collection of algorithms 
that aim at securing information and data. Recently, 
cryptosystems are wide utilized in all branches of digital 
technology, electronic mails, and internet banking. This 
paper shortly discusses the most favorable cryptosystems 
and investigates the most common private-key cipher. On 
January 2, 1997, the National Institute of Standards and 
Technology (NIST) held a challenge for a new encryption 

standard. The previously used standard, Data Encryption 
Standard (DES), was no longer capable of providing 
sufficient for security. The algorithm had been used since 
November 23, 1976. Since then, computers have developed 
providing greater computer power, thus the algorithm was 
rendered not safe. In 1998 a specially developed computer, 
the DES cracker was developed by the Electronic Frontier 
Foundation for approximately $ 250,000 and winning the 
RSA DES Challenge II-2 (Kaufman et al., 2002).

The alternatives for a new encryption standard were 
Triple DES and International Data Encryption Algorithm. 
However, these alternatives were slow and not free 
to implement due to patent rights. NIST required an 
algorithm that provided high security that is efficient, 
flexible, and easy to implement and free to use (Dar et al., 
2014).

About 3 years into the contest, NIST chose the Rijndael 
algorithm (Dar et al., 2014) which is pronounced “Rhine 
Dahl” in English (National Institute of Standards and 
Technology, 2001).
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On November 26, 2001, the Rijndael algorithm was 
announced as the new encryption standard by the Federal 
Information Processing Standards Publication 197. 
A collaboration of efforts from two Belgian cryptographers, 
Vincent Rijmen and Joan Daemen, resulted in an algorithm 
in which replaced the old Data Encryption Standard (DES). 
This standard was called Advanced Encryption Standard 
(AES) and is currently still the standard for encryption 
(Daemon and Rijman, 2003).

2. RELATED WORKS

These days, AES is used in a lot of research and development. 
Moreover, individual implementations of the AES exist. In 
this article, output feedback (OFB) is used to encrypt the 
plain text and the key producing ciphered text and ciphered 
key. The ciphered key and ciphered text are inserted 
into AES for encryption. The AES algorithm resumes as 
usual until the final cipher text is produced which is sent 
to the receiver along with the original key. Note that the 
described algorithm mainly focuses on algorithm privacy; 
meanwhile, the key is considered public. Hence, the 
algorithm emphases on improving the AES algorithm by 
encrypting the key and plain text using OFB; these results 
in a higher security algorithm based on OFB enhancement 
to AES security (Daemon and Rijman, 2003).

3. THE PROPOSED APPROACH OF ENCIPHERING

3.1. AES Algorithm

AES is a reversible algorithm, i.e.,  encryption and 
decryption steps can be performed in reverse order for 
each task. AES is easier to implement and explain because 
it operates on bytes. The key used in AES is processed 
through a process called key expansion, where each key is 
expanded into individual subkeys in each iteration of the 
algorithm, which is described later in the paper.

As pointed earlier, AES is an iterated block cipher. This 
indicates that the same operations are performed many 
times on a fixed number of bytes. These operations can be 
subdivided to the below functions:

ADD ROUND KEY
BYTE SUB
SHIFT ROW
MIXCOLUMN

An iteration of the above steps is called a round. The 
number of iteration used to encrypt some text is relatively 
dependent on the key size, as shown in Table 1.

At the last iteration MixColumn step is not performed, 
this is to make the algorithm reversible at decryption.

Encryption (Rijndael Block and Key)
The AES algorithm applies to a fixed block and key size; 

the block and key size can be one of the followings. Block 

sizes can be of 128, 168, 192, 224, and 256 bits, while the 
key sizes can be of 128, 192, and 256 bits (Dar et al., 2014). 
AES-128 is the standard encryption where a 128-bit block 
and key are used. The block size is usually referred to as Nb 
which is the number of columns in a block, while Nk refers 
to the key size. Each row in an Nb block column consists 
of four cells of 8 bytes each for AES-128 (DI Management 
Services Pty Limited, 2003).

In AES-128, each block consists of 128 bits. Nb can be 
determined by dividing 128 by 32, equals the number of 
bytes in each column. Hence, Nb is 4. The original plain 
text is stored in bytes in a block.

The Table  2  is a encryption cipher using a 16-byte key.

Decryption (Rijndael Block and Key)
Decryption process in AES is simple after understanding 

the encryption. Basically, the decryption is just the encryption 
reversed. The design of the algorithm allows the two processes 
to be invertible, hence applying the steps of encryption in 
the reverse order decrypts the cipher text. Thus, decryption 
starts at the last round of encryption with the last round key. 
When processing, each round does the process backward. 
Hence, the last key is added first to the last round. The 
addition inverse is addition itself, which is neat. Afterward 
the MixColumn step is applied. Consider that MixColumn is 
not applied at the last iteration. Furthermore, the MixColumn 
inverse table is used (DI Management Services Pty Limited, 
2003). The MixColumn inverse table is generated using 
another matrix using a similar process the MixColumn table 
was generated. However, there are no shortcuts to generate 
the MixColumn inverse table. Thus, the matrix multiplication 
needs to be performed in the field GF 28.

The Table  3  is a AES decryption cipher using a 16-byte key.

3.2. AES Cipher Functions

Rijndael Rounds
Each byte of a block at a given iteration is XORed with 

the corresponding byte from the expanded key. This is 

TABLE 1
Key Size Table

Key size (bytes) Block size (bytes) Rounds
16 16 10
24 16 12
32 16 14

TABLE 2
Rounds and Functions Encryption

Round Function
‑ Add Round Key(State)
0 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
1 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
2 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
3 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
4 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
5 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
6 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
7 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
8 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
9 Add Round Key(Shift Row(Byte Sub(State)))
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done for the 16 bytes at a given round. The bytes from the 
expanded key are never reused. Hence, once the 16 bytes 
of the first block are XORed with the expanded key’s 16 
bytes then the bytes 1-16 from the expanded key are never 
used again (Trenholme, n.d). At the second iteration, the 
Add Round Key function is called on bytes 17-32 which 
are XORed against the state.

The first time Add Round Key gets executed.

State 1 2 3 4 5 6 7 8
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 1 2 3 4 5 6 7 8

State 9 10 11 12 13 14 15 16
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 9 10 11 12 13 14 15 16

The second time Add Round Key gets executed.

State 1 2 3 4 5 6 7 8
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 17 18 19 20 21 22 23 24

State 9 10 11 12 13 14 15 16
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 25 26 27 28 29 30 31 32

And so on for each round of execution.

During decryption, the process is reversed. The state 
(16 bytes of ciphertext) is first XORed against the last 16 
bytes of the expanded key, then the second last 16 bytes 
and so on.

Byte Sub
During encryption, each value of the state is replaced 

with the corresponding SBOX value, as shown in Table 4 .
During decryption, each value in the state is replaced with 

the corresponding inverse of the SBOX, as shown in Table 5.

Rijndael Shift Row
Shift Row operation is basically arranging the state in 

a matrix and performing a circular shift for each row. The 
circular shift just moves each byte one space over. Thus, it is 
not a bitwise shift, i.e., a byte in position three will be moved to 
position four and so on for the rest. However, for the last byte, 
it is placed in the first position of the state (Trenholme, n.d).

In detail: The state is arranged in a 4×4 matrix (square). 
The process is a little misleading since the matrix is formed 
in a vertical order while it’s shifted in a horizontal manner.

So, bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Will form a matrix:

	

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Depending on a row at a given state, reach row is 
moved over one, two or three each row is then moved over 
(shifted) 1, 2 or 3 spaces over to the right, depending on 
the row of the state. First, row is never shifted

	

Row1 0
Row3 1
Row3 2
Row4 3

TABLE 3
Rounds and Functions Decryption

Round Function
‑ Add Round Key(State)
0 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
1 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
2 Mix Column(Add Round Key(Byte Sub(Shift Row (State))))
3 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
4 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
5 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
6 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
7 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
8 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
9 Add Round Key(Byte Sub(Shift Row(State)))

TABLE 4
AES S‑Box Lookup

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X AX BX CX DX EX FX
0X 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1X 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2X 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3X 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4X 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5X 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6X 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7X D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8X 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9X 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
AX 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
BX FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
CX 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
DX 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
EX A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
FX 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

For example, HEX 19 would get replaced with HEX D4
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The following table shows how the individual bytes are 
first arranged in the table and then moved over (shifted).

Blocks 16 bytes long:

	

From To
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

1 5 9 13
6 10 14 2
11 15 3 7
16 4 8 12

During decryption, the same process is reversed and all 
rows are shifted to the left:

	

From To
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

1 5 9 13
14 2 6 10
11 12 3 7
8 12 16 4

Rijndael MixColumn
This may be the most sophisticated step in the process, 

which is difficult to explain and understand. It’s made up 
of two parts, first involves multiplying specific parts of the 
state against specific parts of the matrix, while the second 
involves how the multiplication is carried out over what 
is called a Galois Field (Trenholme, n.d).

Matrix multiplication
As described in the Shift Row Function, the state is 

put into a four-row table. Each column of the table at a 
time is multiplied against every value of the matrix (a 
total of sixteen multiplications); afterward the results of 
the multiplications are XORed together to produce four 
result bytes for the later state, so four bytes of input, 
16 multiplication, 12 XORs, and four bytes of output. 
That being said, each one matrix two is multiplied 

against each  value of the state column at one time 
(Trenholme, n.d).

Multiplication matrix

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

16-byte state

b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15
b4 b8 b12 b16

Below is a demonstration of how the first column state 
bytes are multiplied against the matrix:

b1=(b1*2) XOR (b2*3) XOR (b3*1) XOR (b4*1)
b2=(b1*1) XOR (b2*2) XOR (b3*3) XOR (b4*1)
b3=(b1*1) XOR (b2*1) XOR (b3*2) XOR (b4*3)
b4=(b1*3) XOR (b2*1) XOR (b3*1) XOR (b4*2)

(b1=specifies the first byte of the state)

Below is a demonstration of how the second column 
state bytes are multiplied against the matrix:

b5=(b5*2) XOR (b6*3) XOR (b7*1) XOR (b8*1)
b6=(b5*1) XOR (b6*2) XOR (b7*3) XOR (b8*1)
b7=(b5*1) XOR (b6*1) XOR (b7*2) XOR (b8*3)
b8=(b5*3) XOR (b6*1) XOR (b7*1) XOR (b8*2)

And so on until all columns of the state are exhausted.

Galois Field Multiplication
The multiplication in the previous section is performed 

over a Galois Field. The mathematics used in the 
multiplication is beyond the scope of this article. Instead, 
this section will focus on the multiplication implementation 

TABLE 5
AES Inverse S‑Box

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X AX BX CX DX EX FX
0X 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1X 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2X 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3X 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4X 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5X 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6X 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7X D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8X 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9X 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
AX 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
BX FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
CX 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
DX 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
EX A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
FX 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

For example, HEX D4 would get replaced with HEX 19
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which is done easily using the two Tables  7 and 8 
(Trenholme, n.d, Jain, 2011).

The multiplication result can be easily obtained from a 
lookup of the L table, by adding the results, and a look up 
at table E. The addition process is a simple mathematical 
addition and not a bitwise AND operation. Numbers 
being multiplied through the MixColumn function are 
first converted to HEX which must form a minimum of 
two-digit Hex number. The first digit of the Hex value is 
used for the vertical index, while the second is used on the 
horizontal index. If the value multiplied is converted into 
a single hex value, then a 0 value is added to the left of it 
to represent the 0-vertical index (Jain, 2011).

For example, consider the hex values multiplied are 
AF * 8; first, we perform a look up at table L for (AF) and 
(08) which returns (B7) and (4B), respectively, afterward 

the values are simply added together. If the resultant value 
is greater than (FF), we subtract (FF) from the addition 
result. For example, B7+4B=102 which is greater than FF, 
so the following is performed: 102-FF=03. Then, 03 is used 
to lookup the E table, as before the first digit represents the 
vertical index while the second represent the horizontal 
index. For example, (03)=0F (Shneier, 2009).

Therefore, the result of multiplying AF * 8 over a Galois 
Field is 0F.

Two last exceptions are that:
Any number multiplied by one is equal to its self and 

does not need to go through the above procedure.
For example: FF*1=FF
Any number multiplied by zero equals zero.

Rijndael MixColumn Inverse
During decryption, the MixColumn the multiplication 

matrix is changed from inverse matrix (Table 6) to:

	

0 0 0 0

09 0 0 0

0 0 0 0

0 0 0 0

E B D 9

E B D

D 9 E B

B D 9 E

TABLE 7
E Table

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 01 03 05 0F 11 33 55 FF 1A 2E 72 96 A1 F8 13 35
1 5F E1 38 48 D8 73 95 A4 F7 02 06 0A 1E 22 66 AA
2 E5 34 5C E4 37 59 EB 26 6A BE D9 70 90 AB E6 31
3 53 F5 04 0C 14 3C 44 CC 4F D1 68 B8 D3 6E B2 CD
4 4C D4 67 A9 E0 3B 4D D7 62 A6 F1 08 18 28 78 88
5 83 9E B9 D0 6B BD DC 7F 81 98 B3 CE 49 DB 76 9A
6 B5 C4 57 F9 10 30 50 F0 0B 1D 27 69 BB D6 61 A3
7 FE 19 2B 7D 87 92 AD EC 2F 71 93 AE E9 20 60 A0
8 FB 16 3A 4E D2 6D B7 C2 5D E7 32 56 FA 15 3F 41
9 C3 5E E2 3D 47 C9 40 C0 5B ED 2C 74 9C BF DA 75
A 9F BA D5 64 AC EF 2A 7E 82 9D BC DF 7A 8E 89 80
B 9B B6 C1 58 E8 23 65 AF EA 25 6F B1 C8 43 C5 54
C FC 1F 21 63 A5 F4 07 09 1B 2D 77 99 B0 CB 46 CA
D 45 CF 4A DE 79 8B 86 91 A8 E3 3E 42 C6 51 F3 0E
E 12 36 5A EE 29 7B 8D 8C 8F 8A 85 94 A7 F2 0D 17
F 39 4B DD 7C 84 97 A2 FD 1C 24 6C B4 C7 52 F6 01

TABLE 8
L Table

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 00 19 01 32 02 1A C6 4B C7 1B 68 33 EE DF 03
1 64 04 E0 0E 34 8D 81 EF 4C 71 08 C8 F8 69 1C C1
2 7D C2 1D B5 F9 B9 27 6A 4D E4 A6 72 9A C9 09 78
3 65 2F 8A 05 21 0F E1 24 12 F0 82 45 35 93 DA 8E
4 96 8F DB BD 36 D0 CE 94 13 5C D2 F1 40 46 83 38
5 66 DD FD 30 BF 06 8B 62 B3 25 E2 98 22 88 91 10
6 7E 6E 48 C3 A3 B6 1E 42 3A 6B 28 54 FA 85 3D BA
7 2B 79 0A 15 9B 9F 5E CA 4E D4 AC E5 F3 73 A7 57
8 AF 58 A8 50 F4 EA D6 74 4F AE E9 D5 E7 E6 AD E8
9 2C D7 75 7A EB 16 0B F5 59 CB 5F B0 9C A9 51 A0
A 7F 0C F6 6F 17 C4 49 EC D8 43 1F 2D A4 76 7B B7
B CC BB 3E 5A FB 60 B1 86 3B 52 A1 6C AA 55 29 9D
C 97 B2 87 90 61 BE DC FC BC 95 CF CD 37 3F 5B D1
D 53 39 84 3C 41 A2 6D 47 14 2A 9E 5D 56 F2 D3 AB
E 44 11 92 D9 23 20 2E 89 B4 7C B8 26 77 99 E3 A5
F 67 4A ED DE C5 31 FE 18 0D 63 8C 80 C0 F7 70 07

TABLE 6
Fixed Matrix

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2
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Other than the change to the matrix table the function 
performs the same steps as during encryption.

MixColumn Example
The following examples are denoted in HEX.

MixColumn example during encryption
Input=D4 BF 5D 30
Output (0)=(D4*2) XOR (BF*3) XOR (5D*1) XOR (30*1)

=E(L(D4)+L(02)) XOR E(L(BF)+L(03)) XOR 5D XOR 30
=E(41+19) XOR E(9D+01) XOR 5D XOR 30
=E(5A) XOR E(9E) XOR 5D XOR 30
=B3 XOR DA XOR 5D XOR 30=04

Output (1)=(D4*1) XOR (BF*2) XOR (5D*3) XOR (30*1)
=D4 XOR E(L(BF)+L(02)) XOR E(L(5D)+L(03)) XOR 30
=D4 XOR E(9D+19) XOR E(88+01) XOR 30
=D4 XOR E(B6) XOR E(89) XOR 30
= D4 XOR 65 XOR E7 XOR 30=66

Output (2)=(D4*1) XOR (BF*1) XOR (5D*2) XOR (30*3)
=D4 XOR BF XOR E(L(5D)+L(02)) XOR E(L(30)+L(03))
=D4 XOR BF XOR E(88+19) XOR E(65+01)
=D4 XOR BF XOR E(A1) XOR E(66)
=D4 XOR BF XOR BA XOR 50=81

Output (3)=(D4*3) XOR (BF*1) XOR (5D*1) XOR (30*2)
=E(L(D4)+L(3)) XOR BF XOR 5D XOR E(L(30)+L(02))
=E(41+01) XOR BF XOR 5D XOR E(65+19)
=E(42) XOR BF XOR 5D XOR E(7E)
=67 XOR BF XOR 5D XOR 60=E5

MixColumn during decryption
Input 04 66 81 E5
Output (0)=(04*0E) XOR (66*0B) XOR (81*0D) XOR (E5*09)

=nE(L(04)+L(0E))  XOR E(L(66)+L(0B))  XOR 
E(L(81)+L(0D)) XOR E(L(E5)+L(09))

=E(32+DF) XOR E(1E+68) XOR E(58+EE) XOR E(20+C7)
=E(111-FF) XOR E(86) XOR E(146-FF) XOR E(E7)
=E(12) XOR E(86) XOR E(47) XOR E(E7)
=38 XOR B7 XOR D7 XOR 8C=D4

Output (1)=(04*09) XOR (66*0E) XOR (81*0B) XOR (E5*0D)
=E(L(04)+L(09)) XOR E(L(66)+L(0E)) XOR E(L(81)+L(0B)) 

XOR E(L(E5)+L(0D))
=E(32+C7) XOR E(1E+DF) XOR E(58+68) XOR E(20+EE)
=E(F9) XOR E(FD) XOR E(C0) XOR E(10E-FF)
=E(F9) XOR E(FD) XOR E(C0) XOR E(0F)
=24 XOR 52 XOR FC XOR 35=BF

Output (2)=(04*0D) XOR (66*09) XOR (81*0E) XOR (E5*0B)
=E(L(04)+L(0D)) XOR E(L(66)+L(09) XOR E(L(81)+L(0E)) 

XOR E(L(E5)+(0B))
=E(32+EE) XOR E(1E+C7) XOR E(58+DF) XOR E(20+68)
=E(120-FF) XOR E(E5) XOR E(137-FF) XOR E(88)
=E(21) XOR E(E5) XOR E(38) XOR E(88)
=34 XOR 7B XOR 4F XOR 5D=5D

Output (3)=(04*0B) XOR (66*0D) XOR (81*09) XOR (E5*0E)
=E(L(04)+L(0B) )  XOR E(L(66)+L(0D))  XOR 

E(L(81)+L(09)) XOR E(L(E5)+L(0E))
=E(32+68) XOR E(1E+EE) XOR E(58+C7) XOR E(20+DF)
=E(9A) XOR E(10C-FF) XOR E(11F-FF) XOR E(FF)
=E(9A) XOR E(0D) XOR E(20) XOR E(FF)
=2C XOR F8 XOR E5 XOR 01=30

3.3. Rijndael Key Expansion

Before any of the encryption or decryption processes 
are carried out; the key used must go through an 
expansion process. The resulted key from the expansion 
is used in the Add Round key function explained 
above. At each Add Round function call, a different 
part of the expanded key is XORed with the current 
state (Shneier, 2009). Thus, the Expanded Key must be 
large enough in order for this to work; it must provide 
enough key material for each time the Add Round Key 
function is called, which is called at each iteration plus 
one extra call at the beginning of the algorithm. Hence, 
the expanded key size must always be (16*(number of 
round+1)). The 16 in this function equals the size of the 
block in bytes, which provides sufficient key material 
for each round plus the one at the beginning (Daemen 
and Rijmen, 2013).

In this algorithm, the actual key is stretched out to 
provide enough key space for the algorithm because 
the actual key is smaller than the subkeys used at each 
iteration.

The key expansion routine executes a maximum of 
4 consecutive functions. These functions are:

ROT WORD
SUB WORD
RCON
EK
K

An iteration of the above steps is called a round. The 
number of rounds of the key expansion algorithm depends 
on the key size, as shown in Table 9.

The first bytes of the expanded key and the actual key 
are identical. Consider that the key is 16 bytes longs, after 
the key is expanded; the first 16 bytes of the expanded key 
are the same as the original key. At each round, 4 bytes 
are added to the expanded key except the first rounds. 
The 4 bytes added at each round are taken as input in 
at the next round and 4 other bytes are returned. It’s 
important to note that all 4 functions are always called 
in each round:

TABLE 9
Key Expansion

Key size (bytes) Block size (bytes) Expansion algorithm rounds Expanded bytes/round Rounds Key 
Copy

Rounds Key 
Expansion

Expanded 
Key (bytes)

16 16 44 4 4 40 176
24 16 52 4 6 46 208
32 16 60 4 8 52 240



Original article  |  doi: 10.25007/ajnu.v6n3a70

Academic Journal of Nawroz University (AJNU)� 7

4 Rounds for a 16 byte Key
6 Rounds for a 24 byte Key
8 Rounds for a 32 byte Key

At the remaining rounds, the k function result is XORed 
with the EK function result. Except when the key is 32 bytes 
long, the Subword function is called additionally every 8 
rounds beginning at round 13.

3.4. Rijndael Key Expansion Functions

Rot Word (4 bytes)
This does a circular shift on 4 bytes similar to the Shift 

Row Function.
1, 2, 3, 4 to 2, 3, 4, 1
Sub Word (4 bytes)
This step applies the S-box value substitution as 

described in bytes sub function to each of the 4 bytes in 
the argument.

Rcon((Round/(KeySize/4))-1)
This function returns a 4 byte value based on the 

following table

Rcon(0)=01000000
Rcon(1)=02000000
Rcon(2)=04000000
Rcon(3)=08000000
Rcon(4)=10000000
Rcon(5)=20000000
Rcon(6)=40000000
Rcon(7)=80000000
Rcon(8)=1B000000
Rcon(9)=36000000
Rcon(10)=6C000000
Rcon(11)=D8000000
Rcon(12)=AB000000
Rcon(13)=4D000000
Rcon(14)=9A000000

For example, for a 16-byte key Rcon is first called in 
the 4th round

	 (4/(16/4))-1=0

In this case, Rcon will return 01000000
For a 24 byte, key Rcon is first called in the 6th round

	 (6/(24/4))-1=0

In this case, Rcon will also return 01000000.

	 EK(Offset)

EK function returns 4 bytes of the Expanded Key after 
the specified offset. For example, if offset is 0 then EK will 
return bytes 0,1,2,3 of the expanded key.

	 K(Offset)

K function returns 4 bytes of the Key after the specified 
offset. For example, if offset is 0 then K will return bytes 
0,1,2,3 of the expanded key.

3.5. Rijndael Key Expansion Algorithm

The Table 10 is a description of the key expansion in 
a table formation. This is because the algorithm depends 
on the key size, thus it’s challenging to explain in writing 
(Daemen and Rijmen, 2013; Wagner, 2002).

Notice that most values that change in the tables 
below equal the current round number. This makes 
implementation in code much easier as these numbers can 
easily be replaced with loop variables.

16-byte Key Expansion

Each round (except rounds 0, 1, 2 and 3) will take the 
result of the previous round and produce a 4-byte result 
for the current round. Notice the first 4 rounds simply 
copy the total of 16 bytes of the key, as shown in Table 11.

4. OFB

OFB Block Mode generates a synchronous stream cipher 
from a block cipher. It produces key stream bocks, which 
are XORed with blocks of plain text to make cipher text. 
Like any stream cipher algorithm, a bit flipped in ciphertext 
results in a bit flipped in the same location in the plain 
text. This allows most error correcting codes to function 
normally even when encryption is not applied yet (Daemen 
and Rijmen, 2013; McGill, 2000; Wagner, 2002).

Because of the symmetry of the XOR operation, 
encryption and decryption are exactly the same:

CJ=PJ⊕OJ
PJ=CJ⊕OJ
OJ=EK(IJ)
IJ=OJ−1,……I0=IV

Example for 8-bits input when the initial vector=01001101 
and initial P0= 11100101:

IV=01001101
P0=11100101
C0=IV=01001101
C1=EK (P0⊕Ci-1)
C1= 01001101 ⊕ 11100101=10101000

TABLE 10
Key Expansion Formula

Field Description
Round A counter representing the current step in the key 

expansion algorithm, think of this as a loop counter
Expanded 
Key Bytes

Expanded key bytes effected by the result of the 
function(s)

Function The function(s) that will return the 4 bytes written to 
the effected expanded key bytes
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Pi=EK (Ci-1)⊕Ci
P0= 01001101⊕ 10101000=11100101 to original P.

Each cipher operation in OFB depends on all the 
previous cipher operations executed as shown in Figure 1 
and Figure 2, thus operations cannot be executed in parallel. 
However, the block cipher operations can be performed 
beforehand enabling the last step of the procedure to be 
executed in parallel whenever the plain text or cipher text 
is available. This is because the plain text or cipher text is 
only required for the final XOR operation (McGill, 2000).

It is possible to use Chaining Block Cipher Mode 
Operation, with a constant string of zeroes as input, to 
acquire a key stream of OFB mode. This allows exploiting 
the fast hardware implementations of CBC mode 
operations for OFB mode operations, which is highly 
advantageous to OFB algorithm. The average cycle length 
of OFB mode can be reduces by a factor of 232 or more is 
OFB is used with a partial block feedback similar to Cipher 
Feedback Block Mode Operation. A mathematical model, 
originally proposed by Davies and Parkin, which was 
substantiated by experimental results a cycle length close 

TABLE 11
Functions and Key Expansion

Round Expanded Key Bytes Function
0 0 1 2 3 K(0)
1 4 5 6 7 K(4)
2 8 9 10 11 K(8)
3 12 13 14 15 K(12)
4 16 17 18 19 Sub Word (Rot Word (EK((4‑1)*4))) XOR Rcon((4/4)‑1) XOR EK((4‑4)*4)
5 20 21 22 23 EK((5‑1)*4) XOR EK((5‑4)*4)
6 24 25 26 27 EK((6‑1)*4) XOR EK((6‑4)*4)
7 28 29 30 31 EK((7‑1)*4) XOR EK((7‑4)*4)
8 32 33 34 35 Sub Word (Rot Word (EK((8‑4)*4))) XOR Rcon((8/4)‑1) XOR EK((8‑4)*4)
9 36 37 38 39 EK((8‑1)*4) XOR EK((9‑4)*4)
10 40 41 42 43 EK((10‑1)*4) XOR EK((10‑4)*4)
11 44 45 46 47 EK((11‑1)*4) XOR EK((11‑4)*4)
12 48 49 50 51 Sub Word (Rot Word (EK((12‑4)*4))) XOR Rcon((12/4)‑1) XOR 

EK((12‑4)*4)
13 52 53 54 55 EK((13‑1)*4) XOR EK((13‑4)*4)
14 56 57 58 59 EK((14‑1)*4) XOR EK((14‑4)*4)
15 60 61 62 63 EK((15‑1)*4) XOR EK((15‑4)*4)
16 64 65 66 67 Sub Word (Rot Word (EK((16‑4)*4))) XOR Rcon((16/4)‑1) XOR 

EK((16‑4)*4)
17 68 69 70 71 EK((17‑1)*4) XOR EK((17‑4)*4)
18 72 73 74 75 EK((18‑1)*4) XOR EK((18‑4)*4)
19 76 77 78 79 EK((19‑1)*4) XOR EK((19‑4)*4)
20 80 81 82 83 Sub Word (Rot Word (EK((20‑4)*4))) XOR Rcon((20/4)‑1) XOR 

EK((20‑4)*4)
21 84 85 86 87 EK((21‑1)*4) XOR EK((21‑4)*4)
22 88 89 90 91 EK((22‑1)*4) XOR EK((22‑4)*4)
23 92 93 94 95 EK((23‑1)*4) XOR EK((23‑4)*4)
24 96 97 98 99 Sub Word (Rot Word (EK((24‑4)*4))) XOR Rcon((24/4)‑1) XOR 

EK((24‑4)*4)
25 100 101 102 103 EK((25‑1)*4) XOR EK((25‑4)*4)
26 104 105 106 107 EK((26‑1)*4) XOR EK((26‑4)*4)
27 108 109 110 111 EK((27‑1)*4) XOR EK((27‑4)*4)
28 112 113 114 115 Sub Word (Rot Word (EK((28‑4)*4))) XOR Rcon((28/4)‑1) XOR 

EK((28‑4)*4)
29 116 117 118 119 EK((29‑1)*4) XOR EK((29‑4)*4)
30 120 121 122 123 EK((30‑1)*4) XOR EK((30‑4)*4)
31 124 125 126 127 EK((31‑1)*4) XOR EK((31‑4)*4)
32 128 129 130 131 Sub Word (Rot Word (EK((32‑4)*4))) XOR Rcon((32/4)‑1) XOR 

EK((32‑4)*4)
33 132 133 134 135 EK((33‑1)*4) XOR EK((33‑4)*4)
34 136 137 138 139 EK((34‑1)*4) XOR EK((34‑4)*4)
35 140 141 142 143 EK((35‑1)*4) XOR EK((35‑4)*4)
36 144 145 146 147 Sub Word (Rot Word (EK((36‑4)*4))) XOR Rcon((36/4)‑1) XOR 

EK((36‑4)*4)
37 148 149 150 151 EK((37‑1)*4) XOR EK((37‑4)*4)
38 152 153 154 155 EK((38‑1)*4) XOR EK((38‑4)*4)
39 156 157 158 159 EK((39‑1)*4) XOR EK((39‑4)*4)
40 160 161 162 163 Sub Word (Rot Word (EK((40‑4)*4))) XOR Rcon((40/4)‑1) XOR 

EK((40‑4)*4)
41 164 165 166 167 EK((41‑1)*4) XOR EK((41‑4)*4)
42 168 169 170 171 EK((42‑1)*4) XOR EK((42‑4)*4)
43 172 173 174 175 EK((43‑1)*4) XOR EK((43‑4)*4)
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to the obtainable maximum is achieved only by using a full 
feedback. Thus, truncated feedback support was removed 
from OFB specifications (Wagner, 2002).

5. EXPERIMENTAL RESULTS

AES has been identified as the new security standard 
after DES since it is very secure, easy to implement and 
understand. The security of AES relies on the different 
phases of encryption the algorithm provides on plain text 
to provide cipher text. The phases detailed above are as 
follows:

1.	 Add Round Key
2.	 Byte Sub
3.	 Shift Raw
4.	 MixColumn.
The result of these encryption steps is a very high-

security cipher texts that are unbreakable by current 
computing power. However, like any ciphering algorithm, 
the security of the algorithm completely relies on the key 
security, if the key is disclosed, then the plain text can be 
easily obtained.

In this paper, the key vulnerability issue has been 
addressed by ciphering the key itself before use for the 
algorithm. This is done using OFB algorithm. The new 
hybrid algorithm provides additional security to AES by 
enciphering the plaintext using OFB first; in addition, it 
provides security for the key itself. Thus, the key can be 
considered public in this case, as if the key is disclosed, 
the key itself cannot decipher the ciphertext since it was 
originally ciphered used OFB before use for AES. That 

being said, the algorithm security in this case relies on the 
security of the OFB algorithm and its confidentiality.

6. CONCLUSION AND FUTURE WORK

In conclusion, data security is vital for such a technological 
era. Protecting digital data transferred and stored in 
a cloud-based system is imperative. The data can be 
related to a specific user or very sensitive governmental 
information. Thus, providing better security is crucial.

The custom algorithm proposed in this article provides 
additional security to the AES. Combining AES with 
OFB produces ciphers of great security that can be used 
for data transmission nowadays. It addresses the key 
vulnerability available is AES such that knowing the 
key is not enough to break the cipher. That being said, 
the security of this hybrid algorithm relies on key and 
algorithm confidentiality.

With regard to future work, the algorithm may be 
further enhanced by expanding the key size to 192 bits and 
AES Block size to 256 bits. This provides more complexity 
as the cipher becomes genuinely difficult to break.
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