
Original article  |  doi: 10.25007/ajnu.v6n3a70

Academic Journal of Nawroz University (AJNU)� 1

1. INTRODUCTION

Cryptography is the science oriented with privacy and
security. Which is made up of several cryptosystems,
these cryptosystems are basically a collection of algorithms
that aim at securing information and data. Recently,
cryptosystems are wide utilized in all branches of digital
technology, electronic mails, and internet banking. This
paper shortly discusses the most favorable cryptosystems
and investigates the most common private-key cipher. On
January 2, 1997, the National Institute of Standards and
Technology (NIST) held a challenge for a new encryption

standard. The previously used standard, Data Encryption
Standard (DES), was no longer capable of providing
sufficient for security. The algorithm had been used since
November 23, 1976. Since then, computers have developed
providing greater computer power, thus the algorithm was
rendered not safe. In 1998 a specially developed computer,
the DES cracker was developed by the Electronic Frontier
Foundation for approximately $ 250,000 and winning the
RSA DES Challenge II-2 (Kaufman et al., 2002).

The alternatives for a new encryption standard were
Triple DES and International Data Encryption Algorithm.
However, these alternatives were slow and not free
to implement due to patent rights. NIST required an
algorithm that provided high security that is efficient,
flexible, and easy to implement and free to use (Dar et al.,
2014).

About 3 years into the contest, NIST chose the Rijndael
algorithm (Dar et al., 2014) which is pronounced “Rhine
Dahl” in English (National Institute of Standards and
Technology, 2001).

Advanced Encryption Standard
Enhancement with Output Feedback Block

Mode Operation

Renas R. Asaad, Saman M. Abdulrahman, and Ahmed A. Hani

Department of Computer Science, College of Computer & Information Technology, Nawroz University, Duhok, Iraq

ABSTRACT

There is a great research in the field of data security these days. Storing information digitally in the cloud and transferring
it over the internet proposes risks of disclosure and unauthorized access; thus, users, organizations, and businesses are
adapting new technology and methods to protect their data from breaches. In this paper, we introduce a method to
provide higher security for data transferred over the internet, or information based in the cloud. The introduced method
for the most part depends on the Advanced Encryption Standard (AES) algorithm, which is currently the standard
for secret key encryption. A standardized version of the algorithm was used by The Federal Information Processing
Standard 197 called Rijndael for the AES. The AES algorithm processes data through a combination of exclusive-OR
operations (XOR), octet substitution with an S-box, row and column rotations, and MixColumn operations. The fact
that the algorithm could be easily implemented and run on a regular computer in a reasonable amount of time made it
highly favorable and successful. In this paper, the proposed method provides a new dimension of security to the AES
algorithm by securing the key itself such that even when the key is disclosed; the text cannot be deciphered. This is done
by enciphering the key using Output Feedback Block Mode Operation. This introduces a new level of security to the
key in a way, in which deciphering the data requires prior knowledge of the key and the algorithm used to encipher
the key for the purpose of deciphering the transferred text.

KEY WORDS: Advanced Encryption Standard, Output Feedback Block, Block Cipher Mode Operation, Cryptography.

Academic Journal of Nawroz University (AJNU)
Volume 6, No 3(2017), 10 pages
Received 1 November 2016; Accepted 14 December 2016
Regular research paper: Published 18 July 2017
Corresponding author’s e-mail: renas.rekany@nawroz.edu.krd
Copyright ©2017 Renas Rajab Asaad, Saman Mohammed
Abdulrahman, Ahmed Alaa Hani. This is an open access article
distributed under the Creative Commons Attribution License.

Original article  |  doi: 10.25007/ajnu.v6n3a70�

2� Academic Journal of Nawroz University (AJNU)

On November 26, 2001, the Rijndael algorithm was
announced as the new encryption standard by the Federal
Information Processing Standards Publication 197.
A collaboration of efforts from two Belgian cryptographers,
Vincent Rijmen and Joan Daemen, resulted in an algorithm
in which replaced the old Data Encryption Standard (DES).
This standard was called Advanced Encryption Standard
(AES) and is currently still the standard for encryption
(Daemon and Rijman, 2003).

2. RELATED WORKS

These days, AES is used in a lot of research and development.
Moreover, individual implementations of the AES exist. In
this article, output feedback (OFB) is used to encrypt the
plain text and the key producing ciphered text and ciphered
key. The ciphered key and ciphered text are inserted
into AES for encryption. The AES algorithm resumes as
usual until the final cipher text is produced which is sent
to the receiver along with the original key. Note that the
described algorithm mainly focuses on algorithm privacy;
meanwhile, the key is considered public. Hence, the
algorithm emphases on improving the AES algorithm by
encrypting the key and plain text using OFB; these results
in a higher security algorithm based on OFB enhancement
to AES security (Daemon and Rijman, 2003).

3. THE PROPOSED APPROACH OF ENCIPHERING

3.1. AES Algorithm

AES is a reversible algorithm, i.e., encryption and
decryption steps can be performed in reverse order for
each task. AES is easier to implement and explain because
it operates on bytes. The key used in AES is processed
through a process called key expansion, where each key is
expanded into individual subkeys in each iteration of the
algorithm, which is described later in the paper.

As pointed earlier, AES is an iterated block cipher. This
indicates that the same operations are performed many
times on a fixed number of bytes. These operations can be
subdivided to the below functions:

ADD ROUND KEY
BYTE SUB
SHIFT ROW
MIXCOLUMN

An iteration of the above steps is called a round. The
number of iteration used to encrypt some text is relatively
dependent on the key size, as shown in Table 1.

At the last iteration MixColumn step is not performed,
this is to make the algorithm reversible at decryption.

Encryption (Rijndael Block and Key)
The AES algorithm applies to a fixed block and key size;

the block and key size can be one of the followings. Block

sizes can be of 128, 168, 192, 224, and 256 bits, while the
key sizes can be of 128, 192, and 256 bits (Dar et al., 2014).
AES-128 is the standard encryption where a 128-bit block
and key are used. The block size is usually referred to as Nb
which is the number of columns in a block, while Nk refers
to the key size. Each row in an Nb block column consists
of four cells of 8 bytes each for AES-128 (DI Management
Services Pty Limited, 2003).

In AES-128, each block consists of 128 bits. Nb can be
determined by dividing 128 by 32, equals the number of
bytes in each column. Hence, Nb is 4. The original plain
text is stored in bytes in a block.

The Table 2 is a encryption cipher using a 16-byte key.

Decryption (Rijndael Block and Key)
Decryption process in AES is simple after understanding

the encryption. Basically, the decryption is just the encryption
reversed. The design of the algorithm allows the two processes
to be invertible, hence applying the steps of encryption in
the reverse order decrypts the cipher text. Thus, decryption
starts at the last round of encryption with the last round key.
When processing, each round does the process backward.
Hence, the last key is added first to the last round. The
addition inverse is addition itself, which is neat. Afterward
the MixColumn step is applied. Consider that MixColumn is
not applied at the last iteration. Furthermore, the MixColumn
inverse table is used (DI Management Services Pty Limited,
2003). The MixColumn inverse table is generated using
another matrix using a similar process the MixColumn table
was generated. However, there are no shortcuts to generate
the MixColumn inverse table. Thus, the matrix multiplication
needs to be performed in the field GF 28.

The Table 3 is a AES decryption cipher using a 16-byte key.

3.2. AES Cipher Functions

Rijndael Rounds
Each byte of a block at a given iteration is XORed with

the corresponding byte from the expanded key. This is

TABLE 1
Key Size Table

Key size (bytes) Block size (bytes) Rounds
16 16 10
24 16 12
32 16 14

TABLE 2
Rounds and Functions Encryption

Round Function
‑ Add Round Key(State)
0 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
1 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
2 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
3 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
4 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
5 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
6 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
7 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
8 Add Round Key(MixColumn(Shift Row(Byte Sub(State))))
9 Add Round Key(Shift Row(Byte Sub(State)))

Original article  |  doi: 10.25007/ajnu.v6n3a70

Academic Journal of Nawroz University (AJNU)� 3

done for the 16 bytes at a given round. The bytes from the
expanded key are never reused. Hence, once the 16 bytes
of the first block are XORed with the expanded key’s 16
bytes then the bytes 1-16 from the expanded key are never
used again (Trenholme, n.d). At the second iteration, the
Add Round Key function is called on bytes 17-32 which
are XORed against the state.

The first time Add Round Key gets executed.

State 1 2 3 4 5 6 7 8
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 1 2 3 4 5 6 7 8

State 9 10 11 12 13 14 15 16
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 9 10 11 12 13 14 15 16

The second time Add Round Key gets executed.

State 1 2 3 4 5 6 7 8
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 17 18 19 20 21 22 23 24

State 9 10 11 12 13 14 15 16
XOR XOR XOR XOR XOR XOR XOR XOR

Exp Key 25 26 27 28 29 30 31 32

And so on for each round of execution.

During decryption, the process is reversed. The state
(16 bytes of ciphertext) is first XORed against the last 16
bytes of the expanded key, then the second last 16 bytes
and so on.

Byte Sub
During encryption, each value of the state is replaced

with the corresponding SBOX value, as shown in Table 4 .
During decryption, each value in the state is replaced with

the corresponding inverse of the SBOX, as shown in Table 5.

Rijndael Shift Row
Shift Row operation is basically arranging the state in

a matrix and performing a circular shift for each row. The
circular shift just moves each byte one space over. Thus, it is
not a bitwise shift, i.e., a byte in position three will be moved to
position four and so on for the rest. However, for the last byte,
it is placed in the first position of the state (Trenholme, n.d).

In detail: The state is arranged in a 4×4 matrix (square).
The process is a little misleading since the matrix is formed
in a vertical order while it’s shifted in a horizontal manner.

So, bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Will form a matrix:

	

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Depending on a row at a given state, reach row is
moved over one, two or three each row is then moved over
(shifted) 1, 2 or 3 spaces over to the right, depending on
the row of the state. First, row is never shifted

	

Row1 0
Row3 1
Row3 2
Row4 3

TABLE 3
Rounds and Functions Decryption

Round Function
‑ Add Round Key(State)
0 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
1 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
2 Mix Column(Add Round Key(Byte Sub(Shift Row (State))))
3 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
4 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
5 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
6 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
7 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
8 MixColumn(Add Round Key(Byte Sub(Shift Row (State))))
9 Add Round Key(Byte Sub(Shift Row(State)))

TABLE 4
AES S‑Box Lookup

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X AX BX CX DX EX FX
0X 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1X 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2X 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3X 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4X 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5X 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6X 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7X D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8X 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9X 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
AX 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
BX FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
CX 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
DX 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
EX A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
FX 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

For example, HEX 19 would get replaced with HEX D4

Original article  |  doi: 10.25007/ajnu.v6n3a70�

4� Academic Journal of Nawroz University (AJNU)

The following table shows how the individual bytes are
first arranged in the table and then moved over (shifted).

Blocks 16 bytes long:

	

From To
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

1 5 9 13
6 10 14 2
11 15 3 7
16 4 8 12

During decryption, the same process is reversed and all
rows are shifted to the left:

	

From To
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

1 5 9 13
14 2 6 10
11 12 3 7
8 12 16 4

Rijndael MixColumn
This may be the most sophisticated step in the process,

which is difficult to explain and understand. It’s made up
of two parts, first involves multiplying specific parts of the
state against specific parts of the matrix, while the second
involves how the multiplication is carried out over what
is called a Galois Field (Trenholme, n.d).

Matrix multiplication
As described in the Shift Row Function, the state is

put into a four-row table. Each column of the table at a
time is multiplied against every value of the matrix (a
total of sixteen multiplications); afterward the results of
the multiplications are XORed together to produce four
result bytes for the later state, so four bytes of input,
16 multiplication, 12 XORs, and four bytes of output.
That being said, each one matrix two is multiplied

against each value of the state column at one time
(Trenholme, n.d).

Multiplication matrix

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

16-byte state

b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15
b4 b8 b12 b16

Below is a demonstration of how the first column state
bytes are multiplied against the matrix:

b1=(b1*2) XOR (b2*3) XOR (b3*1) XOR (b4*1)
b2=(b1*1) XOR (b2*2) XOR (b3*3) XOR (b4*1)
b3=(b1*1) XOR (b2*1) XOR (b3*2) XOR (b4*3)
b4=(b1*3) XOR (b2*1) XOR (b3*1) XOR (b4*2)

(b1=specifies the first byte of the state)

Below is a demonstration of how the second column
state bytes are multiplied against the matrix:

b5=(b5*2) XOR (b6*3) XOR (b7*1) XOR (b8*1)
b6=(b5*1) XOR (b6*2) XOR (b7*3) XOR (b8*1)
b7=(b5*1) XOR (b6*1) XOR (b7*2) XOR (b8*3)
b8=(b5*3) XOR (b6*1) XOR (b7*1) XOR (b8*2)

And so on until all columns of the state are exhausted.

Galois Field Multiplication
The multiplication in the previous section is performed

over a Galois Field. The mathematics used in the
multiplication is beyond the scope of this article. Instead,
this section will focus on the multiplication implementation

TABLE 5
AES Inverse S‑Box

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X AX BX CX DX EX FX
0X 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1X 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2X 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3X 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4X 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5X 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6X 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7X D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8X 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9X 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
AX 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
BX FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
CX 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
DX 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
EX A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
FX 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

For example, HEX D4 would get replaced with HEX 19

Original article  |  doi: 10.25007/ajnu.v6n3a70

Academic Journal of Nawroz University (AJNU)� 5

which is done easily using the two Tables 7 and 8
(Trenholme, n.d, Jain, 2011).

The multiplication result can be easily obtained from a
lookup of the L table, by adding the results, and a look up
at table E. The addition process is a simple mathematical
addition and not a bitwise AND operation. Numbers
being multiplied through the MixColumn function are
first converted to HEX which must form a minimum of
two-digit Hex number. The first digit of the Hex value is
used for the vertical index, while the second is used on the
horizontal index. If the value multiplied is converted into
a single hex value, then a 0 value is added to the left of it
to represent the 0-vertical index (Jain, 2011).

For example, consider the hex values multiplied are
AF * 8; first, we perform a look up at table L for (AF) and
(08) which returns (B7) and (4B), respectively, afterward

the values are simply added together. If the resultant value
is greater than (FF), we subtract (FF) from the addition
result. For example, B7+4B=102 which is greater than FF,
so the following is performed: 102-FF=03. Then, 03 is used
to lookup the E table, as before the first digit represents the
vertical index while the second represent the horizontal
index. For example, (03)=0F (Shneier, 2009).

Therefore, the result of multiplying AF * 8 over a Galois
Field is 0F.

Two last exceptions are that:
Any number multiplied by one is equal to its self and

does not need to go through the above procedure.
For example: FF*1=FF
Any number multiplied by zero equals zero.

Rijndael MixColumn Inverse
During decryption, the MixColumn the multiplication

matrix is changed from inverse matrix (Table 6) to:

	

0 0 0 0

09 0 0 0

0 0 0 0

0 0 0 0

E B D 9

E B D

D 9 E B

B D 9 E

TABLE 7
E Table

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 01 03 05 0F 11 33 55 FF 1A 2E 72 96 A1 F8 13 35
1 5F E1 38 48 D8 73 95 A4 F7 02 06 0A 1E 22 66 AA
2 E5 34 5C E4 37 59 EB 26 6A BE D9 70 90 AB E6 31
3 53 F5 04 0C 14 3C 44 CC 4F D1 68 B8 D3 6E B2 CD
4 4C D4 67 A9 E0 3B 4D D7 62 A6 F1 08 18 28 78 88
5 83 9E B9 D0 6B BD DC 7F 81 98 B3 CE 49 DB 76 9A
6 B5 C4 57 F9 10 30 50 F0 0B 1D 27 69 BB D6 61 A3
7 FE 19 2B 7D 87 92 AD EC 2F 71 93 AE E9 20 60 A0
8 FB 16 3A 4E D2 6D B7 C2 5D E7 32 56 FA 15 3F 41
9 C3 5E E2 3D 47 C9 40 C0 5B ED 2C 74 9C BF DA 75
A 9F BA D5 64 AC EF 2A 7E 82 9D BC DF 7A 8E 89 80
B 9B B6 C1 58 E8 23 65 AF EA 25 6F B1 C8 43 C5 54
C FC 1F 21 63 A5 F4 07 09 1B 2D 77 99 B0 CB 46 CA
D 45 CF 4A DE 79 8B 86 91 A8 E3 3E 42 C6 51 F3 0E
E 12 36 5A EE 29 7B 8D 8C 8F 8A 85 94 A7 F2 0D 17
F 39 4B DD 7C 84 97 A2 FD 1C 24 6C B4 C7 52 F6 01

TABLE 8
L Table

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 00 19 01 32 02 1A C6 4B C7 1B 68 33 EE DF 03
1 64 04 E0 0E 34 8D 81 EF 4C 71 08 C8 F8 69 1C C1
2 7D C2 1D B5 F9 B9 27 6A 4D E4 A6 72 9A C9 09 78
3 65 2F 8A 05 21 0F E1 24 12 F0 82 45 35 93 DA 8E
4 96 8F DB BD 36 D0 CE 94 13 5C D2 F1 40 46 83 38
5 66 DD FD 30 BF 06 8B 62 B3 25 E2 98 22 88 91 10
6 7E 6E 48 C3 A3 B6 1E 42 3A 6B 28 54 FA 85 3D BA
7 2B 79 0A 15 9B 9F 5E CA 4E D4 AC E5 F3 73 A7 57
8 AF 58 A8 50 F4 EA D6 74 4F AE E9 D5 E7 E6 AD E8
9 2C D7 75 7A EB 16 0B F5 59 CB 5F B0 9C A9 51 A0
A 7F 0C F6 6F 17 C4 49 EC D8 43 1F 2D A4 76 7B B7
B CC BB 3E 5A FB 60 B1 86 3B 52 A1 6C AA 55 29 9D
C 97 B2 87 90 61 BE DC FC BC 95 CF CD 37 3F 5B D1
D 53 39 84 3C 41 A2 6D 47 14 2A 9E 5D 56 F2 D3 AB
E 44 11 92 D9 23 20 2E 89 B4 7C B8 26 77 99 E3 A5
F 67 4A ED DE C5 31 FE 18 0D 63 8C 80 C0 F7 70 07

TABLE 6
Fixed Matrix

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

Original article  |  doi: 10.25007/ajnu.v6n3a70�

6� Academic Journal of Nawroz University (AJNU)

Other than the change to the matrix table the function
performs the same steps as during encryption.

MixColumn Example
The following examples are denoted in HEX.

MixColumn example during encryption
Input=D4 BF 5D 30
Output (0)=(D4*2) XOR (BF*3) XOR (5D*1) XOR (30*1)

=E(L(D4)+L(02)) XOR E(L(BF)+L(03)) XOR 5D XOR 30
=E(41+19) XOR E(9D+01) XOR 5D XOR 30
=E(5A) XOR E(9E) XOR 5D XOR 30
=B3 XOR DA XOR 5D XOR 30=04

Output (1)=(D4*1) XOR (BF*2) XOR (5D*3) XOR (30*1)
=D4 XOR E(L(BF)+L(02)) XOR E(L(5D)+L(03)) XOR 30
=D4 XOR E(9D+19) XOR E(88+01) XOR 30
=D4 XOR E(B6) XOR E(89) XOR 30
= D4 XOR 65 XOR E7 XOR 30=66

Output (2)=(D4*1) XOR (BF*1) XOR (5D*2) XOR (30*3)
=D4 XOR BF XOR E(L(5D)+L(02)) XOR E(L(30)+L(03))
=D4 XOR BF XOR E(88+19) XOR E(65+01)
=D4 XOR BF XOR E(A1) XOR E(66)
=D4 XOR BF XOR BA XOR 50=81

Output (3)=(D4*3) XOR (BF*1) XOR (5D*1) XOR (30*2)
=E(L(D4)+L(3)) XOR BF XOR 5D XOR E(L(30)+L(02))
=E(41+01) XOR BF XOR 5D XOR E(65+19)
=E(42) XOR BF XOR 5D XOR E(7E)
=67 XOR BF XOR 5D XOR 60=E5

MixColumn during decryption
Input 04 66 81 E5
Output (0)=(04*0E) XOR (66*0B) XOR (81*0D) XOR (E5*09)

=nE(L(04)+L(0E)) XOR E(L(66)+L(0B)) XOR
E(L(81)+L(0D)) XOR E(L(E5)+L(09))

=E(32+DF) XOR E(1E+68) XOR E(58+EE) XOR E(20+C7)
=E(111-FF) XOR E(86) XOR E(146-FF) XOR E(E7)
=E(12) XOR E(86) XOR E(47) XOR E(E7)
=38 XOR B7 XOR D7 XOR 8C=D4

Output (1)=(04*09) XOR (66*0E) XOR (81*0B) XOR (E5*0D)
=E(L(04)+L(09)) XOR E(L(66)+L(0E)) XOR E(L(81)+L(0B))

XOR E(L(E5)+L(0D))
=E(32+C7) XOR E(1E+DF) XOR E(58+68) XOR E(20+EE)
=E(F9) XOR E(FD) XOR E(C0) XOR E(10E-FF)
=E(F9) XOR E(FD) XOR E(C0) XOR E(0F)
=24 XOR 52 XOR FC XOR 35=BF

Output (2)=(04*0D) XOR (66*09) XOR (81*0E) XOR (E5*0B)
=E(L(04)+L(0D)) XOR E(L(66)+L(09) XOR E(L(81)+L(0E))

XOR E(L(E5)+(0B))
=E(32+EE) XOR E(1E+C7) XOR E(58+DF) XOR E(20+68)
=E(120-FF) XOR E(E5) XOR E(137-FF) XOR E(88)
=E(21) XOR E(E5) XOR E(38) XOR E(88)
=34 XOR 7B XOR 4F XOR 5D=5D

Output (3)=(04*0B) XOR (66*0D) XOR (81*09) XOR (E5*0E)
=E(L(04)+L(0B)) XOR E(L(66)+L(0D)) XOR

E(L(81)+L(09)) XOR E(L(E5)+L(0E))
=E(32+68) XOR E(1E+EE) XOR E(58+C7) XOR E(20+DF)
=E(9A) XOR E(10C-FF) XOR E(11F-FF) XOR E(FF)
=E(9A) XOR E(0D) XOR E(20) XOR E(FF)
=2C XOR F8 XOR E5 XOR 01=30

3.3. Rijndael Key Expansion

Before any of the encryption or decryption processes
are carried out; the key used must go through an
expansion process. The resulted key from the expansion
is used in the Add Round key function explained
above. At each Add Round function call, a different
part of the expanded key is XORed with the current
state (Shneier, 2009). Thus, the Expanded Key must be
large enough in order for this to work; it must provide
enough key material for each time the Add Round Key
function is called, which is called at each iteration plus
one extra call at the beginning of the algorithm. Hence,
the expanded key size must always be (16*(number of
round+1)). The 16 in this function equals the size of the
block in bytes, which provides sufficient key material
for each round plus the one at the beginning (Daemen
and Rijmen, 2013).

In this algorithm, the actual key is stretched out to
provide enough key space for the algorithm because
the actual key is smaller than the subkeys used at each
iteration.

The key expansion routine executes a maximum of
4 consecutive functions. These functions are:

ROT WORD
SUB WORD
RCON
EK
K

An iteration of the above steps is called a round. The
number of rounds of the key expansion algorithm depends
on the key size, as shown in Table 9.

The first bytes of the expanded key and the actual key
are identical. Consider that the key is 16 bytes longs, after
the key is expanded; the first 16 bytes of the expanded key
are the same as the original key. At each round, 4 bytes
are added to the expanded key except the first rounds.
The 4 bytes added at each round are taken as input in
at the next round and 4 other bytes are returned. It’s
important to note that all 4 functions are always called
in each round:

TABLE 9
Key Expansion

Key size (bytes) Block size (bytes) Expansion algorithm rounds Expanded bytes/round Rounds Key
Copy

Rounds Key
Expansion

Expanded
Key (bytes)

16 16 44 4 4 40 176
24 16 52 4 6 46 208
32 16 60 4 8 52 240

Original article  |  doi: 10.25007/ajnu.v6n3a70

Academic Journal of Nawroz University (AJNU)� 7

4 Rounds for a 16 byte Key
6 Rounds for a 24 byte Key
8 Rounds for a 32 byte Key

At the remaining rounds, the k function result is XORed
with the EK function result. Except when the key is 32 bytes
long, the Subword function is called additionally every 8
rounds beginning at round 13.

3.4. Rijndael Key Expansion Functions

Rot Word (4 bytes)
This does a circular shift on 4 bytes similar to the Shift

Row Function.
1, 2, 3, 4 to 2, 3, 4, 1
Sub Word (4 bytes)
This step applies the S-box value substitution as

described in bytes sub function to each of the 4 bytes in
the argument.

Rcon((Round/(KeySize/4))-1)
This function returns a 4 byte value based on the

following table

Rcon(0)=01000000
Rcon(1)=02000000
Rcon(2)=04000000
Rcon(3)=08000000
Rcon(4)=10000000
Rcon(5)=20000000
Rcon(6)=40000000
Rcon(7)=80000000
Rcon(8)=1B000000
Rcon(9)=36000000
Rcon(10)=6C000000
Rcon(11)=D8000000
Rcon(12)=AB000000
Rcon(13)=4D000000
Rcon(14)=9A000000

For example, for a 16-byte key Rcon is first called in
the 4th round

	 (4/(16/4))-1=0

In this case, Rcon will return 01000000
For a 24 byte, key Rcon is first called in the 6th round

	 (6/(24/4))-1=0

In this case, Rcon will also return 01000000.

	 EK(Offset)

EK function returns 4 bytes of the Expanded Key after
the specified offset. For example, if offset is 0 then EK will
return bytes 0,1,2,3 of the expanded key.

	 K(Offset)

K function returns 4 bytes of the Key after the specified
offset. For example, if offset is 0 then K will return bytes
0,1,2,3 of the expanded key.

3.5. Rijndael Key Expansion Algorithm

The Table 10 is a description of the key expansion in
a table formation. This is because the algorithm depends
on the key size, thus it’s challenging to explain in writing
(Daemen and Rijmen, 2013; Wagner, 2002).

Notice that most values that change in the tables
below equal the current round number. This makes
implementation in code much easier as these numbers can
easily be replaced with loop variables.

16-byte Key Expansion

Each round (except rounds 0, 1, 2 and 3) will take the
result of the previous round and produce a 4-byte result
for the current round. Notice the first 4 rounds simply
copy the total of 16 bytes of the key, as shown in Table 11.

4. OFB

OFB Block Mode generates a synchronous stream cipher
from a block cipher. It produces key stream bocks, which
are XORed with blocks of plain text to make cipher text.
Like any stream cipher algorithm, a bit flipped in ciphertext
results in a bit flipped in the same location in the plain
text. This allows most error correcting codes to function
normally even when encryption is not applied yet (Daemen
and Rijmen, 2013; McGill, 2000; Wagner, 2002).

Because of the symmetry of the XOR operation,
encryption and decryption are exactly the same:

CJ=PJ⊕OJ
PJ=CJ⊕OJ
OJ=EK(IJ)
IJ=OJ−1,……I0=IV

Example for 8-bits input when the initial vector=01001101
and initial P0= 11100101:

IV=01001101
P0=11100101
C0=IV=01001101
C1=EK (P0⊕Ci-1)
C1= 01001101 ⊕ 11100101=10101000

TABLE 10
Key Expansion Formula

Field Description
Round A counter representing the current step in the key

expansion algorithm, think of this as a loop counter
Expanded
Key Bytes

Expanded key bytes effected by the result of the
function(s)

Function The function(s) that will return the 4 bytes written to
the effected expanded key bytes

Original article  |  doi: 10.25007/ajnu.v6n3a70�

8� Academic Journal of Nawroz University (AJNU)

Pi=EK (Ci-1)⊕Ci
P0= 01001101⊕ 10101000=11100101 to original P.

Each cipher operation in OFB depends on all the
previous cipher operations executed as shown in Figure 1
and Figure 2, thus operations cannot be executed in parallel.
However, the block cipher operations can be performed
beforehand enabling the last step of the procedure to be
executed in parallel whenever the plain text or cipher text
is available. This is because the plain text or cipher text is
only required for the final XOR operation (McGill, 2000).

It is possible to use Chaining Block Cipher Mode
Operation, with a constant string of zeroes as input, to
acquire a key stream of OFB mode. This allows exploiting
the fast hardware implementations of CBC mode
operations for OFB mode operations, which is highly
advantageous to OFB algorithm. The average cycle length
of OFB mode can be reduces by a factor of 232 or more is
OFB is used with a partial block feedback similar to Cipher
Feedback Block Mode Operation. A mathematical model,
originally proposed by Davies and Parkin, which was
substantiated by experimental results a cycle length close

TABLE 11
Functions and Key Expansion

Round Expanded Key Bytes Function
0 0 1 2 3 K(0)
1 4 5 6 7 K(4)
2 8 9 10 11 K(8)
3 12 13 14 15 K(12)
4 16 17 18 19 Sub Word (Rot Word (EK((4‑1)*4))) XOR Rcon((4/4)‑1) XOR EK((4‑4)*4)
5 20 21 22 23 EK((5‑1)*4) XOR EK((5‑4)*4)
6 24 25 26 27 EK((6‑1)*4) XOR EK((6‑4)*4)
7 28 29 30 31 EK((7‑1)*4) XOR EK((7‑4)*4)
8 32 33 34 35 Sub Word (Rot Word (EK((8‑4)*4))) XOR Rcon((8/4)‑1) XOR EK((8‑4)*4)
9 36 37 38 39 EK((8‑1)*4) XOR EK((9‑4)*4)
10 40 41 42 43 EK((10‑1)*4) XOR EK((10‑4)*4)
11 44 45 46 47 EK((11‑1)*4) XOR EK((11‑4)*4)
12 48 49 50 51 Sub Word (Rot Word (EK((12‑4)*4))) XOR Rcon((12/4)‑1) XOR

EK((12‑4)*4)
13 52 53 54 55 EK((13‑1)*4) XOR EK((13‑4)*4)
14 56 57 58 59 EK((14‑1)*4) XOR EK((14‑4)*4)
15 60 61 62 63 EK((15‑1)*4) XOR EK((15‑4)*4)
16 64 65 66 67 Sub Word (Rot Word (EK((16‑4)*4))) XOR Rcon((16/4)‑1) XOR

EK((16‑4)*4)
17 68 69 70 71 EK((17‑1)*4) XOR EK((17‑4)*4)
18 72 73 74 75 EK((18‑1)*4) XOR EK((18‑4)*4)
19 76 77 78 79 EK((19‑1)*4) XOR EK((19‑4)*4)
20 80 81 82 83 Sub Word (Rot Word (EK((20‑4)*4))) XOR Rcon((20/4)‑1) XOR

EK((20‑4)*4)
21 84 85 86 87 EK((21‑1)*4) XOR EK((21‑4)*4)
22 88 89 90 91 EK((22‑1)*4) XOR EK((22‑4)*4)
23 92 93 94 95 EK((23‑1)*4) XOR EK((23‑4)*4)
24 96 97 98 99 Sub Word (Rot Word (EK((24‑4)*4))) XOR Rcon((24/4)‑1) XOR

EK((24‑4)*4)
25 100 101 102 103 EK((25‑1)*4) XOR EK((25‑4)*4)
26 104 105 106 107 EK((26‑1)*4) XOR EK((26‑4)*4)
27 108 109 110 111 EK((27‑1)*4) XOR EK((27‑4)*4)
28 112 113 114 115 Sub Word (Rot Word (EK((28‑4)*4))) XOR Rcon((28/4)‑1) XOR

EK((28‑4)*4)
29 116 117 118 119 EK((29‑1)*4) XOR EK((29‑4)*4)
30 120 121 122 123 EK((30‑1)*4) XOR EK((30‑4)*4)
31 124 125 126 127 EK((31‑1)*4) XOR EK((31‑4)*4)
32 128 129 130 131 Sub Word (Rot Word (EK((32‑4)*4))) XOR Rcon((32/4)‑1) XOR

EK((32‑4)*4)
33 132 133 134 135 EK((33‑1)*4) XOR EK((33‑4)*4)
34 136 137 138 139 EK((34‑1)*4) XOR EK((34‑4)*4)
35 140 141 142 143 EK((35‑1)*4) XOR EK((35‑4)*4)
36 144 145 146 147 Sub Word (Rot Word (EK((36‑4)*4))) XOR Rcon((36/4)‑1) XOR

EK((36‑4)*4)
37 148 149 150 151 EK((37‑1)*4) XOR EK((37‑4)*4)
38 152 153 154 155 EK((38‑1)*4) XOR EK((38‑4)*4)
39 156 157 158 159 EK((39‑1)*4) XOR EK((39‑4)*4)
40 160 161 162 163 Sub Word (Rot Word (EK((40‑4)*4))) XOR Rcon((40/4)‑1) XOR

EK((40‑4)*4)
41 164 165 166 167 EK((41‑1)*4) XOR EK((41‑4)*4)
42 168 169 170 171 EK((42‑1)*4) XOR EK((42‑4)*4)
43 172 173 174 175 EK((43‑1)*4) XOR EK((43‑4)*4)

Original article  |  doi: 10.25007/ajnu.v6n3a70

Academic Journal of Nawroz University (AJNU)� 9

to the obtainable maximum is achieved only by using a full
feedback. Thus, truncated feedback support was removed
from OFB specifications (Wagner, 2002).

5. EXPERIMENTAL RESULTS

AES has been identified as the new security standard
after DES since it is very secure, easy to implement and
understand. The security of AES relies on the different
phases of encryption the algorithm provides on plain text
to provide cipher text. The phases detailed above are as
follows:

1.	 Add Round Key
2.	 Byte Sub
3.	 Shift Raw
4.	 MixColumn.
The result of these encryption steps is a very high-

security cipher texts that are unbreakable by current
computing power. However, like any ciphering algorithm,
the security of the algorithm completely relies on the key
security, if the key is disclosed, then the plain text can be
easily obtained.

In this paper, the key vulnerability issue has been
addressed by ciphering the key itself before use for the
algorithm. This is done using OFB algorithm. The new
hybrid algorithm provides additional security to AES by
enciphering the plaintext using OFB first; in addition, it
provides security for the key itself. Thus, the key can be
considered public in this case, as if the key is disclosed,
the key itself cannot decipher the ciphertext since it was
originally ciphered used OFB before use for AES. That

being said, the algorithm security in this case relies on the
security of the OFB algorithm and its confidentiality.

6. CONCLUSION AND FUTURE WORK

In conclusion, data security is vital for such a technological
era. Protecting digital data transferred and stored in
a cloud-based system is imperative. The data can be
related to a specific user or very sensitive governmental
information. Thus, providing better security is crucial.

The custom algorithm proposed in this article provides
additional security to the AES. Combining AES with
OFB produces ciphers of great security that can be used
for data transmission nowadays. It addresses the key
vulnerability available is AES such that knowing the
key is not enough to break the cipher. That being said,
the security of this hybrid algorithm relies on key and
algorithm confidentiality.

With regard to future work, the algorithm may be
further enhanced by expanding the key size to 192 bits and
AES Block size to 256 bits. This provides more complexity
as the cipher becomes genuinely difficult to break.

REFERENCES

Dar, M.H., Mittal, P & Kumar, V. (2014). A comparetive study of
cryptographic algorithms. International Journal of Computer Science
and Network, 3(3), 1190.

Daemon, J & Rijman, V. (2003). Computer Security Resource Center.
Available from: http://www.csrc.nist.gov/archive/aes/rijndael/
Rijndael-ammended.pdf. [Last accessed on 2016 Aug 08].

Fig. 1. Output Feedback Block Encryption.

Fig. 2. Output Feedback Block Decryption.

Original article  |  doi: 10.25007/ajnu.v6n3a70�

10� Academic Journal of Nawroz University (AJNU)

Daemen, J & Rijmen, V. (2013). The Design of Rijndael: AES - The Advanced
Encryption Standard. Brussel: Springer Science and Business Media.

DI Management Services Pty Limited. (2003). DI Management. Available
from: http://www.di-mgt.com.au/cryptopad.html. [Last accessed
on 2016 Aug 08].

Jain, R. (2011). Washington University. Available from: http://www.
cse.wustl.edu/~jain/cse571-11/ftp/l_05aes.pdf. [Last accessed on
2016 Aug 08].

Kaufman, C., Perlman, R & Speciner, M. (2002). Network Security: Private
Communication in a Public World. Upper Saddle River, NJ: Prentice
Hall Press.

McGill. (2000). RIJNDAEL Advanced Encryption Standard. Available
from: http://www.cs.mcgill.ca/~kaleigh/computers/crypto_
rijndael.html. [Last accessed on 2017 Apr 24].

National Institute of Standards and Technology. (2001). Computer
Security Resource Center. Available from: http://www.csrc.nist.
gov/publications/fips/fips197/fips-197.pdf. [Last accessed on
2016 Aug 08].

Shneier, B. (2009). Shneier on Security. Available from: https://www.
schneier.com/blog/archives/2009/07/another_new_aes.html. [Last
accessed on 2016 Aug 08].

Trenholme, S. (n.d). Sam Trenholme. Available from: http://www.
samiam.org/s-box.html. [Last accessed on 2016 Aug 08].

Trenholme, S. (n.d). Sam Trenholme. Available from: http://www.
samiam.org/mix-column.html. [Last accessed on 2016 Aug 08].

Wagner, N.R. (2002). The University of Texas at San Antonio. Available
from: http://www.cs.utsa.edu/~wagner/laws. [Last retrieved on
2016 Aug 08].

