
Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

This is an open access article distributed under the Creative Commons Attribution License

Copyright ©2017. e-ISSN: 2520-789X

https://doi.org/10.25007/ajnu.v10n1a709

146

Performance Evaluation of Java Programming Strategies

Qusay Idrees Sarhan

Department of Computer Science, College of Science, University of Duhok, Duhok, Kurdistan Region, Iraq

ABSTRACT
Java is one of the most demanding programming languages nowadays and it is used for developing a wide range of software

applications including desktop, mobile, embedded, and web applications. Writing efficient Java codes for those various types

of applications (which some are critical and time-sensitive) is crucial and recommended best practices that every Java developer

should consider. To date, there is a lack of in-depth experimental studies in the literature that evaluate the impact of writing

efficient Java programming strategies on the performance of desktop applications in terms of runtime. Thus, this paper aims to

perform a variety of experimental tests that have been carefully chosen and implemented to evaluate the most important aspects

of desktop efficient Java programming in terms of runtime. The results of this study show that significant performance

improvements can be achieved by applying different programming strategies.

Keywords: Java programming language, Java programming strategies, Java performance, Java optimization strategies,

experimental evaluation, performance measurement.

1. Introduction

Java programming language is massively used in the

development of various software applications

including desktop, mobile, embedded, and web

applications [1]. These applications cover robotics,

safety and security, e-health care, smart homes,

Internet of Things (IoT)-based products, and real-

time industrial control systems [2-5]. Therefore, it is

crucial to efficiently program these applications

especially when the aim is to develop critical and time-

sensitive applications where each microsecond

matters. Besides, writing efficient Java code is

recommended best practices that every Java developer

should consider. To increase the performance of Java-

based applications in terms of execution time, different

programming strategies can be used. Writing efficient

code is the process of modifying the existing code of an

application to improve its performance. In other

words, to make it use fewer resources, to reduce its

size, to consume lesser power, to reduce compilation

time, or to execute fast [6]. This is performed without

changing the semantics and outputs of the application

wanted to be optimized for better performance [7].

This paper experimentally analyzes the performance

impact of using various programming strategies for

the efficient writing of Java-based applications. It

therefore aims at and contributes to the following: (a)

To provide a set of experimental tests that were

designed and implemented to enable the performance

measurement and analysis of various Java

programming strategies. As a result, Java developers

can write efficient code directly, based on the obtained

results. (b) To prove that even the Java compiler is

designed to automatically provide code optimization,

is not always enough to achieve the best performance.

Java developers therefore can have a notable role in

this regard by manually applying various

programming strategies that achieve better

performance. (c) To show that there are no standard

rules to follow in order to optimize the codes of a Java-

based application. Thus, Java developers should try to

optimize their codes by practicing and experimenting

with different programming strategies to determine

which strategy delivers the best performance in

comparison with others.

The remainder of this paper is organized as follows:

Section 2 briefly presents the related work of this

study. Section 3 describes in detail the testing

methodology used to conduct this experimental study.

https://doi.org/10.25007/ajnu.v10n1a709

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

147

Section 4 presents the experimental results and

outcomes of this study. Finally, the conclusions of this

study and some possible future works are provided in

Section 5.

2. RELATED WORK

The most related works published on the topic of this

study are briefly presented here. The authors in [8]

proposed a few numbers of programming strategies

for reducing the Java compiler runtime overhead and

for improving the Java code quality. However, all the

proposed strategies were not implemented and

evaluated experimentally. The authors in [9] presented

and suggested to use several efficient Java

programming strategies. However, all of the suggested

strategies were not evaluated experimentally to really

know which strategy outperforms the others and why.

The authors in [10] and [11] discussed the benefits of

optimizing Java bytecode (the compiled format of Java

source code) by presenting the results of a few tests.

However, these two studies are dedicated to

optimizing the Java compiled code rather than Java

source code. The author in [12] proposed an

optimization tool for Java programmers. The tool has

the ability to automatically check Java codes that need

to be optimized. Further, they showed that different

optimization issues can be detected by the proposed

tool. However, the study is not dedicated to measuring

the performance of programming strategies in terms of

execution time. The authors in [13] and [14] provided

a brief explanation of writing efficient code for Java

embedded and real-time systems. Also, they presented

a few programming strategies that lead to high

performance in such systems. However, the authors

did not conduct any experimental tests to show the

performance impact of their strategies. The authors in

[15] presented an overview of code optimization and

its techniques and provided a general optimization

guideline on how to optimize code for

microcontrollers and embedded systems regardless of

the used programming languages. However, the

authors did not conduct any experimental evaluation

to show the benefits of this guideline. Most of the

aforementioned studies did not conduct in-depth

experimental evaluations for their programming

strategies. Many others did not present how they

conducted their test methodologies. In addition, there

were no details about how they measured the

efficiency of the used programming strategies and they

did not provide their software and hardware testing

specifications. In contrast, this comprehensive study

provides twenty five different programming strategies

as experimental test scenarios that were developed

and implemented to reduce the execution time of Java-

based applications. Also, it provides a well-defined

test methodology that can be employed by other

developers and researchers to obtain similar results if

they perform/duplicate this experimental study.

3. TESTING METHODOLOGY

The testing methodology followed in this study

includes test conditions, test scenarios (each with

several programming strategies), test metrics, and

testbed setup to experimentally evaluate the effect of

using different programming strategies on the

performance of Java-based applications in terms of

execution time.

3.1 Test Conditions

In this study, a number of test conditions were

considered as follows:

• All test scenarios were implemented using the

same programming language which is Java and

the same IDE software which is Apache NetBeans

with their default configurations and settings.

Also, they were executed on the same hardware

system.

• Every test scenario has been programmed and

executed with the same parameters and data

values.

• No extra processing has been performed in each

test scenario in order to measure the performance

precisely.

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

148

• For each test scenario, at least two tests were

implemented: (a) A test with an unoptimized code.

(b) A test with an optimized code (code after

applying the corresponding efficient changes).

• The performance of each programming strategy

was measured for the execution time/runtime (the

time required to execute a programming strategy).

• Before conducting the experiments and

measurements, all user programs, excluding the

used IDE, were closed.

• The Internet was switched off from the computer

while evaluating the scenarios.

• Each test scenario was executed 1000 times;

afterwards, the average execution time has been

taken for more precision.

• The execution time of each programming strategy

was obtained by implementing the pseudo code

shown below.

Pseudo code of execution time measurement:

i. Begin

ii. get start time

iii. execute a code strategy

iv. get end time

v. elapsed time = (end time - start time)

vi. End

3.2 Test Scenarios

Efficient programming strategies are transformations

applied to software codes to decrease their execution

times. In this experimental study, twenty five

programming strategies were employed to perform

the experimental evaluations and analysis. It is worth

mentioning that these strategies were selected because

they can be used to perform a wide variety of

programming tasks, with a notable effect on Java-

based applications performance. Moreover, both

inexperienced and experienced Java developers can

use them in their software development process.

3.3 Test Metrics

The execution time was used as a metric to

experimentally assess and compare the performance of

each programming strategy. Thus, any programming

strategy of a specific test scenario requires less time to

be executed is considered as the best strategy and

outperforms the others.

3.4 Testbed Setup

This study's test scenarios were implemented and

executed using the software and hardware presented

in Table 1 with their specifications.

Table 1: Software and hardware specifications

 Specifications Detail

Software

Apache NetBeans

IDE
12.0

Java

Development Kit

(JDK)

12.0.1

Windows OS Windows 10 (64-bit)

Hardware

Model HP Elitebook Revolve 810

CPU Type Intel Core i5-4300U

CPU Speed 2.5 GHz

CPU Cores 4

RAM 8 GB

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents and discusses the experimental

results of this study.

4.1 Newline printing

Three programming strategies have been used to print

a newline to the input/output screen as presented in

Table 2. In strategy 1 and 2, each prints two characters

'\r' and '\n' which is a carriage return character

followed by a line feed character to the screen. In

strategy 3, the lineSeparator() method of the class

System is invoked to print a newline to the screen. The

experimental results show that strategy 3 requires

more time to be executed compared to strategy 1 and

2. The reason for this is that strategy 3 is a system-

dependent newline printer which means before

printing a newline to the screen, it checks the used

operating system. If the operating system is UNIX-

based system, it prints "\n" only; on Microsoft

Windows systems it prints both '\r' and '\n'. Thus, this

checking process consumes time.

Table 2 : Strategies to print newline

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

149

 Strategy Implementation Execution Time

(μs)

Strategy 1 System.out.println("Java"); 0.005

Strategy 2 System.out.print("Java" + "\r\n"); 0.005

Strategy 3 System.out.print("Java" +

System.lineSeparator());

0.008

4.2 Strings concatenation

Two programming strategies have been used to

concatenate string variables as presented in Table 3. In

strategy 1, the concatenation is performed by using the

concat() function of the class String. In strategy 2, the

concatenation is performed by using the addition

operator +. The experimental results show that

strategy 2 requires more time to be executed compared

to strategy 1. The reason for this is that strategy 2

accepts string and non-string arguments thus it

implicitly converts all its arguments to strings then

performs the concatenation, whereas strategy 1 does

not apply any conversion as it only accepts string

argument which saves time. It is worth mentioning

that the concat() function takes only one string

argument and concatenates it with another string, thus

each time only two strings can be concatenated.

Whereas the addition operator + takes any number of

arguments and concatenates them all.

Table 3: Strategies to perform string concatenation

 Strategy Implementation Execution Time

(μs)

Strategy 1 String str1="12";

String str2="34";

String str3=str1.concat(str2);

System.out.println(str3);

0.0049

Strategy 2 String str1="12";

String str2="34";

String str3 = str1 + str2;

System.out.println(str3);

0.0055

4.3 String to char array conversion

Two programming strategies have been used to

convert a string to a char array as presented in Table 4.

In strategy 1, the built-in function toCharArray() is

used to perform the required conversion. In strategy 2,

a for-loop is used to copy the contents of the same

string to a char array element by element. The

experimental results show that strategy 2 requires

more time to be executed compared to strategy 1. The

reason for this is that strategy 2 employs more

statements including the for-loop to perform the

conversion.

Table 4: Strategies to perform string to char array

conversion

 Strategy Implementation Execution Time

(μs)

Strategy 1 String str="Java";

int len=str.length();

char temp

[]=str.toCharArray();

for(byte i=0;i<len;i++)

System.out.println(temp[i]);

0.0183

Strategy 2 String str="Java";

int len=str.length();

char temp[]=new char[len];

for (byte i = 0; i < len; i++)

temp[i] = str.charAt(i);

for(byte i=0;i<len;i++)

System.out.println(temp[i]);

0.0260

4.4 Char array to string conversion

Three programming strategies have been used to

convert a char array to a string as presented in Table 5.

In strategy 1, the built-in function valueOf() of the

String class with the name of the char array as an

argument is used to perform the conversion. In

strategy 2, each element in the char array is converted

to a string and merged using the addition operator +

inside a for-loop. In strategy 3, iteration over the

elements of the char array and append each element to

the StringBuilder is applied. The experimental results

show that strategy 2 and 3 require more time to be

executed compared to strategy 1. The reason for this is

that they both use a for-loop to iterate over the

elements of the char array. Besides, they use additional

statements to perform the conversion.

Table 5: Strategies to perform char array to string

conversion

 Strategy Implementation Execution Time (μs)

Strategy 1 char x[]={'J','a','v','a'};

String s=String.valueOf(x);

System.out.println(s);

0.0050

Strategy 2 char x[]={'J','a','v','a'};

String s="";

for (byte i=0;i<x.length;i++)

s=s+x[i];

0.0096

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

150

System.out.println(s);

Strategy 3 char x[]={'J','a','v','a'};

StringBuilder strbld=new

StringBuilder();

for (byte i=0;i<x.length;i++)

strbld.append(x[i]);

String s=strbld.toString();

System.out.println(s);

0.0104

4.5 Matching word in a string

Three programming strategies have been used to

match a given text/word in a string as presented in

Table 6. In strategy 1, the substring() function is used

to perform the matching operation via a string-to-

string comparison. In strategy 2, the charAt() function

is used to perform the matching operation via a char-

to-char comparison. In strategy 3, regular expressions

are used to perform the matching operation. The

experimental results show that strategy 2 and 3 require

more time to be executed compared to strategy 1. The

reason for this is that strategy 2 uses a for-loop to

iterate over the elements of the string char by char.

Besides, it uses additional statements to finish the

matching process. Strategy 3 also implicitly performs a

lot of comparisons to find the required word.

Table 6: Strategies to match word in a string

 Strategy Implementation Execution

Time (μs)

Strategy
1

String sentence="Java is a programming
language";
String word="programming";

boolean result=false;
int wordLen=word.length();
int diffLen=sentence.length()-wordLen;

for(int i=0;i<=diffLen;i++)

if(sentence.substring(i,wordLen+i)==word)
 {

 result=true;
 break;
 }
System.out.println(result);

0.0060

Strategy
2

String sentence="Java is a programming

language";
String word="programming";
boolean result=false;

int count=0,i=0;
while(i!=sentence.length())
{

if(sentence.charAt(i)==word.charAt(count))
 {
 count++;

 if(count==word.length())
 {
 result=true;
 break;

 }
 }
 else
 if(count!=0)

 {
 i--;
 count=0;

 }
 i=i+1;
}
System.out.println(result);

0.0103

Strategy

3

String sentence="Java is a programming
language";

String word="programming";
boolean result=false;
result=sentence.matches("(.*)"+word+"(.*)");
System.out.println(result);

0.0141

4.6 Evaluating fixed values

Many applications evaluate a set of fixed values such

as ports sizes (SMALL, MEDIUM, LARGE), days of the

week (SATURDAY, SUNDAY, MONDAY, TUESDAY,

WEDNESDAY, THURSDAY, FRIDAY), and directions

(NORTH, EAST, SOUTH, WEST). There are two

programming strategies to evaluate such sets of values

as presented in Table 7. In strategy 1, byte values are

used to represent such sets of fixed values. Whereas

string values are used to represent such sets of fixed

values in strategy 2. The experimental results show

that strategy 2 requires more time to be executed

compared to strategy 1. The reason for this is that

performing string comparison using equals() function

decreases the performance because the compiler needs

to compare a sequence of characters in each string.

Table 7: Strategies to evaluate a set of fixed values

 Strategy Implementation Execution Time

(μs)

Strategy

1

byte SMALL = 1, MEDIUM =

2, LARGE = 3;

byte selectedSize = 2;

boolean result=false;

if (selectedSize == MEDIUM)

 result=true;

System.out.println(result);

0.0053

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

151

Strategy

2

String SMALL = "SMALL",

MEDIUM = "MEDIUM",

LARGE = "LARGE";

boolean result=false;

String selectedSize =

"MEDIUM";

if

(selectedSize.equals(MEDIUM)

)

 result=true;

System.out.println(result);

0.0086

4.7 Using break statement in sequential search

Searching for a value in an array can be performed

either using break statement or without it as presented

in Table 8. In strategy 1, the process starts with

comparing the value to be found with the values in the

defined array from the beginning and when the

required value is found, break statement is used to

stop the search process. Using break statement is very

useful as there is no need to iterate over all the values

of the array. In strategy 2, the search process iterates

over all the values in the defined array searching for

the specified value even if that value has been found at

the beginning of the array. The experimental results

show that strategy 1 outperforms strategy 2 in terms of

execution time.

Table 8: Strategies to perform sequential search

 Strategy Implementation Execution Time

(μs)

Strategy

1

boolean result=false;

String list[]=

{

 "item1",

 "item2",

 "item3",

 "item4",

 "item5"

};

for(byte

i=0;i<list.length;i++)

if(list[i]=="item3")

{

 result=true;

 break;

}

System.out.println(result);

0.0056

Strategy

2

boolean result=false;

String list[]=

{

 "item1",

 "item2",

 "item3",

 "item4",

 "item5"

};

for(byte i=0;i<5;i++)

if(list[i]=="item3")

 result=true;

System.out.println(result);

0.0078

4.8 Global vs. local variables

Variables can be defined as global or private based on

how they are planned to be accesses and changed as

presented in Table 9. In strategy 1, both variables sum

and a[] are defined as global; thus, they can be accessed

from anywhere in the program. Whereas in strategy 2,

both sum and a[] are local variables as they are defined

inside the function summation(). Therefore, both

variables are accessed only within that function. To

ensure this, the compiler applies some mechanisms to

prevent local variables from being accessed from

outside the function that defines them. Therefore,

accessing local variables takes more time. The

experimental results show that strategy 1 outperforms

strategy 2 in terms of execution time.

Table 9: Strategies to use variables: global vs. local

 Strategy Implementation Execution Time

(μs)

Strategy

1

static int sum = 0;

static int a[] = {5, 10, 15, 20, 25,

30, 35,40};

void summation()

{

for(byte i=0;i<a.length;i++)

sum=sum+a[i];

System.out.println(sum);

}

0.0066

Strategy

2

void summation()

{

int sum = 0;

int a[] = {5, 10, 15, 20, 25, 30,

35,40};

for(byte i=0;i<a.length;i++)

sum=sum+a[i];

System.out.println(sum);

}

0.0098

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

152

4.9 1D array initialization

Two programming strategies have been used to

initialize a 1D array with a given value as presented in

Table 10. In strategy 1, the fill() function of Array class

is used to initialize the array a[100] with the value 2.

Whereas in strategy 2, the array a[100] is initialized

with the value 2 by using two for-loop statements.

Using for-loop statements takes more time to be

executed as they perform many increment ++ and

comparison < operations. The experimental results

show that strategy 1 outperforms strategy 2 in terms of

execution time.

Table 10: Strategies to initialize a 1D array

 Strategy Implementation Execution Time (μs)

Strategy 1 int a[]=new int [100];

int sum=0;

Arrays.fill(a, 2);

for(int i=0;i<a.length;i++)

sum=sum+a[i];

System.out.println(sum);

0.0052

Strategy 2 int a[]=new int [100];

int sum=0;

for(int i=0;i<a.length;i++)

a[i]=2;

for(int i=0;i<a.length;i++)

sum=sum+a[i];

System.out.println(sum);

0.008

4.10 Row-major order vs. column-major order

Two programming strategies have been used to write

data into a 2D array as presented in Table 11. In

strategy 1, the array a[][] is initialized with the value 2

via row-major order (data is written row by row). In

strategy 2, the array a[][] is initialized with the value 2

via column-major order (data is written column by

column). The experimental results show that strategy

1 outperforms strategy 2 in terms of execution time.

The reason for this is that arrays in Java are stored in

row-major order. That means consecutive elements of

a row are contiguous in memory and so it is faster to

read memory at contiguous locations. Consequently, if

the array is stored in row-major order, then iterating

sequentially through its elements in row-major order

is faster than iterating through its elements in column-

major order.

Table 11: Strategies to perform row-major order and

column-major order

 Strategy Implementation Execution Time

(μs)

Strategy

1

int size=100, sum=0;

int a[][]=new int

[size][size];

for(int i=0; i<size; i++)

 for(int j=0; j<size; j++)

 a[i][j]=2 ;

for(int i=0; i<size; i++)

 for(int j=0; j<size; j++)

sum=sum+a[i][j];

System.out.println(sum);

0.0215

Strategy

2

int size=100, sum=0;

int a[][]=new int

[size][size];

for(int i=0; i<size; i++)

 for(int j=0; j<size; j++)

 a[j][i]=2 ;

for(int i=0; i<size; i++)

 for(int j=0; j<size; j++)

sum=sum+a[j][i];

System.out.println(sum);

0.0356

4.11 Function calling overhead

Calling a function to execute a particular task always

has a time overhead. Two programming strategies

have been used to call a function several times as

presented in Table 12. If a function is to be called

multiple times, inexperienced developers frequently

repeat the calling statement as in strategy 2. On the

other hand, a for-loop with an iteration number equal

to how many times that function wanted to be

executed as in Strategy 1 can be put inside the function.

The experimental results show that strategy 1

outperforms strategy 2 in terms of execution time. The

reason for this is that strategy 2 increases the overhead

in each function calling (each call requires extra time).

Table 12: Strategies to call a function several times

 Strategy Implementation Execution Time

(μs)

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

153

Strategy

1

void printString(String str)

{

 for(int i=0;i<3;i++)

 System.out.println(str);

}

// calling the function one

time

printString("Testing");

0.0135

Strategy

2

void printString(String str)

{

 System.out.println(str);

}

// calling the function three

times

for(int i=0;i<3;i++)

printString("Testing");

0.0197

4.12 Loop rolling vs. loop unrolling

This experimental test involves initializing the integer

array a[99] to the value 5 in a loop then calculating the

summation of the elements in another loop as

presented in Table 13. Strategy 1 unrolls both loops

and performs three assignment operations in each

iteration of the first loop and performs three

summation operations in each iteration of the second

loop. Strategy 2 traverses both loops step by step and

performs one assignment operation in each iteration of

the first loop and performs one summation operation

in each iteration of the second loop. The experimental

results show that loop unrolling in strategy 1 requires

less execution time compared to strategy 2 which uses

loop rolling. The reason for this is that loop unrolling

reduces the number of iterations, comparisons, and

repeating the loop body several times.

Table 13: Strategies to perform looping: loop rolling

vs. loop unrolling

 Strategy Implementation Execution Time

(μs)

Strategy

1

int sum=0;

int a[]=new int[99];

for(int i=0;i<99;i+=3)

{

 a[i]=5;

 a[i+1]=5;

 a[i+2]=5;

}

for(int i=0;i<99;i+=3)

sum=sum+a[i]+a[i+1]+a[i+2];

System.out.println(sum);

0.005

Strategy

2

int sum=0;

int a[]=new int[99];

for(int i=0;i<99;i++)

 a[i]=5;

for(int i=0;i<99;i++)

 sum=sum+a[i];

System.out.println(sum);

0.0076

4.13 Data types selection

Using the correct data types for programming tasks

has a notable impact on program performance. The

byte data type is used in strategy 1 to declare, initialize,

and then calculate the summation of the array a[100].

The same task is carried out in strategy 2 but

with the use of the int data type as presented in Table

14. The experimental results show that the extra size of

the int data type takes more time to be processed

compared to using the byte data type. It is

recommended to check the data variable range to be

used for the programming task at hand, and then a

suitable data type that fits the required range has to be

chosen and used accordingly.

Table 14: Strategies to use different data types

 Strategy Implementation Execution Time (μs)

Strategy 1 byte sum=0;

byte a[]=new byte[100];

for(byte i=0;i<a.length;i++)

 a[i]=1;

for(byte i=0;i<a.length;i++)

 sum= (byte)(sum+a[i]);

System.out.println(sum);

0.0059

Strategy 2 int sum=0;

int a[]=new int[100];

for(int i=0;i<a.length;i++)

 a[i]=1;

for(int i=0;i<a.length;i++)

 sum= sum+a[i];

System.out.println(sum);

0.0087

4.14 For-loop vs. iterator

Iterating over the elements of a list can be performed

using standard for-loop or iterator as presented in

Table 15. Strategy 1 iterates over the elements of a list

of size 100 using a standard for-loop whereas strategy

2 iterates over the same elements using an iterator. The

experimental results show that strategy 1 outperforms

strategy 2 in terms of execution time. The reason for

this is that the used iterator in strategy 2 creates a new

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

154

String instance for each element in the list (in this test,

a String instance will be created 100 times in order to

iterate over all elements of the used list) which

consumes time.

Table 15: Strategies to perform looping: for-loop vs.

iterator

 Strategy Implementation Execution Time (μs)

Strategy

1

int listSize=100;

List<String> list = new

ArrayList<>(listSize);

for(int i=0;i<listSize;i++)

list.add("Java");

for(int i=0;i<listSize;i++)

System.out.println(list.get(i));

0.3535

Strategy

2

int listSize=100;

List<String> list = new

ArrayList<>(listSize);

for(int i=0;i<listSize;i++)

list.add("Java");

for(String value: list)

System.out.println(value);

0.4287

4.15 Checking empty strings

Two programming strategies have been used to check

if a string object is empty or not as presented in Table

16. In strategy 1, the length() function is used to check

if the object str is empty or not by checking its length.

If the length is equal to 0, then it means the object str is

empty. Here, an int-to-int comparison is employed. In

strategy 2, the checking operation is performed using

the equals() function which performs a string-to-string

comparison. The experimental results show that

strategy 2 requires more time to be executed compared

to strategy 1. The reason for this is that strings (objects)

comparison consumes more time than integers

(variables) comparison.

Table 16: Strategies to check empty strings

 Strategy Implementation Execution Time

(μs)

Strategy

1

String str = new String();

boolean result=false;

if(str.length()==0)

 result=true;

System.out.println(result);

0.005

Strategy

2

String str = new String();

boolean result=false;

if(str.equals(""))

 result=true;

System.out.println(result);

0.007

4.16 Pausing program execution

Two programming strategies have been used to pause

a program execution for a given period of time as

presented in Table 17. In strategy 1, the sleep() function

of the class Thread is used whereas the sleep() function

of the class TimeUnit is used in strategy 2. It is worth

mentioning that during the pausing period of

strategy1, other tasks can be performed (e.g., I/O pins

manipulations and mathematical calculations). Thus,

it is very useful to perform multi-task operations.

During the pausing period of strategy2, other tasks

cannot be performed. The experimental results show

that strategy 1 outperforms strategy 2 in terms of

execution time. The reason for this is that strategy 2

uses specific mechanisms to not make the processor

time available to the other tasks of a program to be

executed during the pausing period. Thus, doing so

consumes more time compared to strategy 1.

Table 17: Strategies to pause program execution

 Strategy Implementation Execution

Time (μs)

Strategy

1

int timePeriod = 1, x=50;

x=x+250;

System.out.println(x);

Thread.sleep(timePeriod*1000);

x=x+50;

System.out.println(x);

995.9022

Strategy

2

int timePeriod = 1, x=50;

x=x+250;

System.out.println(x);

TimeUnit.SECONDS.sleep(timePeriod);

x=x+50;

System.out.println(x);

1000.1927

4.17 Eliminating identical expressions

Elimination of identical expressions aims to replace

identical expressions that evaluate the same value

several times with a single variable holding the same

computed value as presented in Table 18. In strategy

2, a number of mathematical operations are computed

https://en.wikipedia.org/wiki/Expression_(mathematics)

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

155

including the identical expression (a*b) repeated three

times. In strategy 2, the identical expression (a*b) is

replaced with the variable temp instead of repeating

the same operation three times. The experimental

results show that strategy 1 outperforms strategy 2 in

terms of execution time. The reason for this is that the

time required to calculate (a*b) only one time with the

time to store and retrieve temp is less than the time

required for calculating (a*b) several times.

Table 18: Strategies to eliminate identical

expressions

 Strategy Implementation Execution Time

(μs)

Strategy

1

int x, y, a=5, b=5, i=100, j=100,

k=1000;

double z;

int temp=a*b;

x = i + temp;

y = j * temp;

z = k / temp;

System.out.println(x + " "+y+"

"+z);

0.0499

Strategy

2

int x, y, a=5, b=5, i=100, j=100,

k=1000;

double z;

x = i + (a * b);

y = j * (a * b);

z = k / (a * b);

System.out.println(x + " "+y+"

"+z);

0.0706

4.18 Using shift operator

Two programming strategies have been used to

perform multiplication as presented in Table 19. In

strategy 1, each element in the array a[] is multiplied

by 2 using the shift operator a[i]<<1; then the

summation of all elements is calculated. In strategy 2,

the same multiplication process is performed but by

using the standard multiplication * sign. The

experimental results show that strategy 1 outperforms

strategy 2 in terms of execution time. The reason for

this is that the shift operator is faster because it works

on the bits level and thus directly supported by

the processor. To perform the division operation by 2,

the shift operator a[i]>>1can by used.

Table 19: Strategies to perform calculations

with/without shift operator

 Strategy Implementation Execution Time (μs)

Strategy 1 int sum=0;

int a[]=new int[100];

for(int i=0;i<a.length;i++)

 a[i]=5;

for(int i=0;i<a.length;i++)

 a[i]=a[i]<<1;

for(byte i=0;i<a.length;i++)

 sum= sum+a[i];

System.out.println(sum);

0.0306

Strategy 2 int sum=0;

int a[]=new int[100];

for(int i=0;i<a.length;i++)

 a[i]=5;

for(int i=0;i<a.length;i++)

 a[i]=a[i]*2;

for(byte i=0;i<a.length;i++)

 sum= sum+a[i];

System.out.println(sum);

0.0559

4.19 Calculations outside loops

Two programming strategies have been used to

perform calculations either inside a loop or outside a

loop as presented in Table 20. In strategy 1, the

expression (Math.pow(2, x)+Math.pow(4, x);) is

calculated outside the second for-loop. Then, its

calculated value which is stored in the variable y has

been used inside the second loop. In strategy 2, the

same expression is calculated inside the second loop

only. The experimental results show that strategy 1

outperforms strategy 2 in terms of execution time. The

reason for this is that the expression is only calculated

and executed one time if it is outside the loop rather

than being calculated and executed on each loop

iteration if it is inside the loop.

4.20 For looping

Two programming strategies have been used to

perform for looping as presented in Table 21. In

strategy 1, the loop variable i goes from a.length-1 to 0,

then i is compared against 0 at each iteration. In

strategy 2, the loop variable i goes from 0 to a.length-

1, then i is compared against a.length at each iteration.

The experimental results show that strategy 1

outperforms strategy 2 in terms of execution time. The

reason for this is that comparing against 0 is more

efficient in any programming language because the

underlying tests are based on < 0, <= 0, == 0, != 0, >= 0

and > 0.

https://en.wikipedia.org/wiki/Central_processing_unit

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

156

Table 20: Strategies to perform calculations

inside/outside loops

 Strategy Implementation Execution Time

(μs)

Strategy

1

double a[]=new

double[100];

int x=2;

for(int i=0;i<a.length;i++)

 a[i]=x;

double y=Math.pow(2,

x)+ Math.pow(4, x);

for(int i=0;i<a.length;i++)

 a[i]=a[i]* y;

for(int i=0;i<a.length;i++)

 System.out.println(a[i]);

0.8551

Strategy

2

double a[]=new

double[100];

int x=2;

for(int i=0;i<a.length;i++)

 a[i]=x;

for(int i=0;i<a.length;i++)

 a[i]=a[i]* (Math.pow(2,

x)+Math.pow(4, x));

for(int i=0;i<a.length;i++)

 System.out.println(a[i]);

1.6562

Table 21: Strategies to perform for looping

 Strategy

Implementation

Execution Time

(μs)

Strategy

1

int sum=0;

int a[]=new int[100];

for(int i=a.length-1;i--

>=0;)

 a[i]=2;

for(int i=a.length-1;i--

>=0;)

 sum= sum+a[i];

System.out.println(sum);

0.0258

Strategy

2

int sum=0;

int a[]=new int[100];

for(int

i=0;i<a.length;i++)

 a[i]=2;

for(int

i=0;i<a.length;i++)

 sum= sum+a[i];

System.out.println(sum);

0.0487

4.21 Accessing class functions

Two programming strategies have been used to access

the functions of a class as presented in Table 22. In

strategy 1, the function printString() is defined as a

static function by using the static keyword preceding

its name. To call this static function, the name of the

class (JavaApplication1) containing the function is

directly used in the function calling. In strategy 2, the

function printString() is defined as a normal function

without the static keyword. To call this non-static

function, the object obj of the class (JavaApplication1)

containing the required function is created and then is

used to call the function. The experimental results

show that strategy 1 outperforms strategy 2 in terms of

execution time. The reason for this is that strategy 2

includes an extra step which is object creation that

consumes more time compared to strategy 1.

Table 22: Strategies to access class functions

 Strategy Implementation Execution

Time (μs)

Strategy

1

class JavaApplication1

{

static String printString(String str)

{

 return str.toUpperCase();

}}

String

str=JavaApplication1.printString("Java");

System.out.println(str);

0.0241

Strategy

2

class JavaApplication1

{

String printString(String str)

{

 return str.toUpperCase();

}}

JavaApplication1 obj=new

JavaApplication1();

String str=obj.printString("Java");

System.out.println(str);

0.044

4.22 Initializing collections

Two programming strategies have been used to

initialize collections of type Set as presented in Table

23. In strategy 1, the collection set is initialized with

Item1, Item2, and Item3 via the constructor of the class

Set. In strategy 2, the collection set is initialized with

Item1, Item2, and Item3 via the function addAll(). The

experimental results show that strategy 1 outperforms

strategy 2 in terms of execution time. The reason for

this is that strategy 2 includes an extra step which is

calling the function addAll() of the object set that

consumes more time compared to strategy 1.

Table 23: Strategies to initialize collections

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

157

 Strategy Implementation Execution

Time (μs)

Strategy

1

Set<String> set = new

HashSet<>(Arrays.asList("Item1",

"Item2", "Item3"));

for(String value: set)

 System.out.println(value);

0.0723

Strategy

2

Set<String> set = new

HashSet<>();

set.addAll(Arrays.asList("Item1",

"Item2", "Item3"));

for(String value: set)

 System.out.println(value);

0.1392

4.23 Adding elements to a list

Two programming strategies have been used to add a

number of elements to a list as presented in Table 24.

In strategy 1, the addAll() function of the class List is

used to add 100 elements to the created list. It can be

noted that the input to the addAll() function is an array

of size 100. The addAll() function stores all elements of

the array into the created list at once. In strategy 2, the

add() function of the class List is used to add 100

elements to the created list. It can be noted that the

add() function is put inside a loop of 100 iterations. The

experimental results show that strategy 1 outperforms

strategy 2 in terms of execution time. The reason for

this is that strategy 2 calls the add() function 100 times

which consumes more time compared to use an array

of size 100 for storing the elements and then calling the

addAll() function only one time to add all the elements

at once.

Table 24: Strategies to add elements to a list

 Strategy Implementation Execution Time (μs)

Strategy 1 int listSize=100;

String str[]=new String[100];

List<String> list = new

ArrayList<>(listSize);

for(int i = 0; i < listSize; i++)

str[i]="Java";

list.addAll(Arrays.asList(str));

for(int i = 0; i < listSize; i++)

System.out.println(list.get(i));

1.2432

Strategy 2 int listSize=100;

List<String> list = new

ArrayList<>(listSize);

for(int i = 0; i < listSize; i++)

list.add("Java");

for(int i = 0; i < listSize; i++)

System.out.println(list.get(i));

2.1347

4.24 Reading a file line by line

Several programming strategies have been used to

read a text file line by line as presented in Table 25. In

strategy 1, the readLine() function of the class

BufferedReader is used inside a loop to read the

specified file Test.txt line by line. In strategy 2, the

readLine() function of the class RandomAccessFile is

used inside a loop to read the same file line by line. In

strategy 3, the lines() function of the class Files is used

with the loop ForEachOrdered to read the same file

line by line. In strategy 4, the readAllLines() function

of the class Files is used to read all lines of the same file

at once. Then, all the obtained lines are stored as items

in the list f. Afterward, each line (item) is read from the

list via for iterator loop. In strategy 5, the nextLine()

function of the class Scanner is used inside a loop to

read the same file line by line. The experimental results

show that strategy 1 outperforms the other strategies

in terms of execution time. The reason for this is that

strategy 1 reads al the contents of the file and stores

them in the main memory (RAM) and then it fetches

each line directly from the memory instead of reading

line by line from the hard disk as the other strategies

do. Reading data from the memory is faster than

reading the same data from the hard disk. It is worth

mentioning that the file Test.txt was used with ten

lines, each of ten bytes.

4.25 Array assignment

Two programming strategies have been used to assign

a value to an array element as presented in Table 26. In

strategy 1, a value is assigned to the array element a[0]

via a temporary variable outside the loop. Thus, the

assignment is performed only one time. In strategy 2,

a value is assigned to the array element a[0] inside a

loop where the assignment be repeated at each

iteration. The experimental results show that strategy

1 outperforms strategy 2 in terms of execution time.

The reason for this is that the assignment in strategy 1

is performed only one time whereas it is performed 100

times in strategy 2.

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

158

Table 25: Strategies to read a text file line by line

 Strategy Implementation Execution

Time (μs)

Strategy

1

BufferedReader f = new

BufferedReader (new

InputStreamReader(new

FileInputStream

("E:/Test.txt")));

String str;

while ((str = f.readLine()) != null)

System.out.println(str);

0.4919

Strategy

2

Files.lines(Paths.get("E:/Test.txt")).

forEachOrdered(System.out::println);

0.6672

Strategy

3

RandomAccessFile f = new

RandomAccessFile

("E:/Test.txt" , "rw");

String str;

while((str = f.readLine()) != null)

System.out.println(str);

0.7454

Strategy

4

List<String> f = Files.readAllLines (

Paths.get ("E:/Test.txt"));

for (String str : f)

System.out.println(str);

0.8416

Strategy

5

Scanner f = new Scanner(new

File ("E:/Test.txt"));

String str;

while(f.hasNext())

{

str = f.nextLine();

System.out.println(str);

}

1.5869

Table 26: Strategies to perform array assignment

 Strategy Implementation Execution Time (μs)

Strategy 1 int a[]=new int[100];

int temp=0;

for(int i=0;i<a.length;i++)

 temp=temp+5;

a[0]=temp;

System.out.println(a[0]);

0.0241

Strategy 2 int a[]=new int[100];

for(int i=0;i<a.length;i++)

 a[0]=a[0]+5;

System.out.println(a[0]);

0.0349

5. CONCLUSION AND FUTURE WORK

In this experimental study, various programming

strategies were employed to write efficient Java-based

applications. The selected strategies aim to decrease

the execution time of Java-based applications. This

may also lead to higher energy efficiency especially

when Java applications are created to run on devices

with batteries or with limited processing capabilities.

To fulfill the above aims, a number of experimental test

scenarios were developed and executed to measure

and analyze the performance impact of each selected

strategy. The obtained results show that some

programming strategies have a significant effect on

performance efficiency and others have very limited

impact. Besides, the results of this study show that Java

programmers should be aware of the significant

impact that even small and simple changes in coding

can have on the performance of their applications.

Some possible future works could be: (a) Applying and

evaluating the same programming strategies used in

this paper on other programming languages such as

Python and C#. (b) Employing other data types and

sizes which were not used in this paper and measure

their impact on the overall performance of each

programming strategy. (c) Measuring the performance

impact of combining multiple programming strategies

in the development of one application. (d) Including

and examining other programming strategies which

were not used in this paper.

6. REFERENCES

1. Jiang, G. and Zhao, C. (2010). Practice and exploration

on bilingual teaching for Java Programming

Language. International Conference on Educational and

Information Technology. 465- 468.

2. Anupam, A. (2016). Tenets of Internet of Things (IoT)

application and Java technology. 3rd International

Conference on Recent Advances in Information Technology

(RAIT). 697-699.

3. Li, H. (2011). RESTful Web service frameworks in

Java. IEEE International Conference on Signal Processing,

Communications and Computing (ICSPCC). 1-4.

4. Mohammed, T. Y. and Hamada, M. (2016). A cloud-

based Java compiler for smart devices. 15th International

Conference on Information Technology Based Higher

Education and Training (ITHET). 1-6.

5. Liu, G. and Fan, G. (2010). Java Real-Time Software and

Hardware Development Platform for Embedded

Java. 3rd International Conference on Information

Management, Innovation Management and Industrial

Engineering. 525-528.

6. Daud, S., Ahmad, R. B. and Murhty, N. S. (2008). The

effects of compiler optimizations on embedded system

power consumption. International Conference on

Electronic Design. 1-6.

7. Foleiss J. H., Silva, A. F. D. and Ruiz, L. B. (2011). The

Effect of Combining Compiler Optimizations on Code

Size. 30th International Conference of the Chilean Computer

Science Society. 187-194.

Academic Journal of Nawroz University (AJNU), Vol.10, No.4, 2021

159

8. Budimlic, Z. and Kennedy, K. (1997). Optimizing Java:

theory and practice. Concurrency: Practice and

Experience. 9(6). 445–463.

9. Myalapalli, V. K. and Geloth, S. (2015). Minimizing

impact on JAVA virtual machine via JAVA code

optimization. International Conference on Energy Systems

and Applications. 19-24.

10. Tyystjärvi, J., Säntti, T. and Plosila, J. (2010). Efficient

bytecode optimizations for a multicore Java co-

processor system. 12th Biennial Baltic Electronics

Conference. 173-176.

11. Babic, D. and Rakamaric, Z. (2002). Bytecode

optimization. 24th International Conference on Information

Technology Interfaces. 377-382.

12. Myalapalli, V. K. and Geloth, S. (2015). High

performance JAVA programming. International

Conference on Pervasive Computing (ICPC). 1-6.

13. Lei, C. Z., Qiang, T. Z., Ming, W. L. and Liang, T. S.

(2005). An effective instruction optimization method for

embedded real-time Java processor. International

Conference on Parallel Processing Workshops (ICPPW'05).

225-231.

14. Corsaro, A. and Cytron, R. K. (2003). Implementing and

optimizing real-time Java. International Parallel and

Distributed Processing Symposium. 1-1.

15. Gorchakov, Y. A. and Kalganov, S. A. (2008).

Programing and code optimization tips for AduC70xx

series microcontrollers. International Conference - Modern

Technique and Technologies, 93-96.

