
� Original article  |  doi: 10.25007/ajnu.v6n3a71

Academic Journal of Nawroz University (AJNU)� 11

1. INTRODUCTIOSWN

To provide a high speed of programming - running the 
new style of programming depends on the problem 
division into small parts. In general, time-consumed of 
programming execution can be measured depending 
on number of processors that participated with the 
processing. A parallel system is a combination of a parallel 
algorithm and a machine on which it operates (Dietz, 2004; 
Wilkinson and Allen, 2004; Naiouf, 2004). Preparing high-
performance computers are considered a great step of 
moving toward multiprocessors (MPs). The MP computer 
system will provide higher speed than that of uniprocessor 
one. The uses or applications for parallel processing (PP) 
come from two different areas; on the one hand, there 
are high-performance systems for speeding up compute-

intense calculations. These can be executed on traditional 
supercomputer systems or large clusters of workstations. 
On the other hand, there are embedded control systems on 
sequential hardware, which require parallel programming 
(PProg) concepts to control concurrent external actuators 
or internal processes (Naiouf, 2004; El-Rewini and 
Abd‑El‑Barr, 2005; Braunl, 2010). The distributed systems 
are constructed to overcome the drawbacks of single-
processor systems to be considered as one system that has 
more than one processing unit (Loosley and Douglas, 1998). 
In 2006, El Saifi and Midorikawa (2006) described parallel 
message passing interface. The main idea of this work is 
treatment with more than one platform and more than one 
program language. Depending on the principles of message 
passing, this system has the ability of combining different 
parties from different domains. In 2006, Kessler (2006) 
addressed the advantages of investing PProg features for 
browsing the power of PProg through students’ courses. 
This teaching provided very acceptable results by clarifying 
the real capabilities of PProg applications, especially those 
related to the shared memory systems. In 2010, Sola (2010) 
studied the usefulness of PP approaches for addressing the 
problems of optimizing many aims dynamically. This has 
been done using motivated methods related with a multi-

Effects of Multicore Distributed Memory 
Systems on Parallel Processing Applications

Mohammed J. Mohammed

Department of Computer and Communication Engineering, College of Engineering, Nawroz Univesity,

Kurdistan Region – F.R. Iraq

ABSTRACT

Complex problems need a longtime to be solved, with low efficiency and performance. Hence, to overcome these 
drawbacks, the approach of breaking the problem into independent parts and treating each part individually in the 
way that each processing element can execute its part of the problem simultaneously with the others. The systems that 
contain many computing elements combined. Parallel processing (PP) is divided into three types; shared, distributed, 
and hybrid memory systems are usually adopted. The aim of this research is to point out the effects of multicore 
distributed memory systems on PP applications that can reduce the total execution time of the programs. In this 
work, distributed- and shared-memory systems addressed depends on client/servers principles. However, to get the 
exact evaluation of our aim, just one client and one server have been depended. The algorithm used here is capable of 
calculating: The started, consumed, and terminated for CPU and total execution times, CPU usage of servers, and CPU 
and Total execution times for the client. The results compared with previous works depending on distributed memory 
systems, to overcome the previous drawbacks taking in the consideration the effects of multi-core processor. All of 
these algorithms are implemented using Java Language.

KEY WORDS: Central Processing Unit, Multicore Distributed Memory, Parallel Processing, Client-server Principles, 
Hardware and Software Parts

Academic Journal of Nawroz University (AJNU)
Volume 6, No 3(2017), 3 pages
Received 1 August 2016; Accepted 3 October 2016
Regular research paper: Published 18 July 2017
Corresponding author’s e-mail: mjm562000@nawroz.edu.krd
Copyright ©2017 Mohammed J. Mohammed. This is an 
open-access article distributed under the Creative Commons 
Attribution License.



Original article  |  doi: 10.25007/ajnu.v6n3a71�

12� Academic Journal of Nawroz University (AJNU)

aim approach. The depended algorithm is an economic 
time, cost, and fast speed with wide production. In 2010, 
Yaseen introduced a diagnostic approach for improving 
the implementation of parallel processing (PP) operations. 
His work based on two case studies, namely, matrix 
algebra and sorting algorithms. For each case study, there 
are many general algorithms and other related algorithm 
(i.e., Network - Connection - Checking, Load - Division, 
Messages  -  Sending/Delivering, Timings  -  Calculating, 
Results - Checking, and Results - Receiving/Storing).

2. PP AND PPROG

PP is certainly not a new concept. There are three distinct 
areas of PP: Server-side functions, server process client-
side functions, and client process object rendering 
(Frachtenberg, 2007). Although using parallelism is 
used for many applications, it is not a standard that all 
applications will get the advantages of the PP approaches. 
The structure of application and design of the programming 
style added to the available resources will affect the scope 
of benefiting from PP approaches (Dietz, 2004). To get 
powerful utilization from PProg, it prefers to combine more 
than one computer with high features that are capable of 
using the related computer system resources. A structured 
programming style will push the programmers to deal 
with big problems efficiently. The efficiency of PProg 
came from subdividing big problems into many pieces 
each piece will be specified to one processing unit within 
the multiprogramming system. Hence, the overall system 
will get high production through little time with high 
processing speed (Carriero and Gelernter, 1992; Funga, 
et al., 2003).

3. THE PROPOSED SYSTEM AND ALGORITHMS

In a distributed memory system, the processes have 
individual private spaces of addresses and communicate 
by MPIs. Each processor has its own local memory. The 
processors are connected to each other. In distributed 
memory system, there is no limitation on number of 
processors and memory modules because servers are 
connected as cluster network and it can be extended 
to any required number. The proposed algorithm has 
been designed for the software that guides the necessary 
hardware components and manages the passing of 
messages between client and servers with different cases. 
This work is focused on improving the programming style 
of distributed memory system PP approach by depending 
on active subroutines to overcome the drawbacks of 
memory heap in compare to the previous works (for 
example 10). For the simplicity, this case deals with one 
client and one server and depends exactly on the same 
computers used by Yaseen (2010). Adding to the previous 
aims, there is additional aim for this case study related 
to the central processing unit (CPU) usage of the server 

side. Due to that the previous work faces the problem of 
limiting the maximum order of used matrices, this case 
study is built to overcome this problem. This is done by 
increasing the heap size of the related OS and the special 
functions within the application package, also monitoring 
the available RAM to provide as possible as large amount 
of free space of memory. All matrix orders that depend 
on by Yaseen (2010) are applied then continued farther 
by several steps. This case study shows the effects of 
multi-core systems on the distributed memory system 
PP approach.

3.1. Hardware Part

The hardware part is constructed of client side and 
server side. In such works, the properties of computers are 
important, in this work both computers are fully identical 
completely, and have the following properties (CPU: Core 
2 Due, Speed 2.6 MHz, RAM: 2 GByte, and HD: 120 GByte).

3.2. Software Part

As the hardware part consists of two sides, the software 
part also consists of two sides, which are client-side software 
and server-side software. Client-side software represents 
the main program, which is responsible of: Detecting the 
connected server socket at other side, sending/receiving 
the control/response messages to/from the client side (as 
message text or as data files), and receiving the calculated 
results by server socket and accumulating them to get 
the final results. Server-side software represents the 
program that service the commands issued from the main 
program (i.e.,  client program). The software at server 
host is responsible for: Detecting the connection status of 
the client-host, receiving/sending the response/control 
messages from/to client-host and guide the execution 
of the server program to apply the client requirements, 
and run the appropriate subroutines according to the 
requirements of client-host and calculate the correct results.

4. IMPLEMENTATION AND RESULTS

First, the load will be sent to the server side using just 
one processor and monitoring its effects on the CPU 
usage. Then, the procedure will be repeated taking into 
consideration distributing the load between the two 
processors of the server side and remonitoring the effect on 
CPU usage. The previous test does not exceed 4096 order 
as a high order of the matrices because of the available 
RAM problems. Hence, in this work, this problem has 
been overcome and four additional matrices orders are 
depended which are: 5000, 5016, 5032, and 5048. The 
reason behind the starting from these orders is to browse 
the effects of multi-core systems on PP. The results of this 
case study are shown in Table 1.

The practical measuring of CPU usage for a 
multiprocessor system, CPU usage can be calculated by 
letting all processors to have equal ratio of usage. Hence, 



� Original article  |  doi: 10.25007/ajnu.v6n3a71

Academic Journal of Nawroz University (AJNU)� 13

for this case, we have just two CPUs (0 and 1), each will 
get a ratio of 50% of overall system usage.

5. DISCUSSION AND CONCLUSIONS

The obtained results illustrate that the problem of limited 
matrix order due to the restrictions of benefit from the 
available system’s RAM has been overcome in this work 
and the effects of these added orders appeared, especially 
with certain states. Furthermore, the good efficiency of 
distributed PP with high load, the results of this figure for 
both of (consumed CPU and total execution) times are very 
acceptable. The important thing here is the ability of using 
an order higher than that used by Yaseen (2010) and this is 
done successively depending on the orders (5000, 5016, 5032, 
and 5048) where the maximum order used by Yaseen (2010) 
was (4096). The most important point that can be concluded 
here is the effect of multi-core systems on treating with high 
loads. This point was not discussed by Yaseen (2010) because 
he did not benefited from the facility of dual processor 
of his computer system. By chance, this problem did not 
appear (depending on the environment and organization 
of the installed applications in his computer system) which 
produced no such problems with increasing the matrix order 
to (4096). However, this work shows that for each system 
when reaching a certain point (may be before 4096 matrix 
order) of high load, the system will automatically distribute 
it among all its logical processors. Hence, both processors 
will participate with the processing operations and the 
CPU usage for each one will be less than that of one of them 
(i.e., CPU-0). This condition appeared at (order 5000 and 
above).To illustrate the organization of load distribution and 
its effect on CPU usage for each processor, the heavy load 
as much as possible at the maximum capability has been 
specified for first processor (i.e., CPU-0). Hence, the effect 
of overflow loading to the CPU-0 is illustrated on CPU-1 
usage that has been started from a little value and grows with 
increasing its load. The main points arise from the research 
employed in this thesis can be summarized as follows:
1.	 Distributing the memory systems addressed depending 

on client/servers principles.

2.	 The algorithm used here is capable of calculating: The 
started, consumed, and terminated for CPU and total 
execution times, CPU usage of servers, and CPU and 
total execution times for the client.

3.	 The algorithm is designed in very active programming 
routines to get a minimum loss of time spent through 
the running state (at both client and server sides).

4.	 The capability of using multi-core systems within 
distributed PP systems has been addressed here in details 
side by side with the results affected by these processors. 
Added to that this work has addressed the shared 
memory system PP and its effects on multi-processes/
multi-threads and their execution timing values.

REFERENCES

Braunl, T. (2010). Parallel Processing: Parallel Computer Architecture and 
Parallel Software Design Book. University of Western Australia.

Carriero, N & Gelernter, D. (1992). How to Write Parallel Programs Book. 
Cambridge, MA: Massachusetts Institute of Technology.

Dietz, H. (2004). Linux Parallel Processing HOWTO. v2.0, 28-06. Available 
from: http://www.aggregate.org/LDP. [Last accessed on 2017 May 26].

El Saifi, M.M & Midorikawa, E.T. (2006). PMPI: A  multi-platform, 
multi-programming language MPI using NET. Sao Paulo, SP, Brazil: 
Polytechnic School-University of São Paulo.

El-Rewini, H & Abd-El-Barr, M. (2005). Advanced Computer Architecture 
and Parallel Processing. New York: John Wiley & Sons, Inc.

Frachtenberg, E. (2007). Job Scheduling Strategies for Parallel Processing, 
JSSPP, June 17; 2007.

Funga, Y.F., Ercanb, M.F., Chonga, Y.S M., Hoa, T.K., Cheunga, W.L. & 
Singha, G. (2003). Teaching Parallel Computing Concepts with a Desktop 
Computer. Hong Kong: The Hong Kong Polytechnic University.

Kessler, C.W. (2006). Teaching Parallel Programming Early. Sweden: 
Linköping University.

Loosley, C & Douglas, F. (1998). High-Performance Client/Server. New York, 
NY: John Wiley & Sons.

Naiouf, M.R. (2004). Parallel processing. Dynamic Load Balance in Sorting 
Algorithms. University Nacional de La Plata, Facultad de Ciencias 
Exactas.

Sola, M.C. (2010). Parallel Processing for Dynamic Multi-objective 
Optimization, Ph.D. Thesis, University of GRANADA, April; 2010.

Wilkinson, B & Allen, M. (2004). Parallel Computers. Boston, MA: Pearson 
Education Inc.

Yaseen, N.O. (2010). Diagnostic Approach for Improving the 
Implementation of Parallel Processing Operations, Thesis Zakho 
University; 2010.

TABLE 1
Average Values of Matrix Algebra ‑ Case for One Server

Server case Number of elements
Time types (seconds) 4096 5000 5016 5032 5048
Client CPU time 1813.3907 2025.6322 2046.2263 2078.2725 2128.7123
Client execution time 1848.6799 2060.9314 2081.1493 2110.3745 2170.1938
Server average consumed CPU time 1641.1406 1853.7533 1874.3375 1904.8782 1976.8119
Server total execution time 1751.7007 1963.8849 1984.9488 2020.1114 2099.0017
Server CPU‑0 usage % 93 98 96 95 94
Server CPU‑1 usage % 0 7 22 32 37
Server system CPU usage %=(CPU‑0 usage+CPU‑1 usage)/2 46.5 57.5 59 63.5 65.5

CPU: Central processing unit


