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ABSTRACT 

In this paper, we reviewed some variable selection methods in linear regression model. Conventional methodologies 

such as the Ordinary Least Squares (OLS) technique is one of the most commonly used method in estimating the 

parameters in linear regression. But the OLS estimates performs poorly when the dataset suffer from outliers or when 

the assumption of normality is violated such as in the case of heavy-tailed errors. To address this problem, robust 

regularized regression methods like Huber Lasso (Rosset and Zhu, 2007) and quantile regression (Koenker and Bassett 

,1978] were proposed. This paper focuses on comparing the performance of the seven methods, the quantile regression 

estimates, the Huber Lasso estimates, the adaptive Huber Lasso estimates, the adaptive LAD Lasso, the Gamma-

divergence estimates, the Maximum Tangent Likelihood Lasso (MTE) estimates and Semismooth Newton Coordinate 

Descent Algorithm (SNCD ) Huber loss estimates.  
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1. Introduction 

   Variable selection is important for high-dimensional 

data analysis in many research areas such as biology, 

signal processing and collaborative filtering. For 

example, microarray experiments allow one to measure 

thousands of variables (genes, proteins) simultaneously. 

The data sets generated by these experiments are 

generally very large in terms of the number of predictors 

(𝑝) and often small in terms of the number of biological 

samples (𝑛). In regression analysis, this problem is often 

termed as the “large 𝑝 and small 𝑛 problem” (𝑝 ≫ 𝑛) and 

presents a major barrier to traditional statistical 

methods. 

With the development of computer and data collection 

technologies, the database sizes continue to grow and 

various statistical methodologies have been developed 

over the past several decades to cope with the challenges 

presented by these data. In particular, there are major 

challenges in parameter estimation, model and variable 

selection.   Several robust regression methods have been 

proposed for fitting multiple regression models, 

especially for the case when  𝑝 ≥ 𝑛  where the least 

squares method could not be used. 

   Tibshirani (1996) proposed Lasso (Least Absolute 

Shrinkage and Selection Operator), that minimizes the 

residual sum of squares subject to an 𝐿1-norm constraint. 

The Lasso penalty results into some coefficients being 

estimated to completely zero, thus performing 

estimation and variable selection simultaneously. 

Following from the seminal paper of Tibshirani (1996), 

various extensions of Lasso were developed, for 

example adaptive Lasso (Zou, 2006), Smoothly Clipped 

Absolute Deviation (SCAD) (Fan and Li, 2001), etc. 

Quantile regression, introduced by Koenker and Bassett 

(1978), could be used when an estimate  of the various 

quantiles (such as the median)  of a conditional 

distribution is of interest. This allows one to see and 
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compare how some quantiles of the response variable 

may be more affected by some predictor variables than 

other quantiles.  

Some methods have combined regularized and robust 

regression methods in order to perform variable 

selection in high-dimensional data with outliers. For 

example, Rosset and Zhu (2007) proposed the Huber 

Lasso method which combines the Huber’s criterion loss 

with a Lasso penalty. The LAD-adaptive Lasso method 

is proposed by Wang et al. (2007), combining the idea of 

Least Absolute Deviance (LAD) and adaptive Lasso. 

Fujisawa and Eguchi (2008) introduce the Gamma 

divergence for regression. It measures the difference 

between two conditional probability density functions. 

Lambert-Lacroix and Zwald (2011) developed the 

Huber’s Criterion with adaptive Lasso which combines 

the Huber’s loss function and adaptive Lasso penalty. Yi 

and Huang (2016) developed an algorithm, called 

Semismooth Newton Coordinate Descent (SNCD), to 

obtain a better efficiency and scalability for computing 

the solution paths of penalized quantile regression. Qin 

et .al (2017) proposed a method called Maximum 

Tangent Likelihood Estimation (MTE).  In the next 

section we will give an overview some regularized and 

robust regression methods. 

2. Methods 

We start from the standard model for multiple linear 

regression to describe the regression regularization 

methods. Let the data (𝑥1, 𝑦1), .   .    . , (𝑥𝑛 , 𝑦𝑛), and the 

design matrix denoted by 𝑿 = (𝑥1
𝑇, .  .  , 𝑥𝑛

𝑇 )𝑇 , the general 

linear model is usually written as 

𝑦 = 𝑿𝛽 + 𝜖                  (1) 

 Here 𝛽 = (𝛽1, .   .    .  , 𝛽𝑝)
𝑇  are the regression 

coefficients  𝜖 = (𝜖1, .  .  . , 𝜖𝑛 )
𝑇~ 𝑁(0, 𝜎2𝐼𝑛) are the 

random errors, 𝑥𝑖 are the regressors for observation𝑖 , 𝑖 =

1,.  .   . , 𝑛 and 𝑦 = (𝑦1  , .   .   .  , 𝑦𝑛)
𝑇 . The ordinary least 

squares (OLS) method estimates 𝛽 by minimizing the 

residual squared error, i.e.  𝛽̂𝑂𝐿𝑆 = 𝑚𝑖𝑛
𝛽
{(𝑦 − 𝑿𝛽)𝑇(𝑦 −

𝑿𝛽)}. 

In general, OLS tends to give estimators with low biases 

but high variances, and better prediction accuracy can 

usually be obtained by lowering the variance with a little 

increased bias. 

2.1 Lasso Regression 

In order to reduce the estimator’s variance and to carry 

out variable selection, Tibshirani (1996) introduced Least 

Absolute Shrinkage and Selection Operator, also known 

as Lasso, was a new method for linear model estimation. 

The inventor Tibshirani (1996) described it as follows: 

“The Lasso minimizes the residual sum of squares 

subject to the sum of the absolute value of the 

coefficients being less than a constant”. In other words, 

Lasso is a regression shrinkage method typically used in 

models with large number of variables but relatively few 

observations. The main purpose of Lasso is to perform 

variable selection while fitting the regression line to the 

data. This is done by shrinking certain coefficients but in 

addition setting some of the coefficients also to zero. 

Lasso performs a 𝐿1  regularization by adding a penalty 

to the objective under optimization. This penalty is the 

sum of absolute value of coefficients and determines 

which coefficients to shrink and how much. The Lasso 

estimate 𝛽̂ is defined by: 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
{∑ (𝑦𝑖 −∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )

2𝑛
𝑖=1 }  ,   s. t.    ∑ |𝛽𝑗|

𝑝
𝑗=1 ≤

t   ,   t ≥ 0.                                  (2) 

An equivalent form of the Lasso is, 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
{∑ (𝑦𝑖 −∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )

2𝑛
𝑖=1 + λ∑ |𝛽𝑗|𝑗 } ,           (3) 

or 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
‖𝑦 − 𝑥𝛽‖2

2 + λ‖𝛽‖1 .                              (4) 

lambda is the parameter deciding the weight on 

minimizing the RSS compared to the penalty term that 

is the sum of absolute value of coefficients.  

2.2 Adaptive Lasso 
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To remedy the problem of the lack of the oracle 

property, the adaptive Lasso estimator was proposed 

(Zou, 2006) 

𝛽̂adaptive Lasso = 𝑚𝑖𝑛
𝛽
{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )

2𝑛
𝑖=1 + λ∑ 𝑤̂|𝛽𝑗|

𝑝
𝑗=1 } (5) 

Where 𝑤̂𝑗(𝑗 = 1,… , 𝑝) are the adaptive data-driven 

weights, which can be estimated by 𝑤̂𝑗 =
1

|𝛽̂𝑗|
𝛾 ,where 𝛾 is 

a positive constant and 𝛽̂𝑗 is an initial consistent of 𝛽 

obtained through least squares or ridge regression if 

multicolinearity is important (Ogutu,2012) . The optimal 

value 𝛾 > 0 and 𝜆 can be simultaneously selected from a 

gride of values, with values of 𝛾 selected from {0.5, 1, 2}, 

using two-dimensional cross-validation. The weights 

allow the adaptive Lasso to apply different amounts of 

shrinkage to different coefficients and hence to more 

severely penalize coefficients with small values.  

2.3 Huber Lasso 

When the regression response suffers from outliers, the 

performance of Lasso can be poor. A first attempt to 

solve this problem has been done by Rosset and Zhu 

(2007) and Wang et al. (2007). Rosset and Zhu (2007) 

combine the idea of Huber’s criterion as loss function 

and Lasso penalty. They fix the penalty to be the 𝐿1- 

penalty and use Huber’s loss function with fixed 𝑀.  

That is 

𝛽̂𝐻𝑢𝑏𝑒𝑟 𝑙𝑎𝑠𝑠𝑜 = min
𝛽
∑ 𝜌(𝑦𝑖 − 𝑥𝑖

𝑇𝛽)𝑛
𝑖=1 + 𝜆∑ |𝛽𝑗|

𝑝
𝑗=1  ,      (6) 

where  𝜌(𝑡) = {
𝑡2                          𝑖𝑓     |𝑡| ≤ 𝑀

2𝑀|𝑡| − 𝑀2       𝑖𝑓     |𝑡| > 𝑀
. 

2.4 Adaptive Huber Lasso 

Lambert-Lacroix and Zwald (2011) proposed the 

Huber’s Criterion with adaptive Lasso which combines 

the idea of Huber’s criterion as loss function and 

adaptive Lasso penalty, defined by 

𝛽̂𝐻𝑎𝑑𝑙 = min
𝛽
 ℒ 𝜌(𝛽, 𝑠) + 𝜆 ∑ 𝑤̂𝑗

𝐻𝑎𝑑𝑙𝑝
𝑗=1 |𝛽𝑗|  

where 𝑤̂𝑗
𝑙𝑎𝑑𝑙 = (𝑤̂1

𝐻𝑙𝑎𝑑𝑙 , .  .  . , 𝑤̂𝑝
𝐻𝑙𝑎𝑑𝑙) is a known weights 

vector and the Huber’s criterion is defined by 

ℒ 𝜌(𝛽, 𝑠) =

{
 
 

 
 𝑛𝑠 + ∑  𝜌 (

𝑦𝑖−∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1

𝑠
) 𝑠            𝑖𝑓   𝑠 > 0,𝑛

𝑖=1

2𝑀∑ |𝑦𝑖 −∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 |𝑛

𝑖=1               𝑖𝑓    𝑠 = 0,

+∞                                                      𝑖𝑓    𝑠 < 0,

  

where 𝜌(𝑡) is defined as (6), 𝑠 >  0 is a scale parameter 

for the distribution. The 𝜌(𝑡)  definition shows how the 

loss is quadratic for small residuals but it becomes linear 

for large residuals, thus penalizing outliers. Also this 

method has been used for regression problems in a 

number of applications and has shown robustness 

against outliers. The constant 𝑀 depends on the level of 

noise and outliers in the data and is often set to the 

value 𝑀 =  1.345.  

2.5 LAD-Lasso 

   To obtain a robust Lasso-type estimator, The LAD 

Lasso method is developed. The LAD -Lasso can be 

written as (Wang et al., 2007). 

 𝛽̂𝐿𝑎𝑑 𝑙𝑎𝑠𝑠𝑜 = min
𝛽
∑ |𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 |𝑛

𝑖=1 + 𝜆∑ |𝛽𝑗|
𝑝
𝑗=1    (7) 

As can be seen, the LAD-Lasso criterion combines the 

LAD criterion and the Lasso penalty, and hence the 

resulting estimator is expected to be robust against 

outliers and also to enjoy a sparse representation.  

2.6 Adaptive LAD-LASSO 

   We consider the following LAD-Lasso criterion, 

which combines Zou’s adaptive LASSO, to perform 

consistent variable selection, with LAD regression, to 

perform robust estimation in the presence of heavy-

tailed errors (Lambert-Lacroix and Zwald, 2011) 

𝛽̂𝑙𝑎𝑑𝑙 = min
𝛽
∑ |𝑦𝑖 −∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 |𝑛

𝑖=1 + 𝜆∑ 𝑤̂𝑗
𝑙𝑎𝑑𝑙𝑝

𝑗=1 |𝛽𝑗|   (8) 

where 𝑤̂𝑗
𝑙𝑎𝑑𝑙 = (𝑤̂1

𝑙𝑎𝑑𝑙 , .  .  . , 𝑤̂𝑝
𝑙𝑎𝑑𝑙) is a known weights 

vector. In this model the estimator is robust to outliers 

because the squared loss has been replaced by the 𝑙1-loss. 

2.7 Variable Selection in Quantile Regression 

Ordinary least squares regression estimates the mean 

response as a function of the predictors. As an 

alternative, least absolute deviation (LAD) regression 

estimates the conditional median function, which has 
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been shown to be resistant to response outliers and more 

efficient when the errors have heavy tails. In the seminal 

paper of Koenker and Bassett (1978), they generalized 

the idea of LAD regression and introduced quantile 

regression (QR) to estimate the conditional quantile 

function of the response. QR not only inherits the good 

properties of LAD regression but also provides much 

more information about the conditional distribution of 

the response variable. A brief review of quantile 

regression models is as follows. 

Given the data(𝑥1, 𝑦1), .   .    . , (𝑥𝑛 , 𝑦𝑛), unlike the mean 

regression model (1) which models the conditional mean 

𝐸(𝑦|𝑋) = 𝑋𝛽.  

 Koenker and Bassett (1978) proposed the linear quantile 

regression model for the 𝜃𝑡ℎ quantile (0 <  𝜃 <  1) as 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝑢𝑖 , 𝑖 = 1,.  .   . , 𝑛                 (9) 

Where 𝛽 = (𝛽1, .   .   . , 𝛽𝑝)
𝑇 ∈ 𝑅𝑝 and 𝑢𝑖′𝑠 are 

independent with their 𝜃𝑡ℎ quantiles equal to zero. 

   Based on different choices of 𝜃, quantile regression 

gives a more flexible and comprehensive modelling of 

the relationship between response variables 𝑦𝑖 ′𝑠 and 

regressors 𝑥𝑖 ′𝑠. Note that when 𝜃 =  0.5, this reduces to 

the least absolute deviation regression or median 

regression, which is known for its robustness to outliers. 

In general, quantile regression with a given θ ∈  (0, 1) is 

also recognized as being robust to outliers. Moreover, 

one important advantage of quantile regression is that it 

makes no distributional assumption to the error terms 

𝑢𝑖′𝑠 other than their quantile. It can be shown that the 

coefficients 𝛽 can be estimated consistently by the 

solution to the following minimization problem 

min
𝛽
∑ 𝜌𝜃(𝑦𝑖 − 𝑥𝑖

𝑇𝛽)𝑛
𝑖=1                        (10) 

where 𝜌(. ) is an outlier resistant loss function called the 

objective function 

𝜌𝜃(𝑡) = {
𝜃𝑡                 𝑖𝑓   𝑡 ≥ 0

−(1 − 𝜃)𝑡   𝑖𝑓  𝑡 < 0 
,where 0 <  𝜃 < 1.             (11) 

The first use of regularization in quantile regression is 

made by (Koenker, 2004), which put the Lasso penalty 

on the random effects in a mixed-effect quantile 

regression model to shrink the random effects towards 

zero. 

2.8 Regression via Gamma-Divergence 

The Gamma divergence for regression was first 

proposed by Fujisawa and Eguchi (2008). It measures the 

difference between two conditional probability density 

functions. The other type of the Gamma divergence for 

regression was proposed by Kawashima and Fujisawa 

(2017), in which the treatment of the base measure on the 

explanatory variable was changed. In this section, we 

briefly review Gamma divergences for regression and 

present the corresponding parameter estimation 

(Fujisawa and Eguchi, 2008). 

Suppose that 𝑔(𝑥, 𝑦), 𝑔(𝑦|𝑥) and 𝑔(𝑥) are the underlying 

probability density functions of (𝑥, 𝑦),𝑦 given 𝑥 and 𝑥, 

respectively. Let 𝑓 (𝑦|𝑥) be another parametric 

conditional probability density function of 𝑦 given 𝑥. Let 

us define the Gamma-cross-entropy for regression by: 

𝑑𝛾(𝑔(𝑦|𝑥), 𝑓(𝑦|𝑥); 𝑔(𝑥))

= −
1

𝛾
𝑙𝑜𝑔∫(∫𝑔(𝑦|𝑥)𝑓(𝑦|𝑥)𝛾 𝑑𝑦) 𝑔(𝑥)𝑑𝑥

+
1

1 + 𝛾
𝑙𝑜𝑔∫(∫(𝑦|𝑥)1+𝛾 𝑑𝑦) 𝑔(𝑥)𝑑𝑥 

= −
1

𝛾
𝑙𝑜𝑔 ∫∫ 𝑓(𝑦|𝑥)𝛾𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦 +

1

1+𝛾
𝑙𝑜𝑔 ∫(∫(𝑦|𝑥)1+𝛾 𝑑𝑦)𝑔(𝑥)𝑑𝑥   𝑓𝑜𝑟 𝛾 > 0     (12) 

The Gamma-divergence for regression is defined by: 

𝐷𝛾(𝑔(𝑦|𝑥), 𝑓(𝑦|𝑥); 𝑔(𝑥)) = −𝑑𝛾(𝑔(𝑦|𝑥), 𝑔(𝑦|𝑥); 𝑔(𝑥)) +

𝑑𝛾(𝑔(𝑦|𝑥), 𝑓(𝑦|𝑥); 𝑔(𝑥))   (13) 

Let 𝑓 (𝑦| 𝑥;  𝜃 ) be the conditional probability density 

function of y given 𝑥 with parameter 𝜃. The target 

parameter can be considered by: 

𝜃𝛾
∗ = min

𝜃
𝐷𝛾(𝑔(𝑦|𝑥), 𝑓(𝑦|𝑥; 𝜃); 𝑔(𝑥) 

= min
𝜃
𝑑𝛾(𝑔(𝑦|𝑥), 𝑓(𝑦|𝑥; 𝜃); 𝑔(𝑥))   (14) 

when 𝑔(𝑦|𝑥) = 𝑓(𝑦|𝑥; 𝜃∗), we have 𝜃𝛾
∗ = 𝜃∗.  

Let (𝑥1, 𝑦1), …  , (𝑥𝑛 , 𝑦𝑛) be the observations randomly 

drawn from the underlying distribution 𝑔(𝑥, 𝑦). Using 
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the formula (12), the 𝛾 −cross-entropy for regression, 

𝑑𝛾(𝑔(𝑦|𝑥), 𝑓(𝑦|𝑥; 𝜃); 𝑔(𝑥)), can be empirically estimated 

by: 

𝑑̅𝛾(𝑓(𝑦|𝑥; 𝜃)) = −
1

𝛾
𝑙𝑜𝑔 {

1

𝑛
∑𝑓(𝑦𝑖|𝑥𝑖 ; 𝜃)

𝛾

𝑛

𝑖=1

}

+
1

1 + 𝛾
𝑙𝑜𝑔 {

1

𝑛
∑𝑓(𝑦𝑖|𝑥𝑖; 𝜃)

𝛾+1𝑑𝑦

𝑛

𝑖=1

}. 

By virtue of (13), we define the 𝛾-estimator by : 

𝜃̂𝛾 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝜃
𝑑̅𝛾(𝑓(𝑦|𝑥; 𝜃)) 

Fujisawa and Eguchi (2008) proposed three procedures 

to estimate the parameters, MM algorithm for sparse 

Gamma regression, sparse Gamma linear regression and 

robust cross-validation. 

2.9 Maximum Tangent Likelihood Estimation (MTE) 

Qin et .al (2017) proposed the method of Maximum 

Tangent Likelihood Estimation (MTE) as  

𝛽̌ =  max
𝛽
∑ 𝑙𝑛𝑡
𝑛
𝑖=1 (𝑓(𝒛𝑖: 𝛽)),  where {𝒛𝑖}𝑖=1

𝑛 ={𝑦𝑖 , 𝑿𝑖
𝑇}𝑖=1
𝑛  

represents the response variable and covariates, and 

𝑓 represents the normal distribution with zero mean, 

and  𝑓(𝒛𝑖: 𝛽) = 𝑓(𝑦 − 𝑿𝑖
𝑇𝛽). However, the performance 

of such an estimator usually degrades drastically even if 

a small proportion of data is contaminated. 

The robust statistical procedure should perform nearly 

optimally when model assumptions are valid and still 

maintain good performance when the assumptions are 

violated. The penalized maximum tangent likelihood 

estimation (penalized MTE) for variable selection as 

𝛽̂ =  max
𝛽
{∑ 𝑙𝑛𝑡

𝑛
𝑖=1 (𝑓(𝒛𝑖: 𝛽)) − 𝑛∑ 𝑝𝜆𝑛(|𝛽𝑗|

𝑛
𝑗=1 }   (15) 

where the function 𝑙𝑛𝑡(. ) is defined as 

𝑙𝑛𝑡(𝑢) =

{
ln(𝑢) ,                                                                      𝑖𝑓 𝑢 > 𝑡

ln(𝑡) + ∑
𝜕𝑘ln (𝑣)

𝜕𝑣𝑘
 |𝑣=𝑡

𝑝
𝑘=1

(𝑢−𝑡)𝑘

𝑘!
             𝑖𝑓 0 ≤ 𝑢 ≤ 𝑡

.                                       

(16) 

Here 𝑡 ≥ 0 is a tuning parameter. 𝑙𝑛𝑡(𝑢) is essentially a 

𝑝 − 𝑡ℎ order Taylor expansion of 

ln(𝑢) for 0 ≤ 𝑢 < 𝑡. 

2.10 Semismooth Newton Coordinate Descent 

Algorithm (SNCD )  

Yi and Huang (2016) developed an algorithm, called 

Semismooth Newton Coordinate Descent (SNCD), to 

obtain a better efficiency and scalability for computing 

the solution paths of penalized quantile regression. They 

also provide an R package called hqreg. Moreover, this 

package also obtains Lasso of (Tibshirani (1996)), Ridge 

of (Hoerl and Kennard (1970)) and Elastic Net of (Zou 

and Hastie (2005)) estimators in the quantile regression 

models. The hqreg functions give the solution path while 

the quantreg package of Koenker (2013) computes a 

single solution. 

3. Simulation Study 

In this section, we compare some robust regularized 

regression methods in low-dimensional with sparse and 

non-sparse coefficients(𝑝 = 15, 𝑛 =  100) and high-

dimensional with sparse coefficients (𝑝 =  100 ,  𝑛 =

 50)settings. For the sparse settings we use a classical 

simulation setting, e.g. Bradic and Fan (2011), where 𝑦 =

 𝛽0 +  𝑥𝛽 +  𝑢, with 𝛽0 =  0 and 𝛽 =

 (3, 1.5, 0, 0, 2, 0, . . . , 0) (the sparse case) and for non-

sparse setting we use 𝛽𝑗 = 0.1  (the dense case) for all 𝑗 

.We draw the independent variables 𝑥 from a 

multivariate normal distribution,  𝑁(0, Σ𝑥). The pairwise 

covariance between  𝑥𝑖 and 𝑥𝑗 is set to be  (Σ𝑥)𝑖𝑗 = 𝑟
|𝑖−𝑗| . 

For the error 𝑢, we choose a range of distributions in 

order to test the robustness of the methods to departures 

from normality. In particular, we consider the following 

cases: 𝑢 ∼  𝑁(0, 1), Double Exponential (𝐷𝐸), Beta 

distribution 𝛽(2,3), t-distribution (𝑡3) with 3 degrees of 

freedom, Chi square (𝜒(3)
2 ) with 3 degrees of freedom 

and mixture normal distributions. We design a mixture 

normal distribution with large outliers, similar to 

Lambert-Lacroix and Zwald (2011), by drawing 90% of 

the data from 𝑎 𝑁(0, 1) distribution and 10% from a 

𝑁(0, 1000) distribution. Under all these cases, we 
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compare the regularized regression methods described 

in the previous section, namely adaptive LAD Lasso, 

Huber Lasso with their adaptive version (Xu and Ying, 

2010; Lambert-Lacroix and Zwald, 2011), quantile 

regression Koenker and Bassett (1978), Gamma 

divergence (Fujisawa and Eguchi, 2008),Maximum 

Tangent Likelihood Estimation (MTE) (Qin et .al, 2017) 

and Semismooth Newton Coordinate Descent (SNCD) 

(Yi and Huang, 2016). For Huber Lasso we use the R 

implementations provided by Rosset and Zhu (2007), for 

the adaptive LAD Lasso and adaptive Huber Lasso 

methods we adapt some of the functions in the 𝑝𝑎𝑟𝑐𝑜𝑟 R 

package. For the adaptive versions of the methods, we 

define the weights using the corresponding non-

adaptive Lasso versions with a penalty parameter 

chosen to optimize a BIC criterion. For quantile 

regression and SNCD methods we use the R package 

ℎ𝑞𝑟𝑒𝑔, for Gamma divergence we use the R package 

𝑔𝑎𝑚𝑟𝑒𝑔 and for MTE method we use the R package 𝑀𝑇𝐸   

3.1 Example 1: low-dimensional with sparse 

coefficients  

The best subset selection and the lasso estimators have a 

special, useful property. Their solutions are sparse, i.e., 

at a solution  𝛽̂ we will have 𝛽𝑗 = 0 for many components 

𝑗 𝜖{1, .   .    .  , 𝑝}. We consider a low-dimensional data 

with sparse coefficients set with 𝑝 =  15  and 𝑛 =  100. 

Figure 1, table 1 and table 2 report the results of the 

simulation. We consider both the case of low correlation 

(𝑟 =  0.5) and that of high correlation (𝑟 =  0.95) of the 

predictors. The top panels report the median model 

error over 100 iterations (similar results for the mean 

error), with the model error computed by(𝛽̂ −

𝛽)
𝑇
𝑆𝑥(𝛽̂ − 𝛽), where 𝛽̂ are the estimated parameters and 

𝑆𝑥 the sample covariance. The bottom panels report the 

true positives that are the number of correctly found 

non-zero coefficients. Here three corresponds to the case 

of all non-zero coefficients being correctly detected.  

    Our results show that: quantile Lasso and the 

Semismooth Newton Coordinate Descent SNCD 

methods do not perform well when the predictors are 

highly correlated; the adaptive LAD and the Gamma 

divergence methods outperform all others methods for 

all error distributions.  

 

 

 

Figure 1: Comparison of robust regression Lasso methods 

under different error distributions, for low (left) and high 

(right) correlated predictors. The top panels plot the median 

model error over 100 replications for example 1 and the 

bottom panels the average true positives when 𝒑 =  𝟏𝟓  and 

 𝒏 =  𝟏𝟎𝟎 
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averaged over 100 replications for the case: 𝐩 = 𝟏𝟓, 𝐧 =

𝟏𝟎𝟎, 𝐫 = 𝟎. 𝟓 and 𝛃 values as in example (1), Best method 

indicated in bold. 

Table 2 

 Median Model Error averaged over 100 replications for the 

case: 𝒑 = 𝟏𝟓, 𝒏 = 𝟏𝟎𝟎, 𝒓 = 𝟎. 𝟗𝟓 and 𝜷 values as in example (1). 

Best method indicated in bold. 

 

3.2 Example 2:  high-dimensional with sparse 

coefficients 

   We consider a similar setting to simulation 3.1 but with 

different sample size and number of predictors. In 

particular, we consider a high- dimensional example 

with sparse coefficients with 𝑝 =  100   and 𝑛 =  50. 

Given the setup of the simulation, this a very sparse 

problem in which most of the coefficients are zero. 

Figure 2, table 3 and table 4 present the results of the 

simulation. The top panels report the median model 

error over 100 replications, with the model error 

computed in the same way as in Figure 1. The bottom 

panels report the true positive that is the number of 

correctly classified non-zero coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of robust regression Lasso methods 
under different error distributions, for low (left) and high 

(right) correlated predictors. The top panels plot the median 
model error over 100 replications for example 2 and the 

bottom panels the average true positives when 𝒑 =  𝟏𝟎𝟎  
and  𝒏 =  𝟓𝟎 . 
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Table 3 
Median Model Error averaged over 100 replications for the 
case: 𝒑 = 𝟏𝟎𝟎, 𝒏 = 𝟓𝟎, 𝒓 = 𝟎. 𝟓 and 𝜷 values as in example 

(2). Best method indicated in bold. 

 

Table 4 

Median Model Error averaged over 100 for the case: 𝒑 =

𝟏𝟎𝟎,𝒏 = 𝟓𝟎, 𝒓 = 𝟎. 𝟗𝟓 and 𝜷 values as in example (2). Best 

method indicated in bold. 

 

The results support the performance of the methods: 

quantile Lasso and Semismooth Newton Coordinate 

Descent (SNCD) do not perform well when the 

predictors are highly correlated, the adaptive LAD and 

the Gamma divergence methods outperform all others 

method ones as departures from normality increase. 

This is particularly evident for the cases of the 𝛽(2,3) and 

𝜒(3)
2  simulation, which have a severe departure from 

normality. 

3.3 Example 3: low- dimensional with non-sparse 

coefficients 

In this paper, “non-sparsity” is in the sense that only a 

few regression coefficients are large and the rest are 

small but not necessary to be zero. In order to investigate 

the performance of robust regularized regression 

methods in example 2, we set up a new simulation where 

we have 𝛽𝑗 = 0.1   (the dense case ) for all 𝑗, that is a non-

sparse situation. Figure 3 reports the median model 

error over 100 replications for the case 𝑝 =  15  and 𝑛 =

 100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison of robust regression Lasso methods 

under different error distributions, for low (left) and high 

(right) correlated predictors. The plot show the median 

model error over 100 replications for example 3 when 𝒑 =

 𝟏𝟓  and  𝒏 =  𝟏𝟎𝟎 . 

 

Table 5 

Median Model Error averaged over 100 replications for the 

case: 𝒑 = 𝟏𝟓, 𝒏 = 𝟏𝟎𝟎, 𝒓 = 𝟎. 𝟓 and 𝜷 values as in example 

(3). Best method indicated in bold. 
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Huber     
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Table 6 

Median Model Error averaged over 100 replications  for the 

case: 𝒑 = 𝟏𝟓, 𝒏 = 𝟏𝟎𝟎, 𝒓 = 𝟎. 𝟗𝟓 and 𝜷 values as in example 

(3). Best method indicated in bold. 

 

From results in Figure 3, table 5 and table 6 our 

simulation study confirms that the performances of the 

adaptive LAD and the Gamma divergence methods are 

closer. Furthermore, the results show how MTE is the 

worst performing method in case of departure from 

normality especially when the predictors highly 

correlated. 

4. Concluding remarks  

Many approaches are developed in statistics that rely on 

the assumption of normality. These approaches are not 

suited to data that show clear departures from 

normality. This is often the case when data are 

contaminated, resulting in the presence of outliers. In 

this paper, we have considered recently developed 

robust regularized regression methods and, such as the 

Huber or LAD methods. In a high dimensional setting, 

when 𝑝 ≥  𝑛. In a simulation study, we show how the 

adaptive LAD and the Gamma divergence methods are 

superior to other robust methods, particularly for cases 

where there is a large departure from normality.   
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