

Academic Journal of Nawroz University (AJNU), Vol.12, No.4, 2023 This is an open access article distributed under the Creative Commons Attribution License Copyright ©2017. e-ISSN: 2520-789X https://doi.org/10.25007/ajnu.v12n4a933

Some Properties of Γ-supercyclic operators

Nareen Bamerni¹

¹ Department of Mathematics, College of Science, University of Duhok, Kurdistan Region – Iraq

ABSTRACT

In this paper, we define Γ -transitive operators to study some further properties of Γ -supercyclic operators. In particular, we study Γ -supercyclic criterion which is a set of some sufficient conditions for an operator to be Γ -supercyclic. We use these conditions to partially answer an open problem in the literature. In particular, we show that if $\Gamma = r\mathbb{D}$ and T satisfies Γ -criterion, then T is supercyclic.

Keywords: Supercyclic operator, diskcyclic operators, Γ-supercyclic operators.

1. Introduction

An operator *T* is called hypercyclic if there is a vector $x \in X$ such that $Orb(T, x) = \{T^n x : n \in \mathbb{N}\}$ is dense in *X*, such a vector *x* is called hypercyclic for *T*. The notion of hypercyclic operator comes from the much older notion of cyclic operators. The first example of hypercyclic operators in a Banach space was constructed by Rolewicz (Rolewicz, 1969). He proved that if *B* is a backward shift on the Banach space $l^p(\mathbb{N})$ then λB is hypercyclic for any complex number $\lambda, |\lambda| > 1$. This led the authors in (Hilden and Wallen, 1974) to consider the scaled orbit of an operator. An operator *T* is supercyclic vector. Also, an operator *T* is called diskcyclic if there is a vector $x \in X$ such that $\mathbb{C}Orb(T, x) = \{\lambda T^n x : \lambda \in \mathbb{C}, n \in \mathbb{N}\}$ is dense in *X*, where *x* is called supercyclic vector. Also, an operator *T* is called diskcyclic if there is a vector $x \in X$ such that the disk orbit $\mathbb{D}Orb(T, x) = \{\lambda T^n x : \lambda \in \mathbb{C}, |\lambda| \le 1, n \in \mathbb{N}\}$ is dense in *X* such a vector *x* is called diskcyclic for *T* (Zeana, 2002). For more information on these concepts, one may refer to (Bayart and Matheron, 2009; Bamerni and Kilicman, 2016) We recall the following Lemma from the literature, which is needed in the main section.

Lemma 1.1. (Bamerni and Kilicman, 2015)

Let $T \in B(X)$. Suppose that $\{n_k\}_{k \in \mathbb{N}}$ is an increasing sequence of positive integers,

 D_1 , $D_2 \in X$ are two dense sets and $S: D_1 \rightarrow D_2$ a map such that

- 1. $||T^{n_k}x|| ||S^{n_k}y|| \to 0$ for each $x \in D_1$ and $y \in D_2$,
- 2. $||S^{n_k}y|| \to 0$ and $T^{n_k}S^{n_k}y \to y$ for each $y \in D_2$.

Then *T* is said to be satisfied diskcyclic Criterion, and *T* is diskcyclic operator.

For a non-empty subset Γ of the complex plane \mathbb{C} , an operator *T* is called Γ -supercyclic if there exists $x \in X$ such that $\Gamma Orb(T, x) = \{\lambda T^n x : \lambda \in \Gamma, n \in \mathbb{N}\}$ is dense in *X* (Charpentier et al, 2016). It is clear from Γ -supercyclicity notion that:

- 1. If $\Gamma = \{1\}$, then Γ -supercyclic is hypercyclic,
- 2. If $\Gamma = \mathbb{C}$, then Γ -supercyclic is supercyclic,
- 3. If $\Gamma = \mathbb{D}$, then Γ -supercyclic is diskcyclic,

In 2019, the author in (Abbar, 2019) studied Γ -supercyclicity for strongly continuous semigroups. In particular, he characterized a set Γ in which Γ -supercyclicity for strongly continuous semigroups coincides to hypercyclicity.

In the main section, we give some characterizations to Γ-supercyclic operators. In particular, we define Γ-transitive operators. Then, we show that an operator *T* is Γ-supercyclic if and only if *T* is Γ-transitive. Also, we give some sufficient conditions for an operator to be Γ-supercyclic which is called Γ-supercyclic criterion. The authors in (Charpentier et al, 2016) ask for which sets Γ, Γ-supercyclicity equivalent to supercyclicity, he gives a partial answer to this question when $\sigma_p(T^*)$ is non-empty. Therefore, we give another partial answer to this problem. In particular, we show that if $\Gamma = r\mathbb{D}$ and *T* satisfies Γ-criterion, then *T* is supercyclic.

it changed during time and what were the factors affecting it.

2. MAIN RESULTS

In this paper, all Banach spaces are infinite dimensional separable over the field \mathbb{C} of complex numbers. The set of all bounded linear operators on a Banach space is denoted by B(X). Also, we denote set of all Γ -supercyclic operators on a Banach space by Γ SC(X) and the set of all Γ -supercyclic vectors for an operator T by Γ SC(T).

Definition 2.1.

A bounded linear operator $T \in B(X)$ is called Γ -transitive if for any pair U, V of nonempty open subsets of X, there exist $\alpha \in \Gamma$, and $n \ge 0$ such that $T^n(\alpha U) \cap V \neq \emptyset$ or equivalently, there exist $\alpha \in \Gamma^c$, and $n \ge 0$ such that $T^{-n}(\alpha U) \cap V \neq \emptyset$.

Proposition 2.2.

Let $T_1, T_2 \in B(X)$ such that $T_1T_2 = T_2T_1$ and the range of $T_2(R(T_2))$ be a dense set in *X*. If $x \in \Gamma SC(T_1)$, then $T_2x \in \Gamma SC(T_1)$.

Proof

Since $x \in \Gamma SC(T_1)$, then $\overline{\Gamma Orb(T_1, x)} = \overline{\{\lambda T_1^n x : \lambda \in \Gamma, n \ge 0\}} = X$ and $\overline{\Gamma Orb(T_1, T_2 x)} = \overline{\{\lambda T_1^n T_2 x : \lambda \in \Gamma, n \ge 0\}}$ $= \overline{\{\lambda T_2 T_1^n x : \lambda \in \Gamma, n \ge 0\}}$ $\supseteq T_2(\overline{\{\lambda T_1^n x : \lambda \in \Gamma, n \ge 0\}})$ $= T_2(X) = R(T_2).$

Thus, $\Gamma Orb(T_1, T_2 x)$ is dense in *X* and hence $T_2 x \in \Gamma SC(T_1)$.

Corollary 2.3

If *x* is Γ -supercyclic vector for *T* then for all $n \in \mathbb{N}$, $T^n x$ is Γ -supercyclic vector for *T*.

Corollary 2.4.

The set Γ SC(T) is dense in *X*.

Proposition 2.5.

Every Γ-supercyclic operator on X is Γ-transitive.

Proof

Let *T* be a Γ -supercyclic operator, then, Γ SC(T) is dense. Let *U* and *V* be two open sets, then there exist an $\alpha \in \Gamma$ and a non-negative integer *p* such that $\alpha T^p x \in U$. Now, we can choose $\lambda \in \Gamma$ and $n \ge p$ such that $\lambda/\alpha \in \Gamma$ and $\lambda T^n x \in V$. Thus $T^{n-p}(\lambda/\alpha)U \cap V \neq \emptyset$ and so *T* is Γ -transitive.

Proposition 2.6.

Every Γ-transitive operator is Γ-supercyclic and

$$\Gamma SC(T) = \bigcap_{k} \left(\bigcup_{\substack{\lambda \in \Gamma^{c} \\ n \in \mathbb{N}}} T^{-n} (\lambda B_{k}) \right)$$

is a dense G_{δ} set, where $\{B_k\}$ is a countable open basis for X.

Proof

We have $x \in \Gamma SC(T)$ if and only if the set { $\lambda T^n x: \lambda \in \Gamma$, $n \ge 0$ } is dense in X if and only if for each k > 0, there exist $\lambda \in \Gamma$ and $n \in \mathbb{N}$ such that $\lambda T^n x \in B_k$ if and only if

$$x \in \bigcap_{k} \left(\bigcup_{\substack{\lambda \in \Gamma^{c} \\ n \in \mathbb{N}}} T^{-n}(\lambda B_{k}) \right)$$

If and only if

$$\Gamma SC(T) = \bigcap_{k} \left(\bigcup_{\substack{\lambda \in \Gamma^{c} \\ n \in \mathbb{N}}} T^{-n}(\lambda B_{k}) \right).$$

Since $\Gamma SC(T)$ can be written as a countable intersection of open sets, then $\Gamma SC(T)$ is a G_{δ} set. Moreover, it follows from the Baire category theorem that $\Gamma SC(T)$ is dense if and only if each open set $F_k = \bigcup_{\substack{\lambda \in \Gamma^c \\ n \in \mathbb{N}}} T^{-n}(\lambda B_k)$ is dense; i.e, if and only if for each non-empty open set U and any $k \in \mathbb{N}$ one can find $n \in \mathbb{N}$ and $\lambda \in \Gamma^c$ such that

$$U \cap T^{-n}(\lambda B_k) \neq \emptyset$$

Since $\{B_k\}$ is a countable open basis for *X* this is equivalent to the Γ -transitivity of *T*. The following theorem gives some equivalent assertions to Γ -supercyclic.

The following theorem gives some equivalent assertions to re-

Theorem 2.7.

Let $T \in B(X)$. The following statements are equivalent.

- 1. $T \in \Gamma SC(X)$,
- 2. For each $x, y \in X$, there exist sequences $\{x_k\} \in X$, $\{n_k\} \in \mathbb{N}$ and $\{\lambda_k\} \in \Gamma$ such that $x_k \to x$ and $T^{n_k} \lambda_k x_k \to y$.
- 3. For each $x, y \in X$ and each neighborhood M of the zero in X, there exist $z \in X$, $n \in \mathbb{N}$ and $\lambda \in \Gamma$ such that $x z \in M$ and $T^n \lambda z y \in M$.

Proof

 $1 \Rightarrow 2$: Let $x, y \in X$ and let $B_k = \mathbb{B}\left(x, \frac{1}{k}\right), C_k = \mathbb{B}\left(y, \frac{1}{k}\right)$ for all $k \ge 1$. From (1) and Proposition there exist sequences $\{x_k\} \in X, \{n_k\} \in \mathbb{N}$ and $\{\lambda_k\} \in \Gamma$ such that $x_k \in B_k$ and $T^{n_k}\lambda_k x_k \in C_k$ for all $k \ge 1$. Then, $||x_k - x|| < 1/k$ and $||T^{n_k}\lambda_k x_k - y|| < 1/k$ for all $k \ge 1$.

2 ⇒ 3: From the proof of the last part, if we take $z = x_k$ for a large enough $k \in \mathbb{N}$.

3 ⇒ 1: Let *U* and *V* be two non-empty subsets of *X*. Let *M* be a neighborhood of zero, let $x \in U$ and $y \in V$. Then there exist $z \in X$, $n \in \mathbb{N}$ and $\lambda \in \Gamma$ such that $x - z \in M$ and $T^n \lambda z - y \in M$. It follows that $z \in U$ and $T^n \lambda z \in V$ and so $T^n \lambda U \cap V \neq \emptyset$.

Theorem 2.8.

Let $T \in B \in (X)$, and let $\{n_k\}_{k \in \mathbb{N}}$ be an increasing sequence of positive integers and $\{\lambda_{n_k}\}_{k \in \mathbb{N}} \in \Gamma$ such that there exists

- 1. A dense subset $D_1 \in X$ such that $\|\lambda_{n_k} T^{n_k} x\| \to 0$ for all $x \in D_1$.
- 2. A dense subset $D_2 \in X$ and a mapping $S: D_1 \to D_2$ such that $\|\lambda_{n_k}^{-1}S^{n_k}y\| \to 0$ and $T^{n_k}S^{n_k}y \to y$ for all $y \in D_2$.

Then *T* is said to be satisfied Γ-supercyclic Criterion with respect to the sequence $\{\lambda_{n_k}\}_{k \in \mathbb{N}}$ and *T* is an Γ-supercyclic operator.

Proof

Let *U* and *V* be two open sets in *X*. Then we can find $x \in D_1 \cap U$ and $y \in D_2 \cap V$. By hypothesis, there exists a large positive integer *k* and a small positive integer ε such that

 $\left\|\lambda_{n_k}T^{n_k}x\right\| < \varepsilon/2, \ \left\|\lambda_{n_k}^{-1}S^{n_k}y\right\| < \varepsilon/2 \text{ and } \|T^{n_k}S^{n_k}y - y\| < \varepsilon/2$

Let $z = x + \lambda_{n_k}^{-1} S^{n_k} y$, then

$$\|z - x\| = \left\|\lambda_{n_k}^{-1} S^{n_k} y\right\| < \varepsilon/2$$

it follows that $z \in U$. Now, we have

$$\lambda_{n_k} T^{n_k} z = \lambda_{n_k} T^{n_k} x + T^{n_k} S^{n_k} y$$

Then

$$\begin{aligned} \|\lambda_{n_k} T^{n_k} z - y\| &= \|\lambda_{n_k} T^{n_k} x + T^{n_k} S^{n_k} y - y\| \\ &\leq \|\lambda_{n_k} T^{n_k} x\| + \|T^{n_k} S^{n_k} y - y\| \\ &\leq \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

It means that $\lambda_{n_k} T^{n_k} z \in V$, and so $\lambda_{n_k} T^{n_k} U \cap V \neq \emptyset$.

By **Definition 2.1.** and **Proposition 2.6.** *T* is Γ-supercyclic.

The authors in (Charpentier et al, 2016) ask for which sets Γ , Γ - supercyclicity equivalent to supercyclicity. He gives a partial answer to this question when $\sigma_p(T^*)$ is non-empty. Now, if $\Gamma = r\mathbb{D}$ for some $r \in \mathbb{C}$; $r \neq 0$ and T satisfies $r\mathbb{D}$ -criterion, then the following theorem gives another partial answer to question 3 of (Charpentier et al, 2016). First, we need the following definition.

Definition 2.9.

An operator *T* is called rD-supercyclic for some positive integer *r* if there exists a vector *x* such that the set $\lambda T^n x$: $n \ge 0$, $0 \le |\lambda| \le r$ } is dense in *X*. In this case the vector *x* is called rD-supercyclic vector for *T*.

Theorem 2.10.

rD-supercyclic criterion is equivalent to diskcyclic-criterion.

Proof

Suppose that *T* satisfies the hypothesis of **Theorem 2.8.** for $\Gamma = r\mathbb{D}$, then it is easy to show that $||T^{n_k}x|| ||S^{n_k}y|| \to 0$ and $||S^{n_k}y|| \to 0$ for all $x \in D_1$ and $y \in D_2$. It follows that the hypothesis of **Lemma 1.1.** satisfy.

Conversely, suppose that *T* satisfies the hypothesis of **Lemma 1.1**. Let $\{\varepsilon_k\}_{k\in\mathbb{N}}$ be a sequence of positive numbers converges to zero. Let $\{x_n\}_{n\in\mathbb{N}} \subset D_1$ and $\{y_n\}_{n\in\mathbb{N}} \subset D_2$ be two countable dense subsets in *X*. By hypothesis of **Lemma 1.1**, for each $1 \le i, j \le k$ we have $||S^{n_k}y_i|| < \varepsilon_k$, $T^{n_k}S^{n_k}y_i \to y_i$ and

$$\|T^{n_k}x_i\| \left\| S^{n_k}y_i \right\| < \varepsilon_k^2 \tag{1}$$

Suppose that for each $k \ge 1$,

$$\lambda_{n_k} = \frac{r}{\varepsilon_k} \max_{1 \le j \le k} \{ \left\| S^{n_k} y_j \right\| \}$$

It follows that $\lambda_{n_k} \in r\mathbb{D} \setminus \{0\}$ for all k, and

$$\frac{1}{\lambda_{n_k}} \left\| S^{n_k} y_j \right\| \le \frac{\varepsilon_k}{r} \text{ for all } j \le k$$

By Equation (1), for all $i \leq k$, we have

$$\lambda_{n_k} \|T^{n_k} x_i\| = \frac{r}{\varepsilon_k} \max_{1 \le j \le k} \{ \|S^{n_k} y_j\| \} \|T^{n_k} x_i\| < r\varepsilon_k$$

Now, the proof follows when $k \to \infty$.

Corollary 2.11.

If *T* satisfies Γ -supercyclic criterion for $\Gamma = r\mathbb{D}$, then *T* is supercyclic operator.

3. REFERENCES

[1] Abbar, A. (2019). Γ-supercyclicity for strongly continuous semigroups. Complex Analysis and Operator Theory, 13, 3923-3942. doi.org/10.1007/s11785-019-00941-y

[2] Bamerni, N., Kilicman, A. & Noorani, M. S. M. (2016). A review of some works in the theory of diskcyclic operators, " Bulletin of the

Malaysian Mathematical Sciences Society, 39, 723-739. doi.org/10.1007/s40840-015-0137-x

[3] Bamerni, N., & Kilicman, A. (2015). Operators with diskcyclic vectors subspaces, Journal of Taibah University for Science, 9, 414-419. doi.org/10.1016/j.jtusci.2015.02.020.

[4] Bayart, F., & Matheron E., (2009). Dynamics of linear operators, 179. Cambridge University Press. doi.org/10.1017/CBO9780511581113

- [5] Charpentier, S., Ernst, R., & Menet, Q. (2016). Γ-supercyclicity. Journal of Functional Analysis. 270. 4443-4465. doi.org/10.1016/j.jfa.2016.03.005
 [6] Hilden, H., & Wallen L. (1974). Some cyclic and non-cyclic vectors of certain operators. Indiana University Mathematics,23,557-565. https://www.jstor.org/stable/24890788.
- [7] Rolewicz, S. (1969). On orbits of elements. Studia Mathematica,1,17-22. https://eudml.org/doc/217370.
- [8] Zeana, J. (2002). Cyclic Phenomena of operators on Hilbert space. PhD thesis, Thesis, University of Baghdad. https://www.researchgate.net/publication/343040923_CYCLIC_PHENOMENA_OF_OPERATORS_ON_HILBERT_SPACE.