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ABSTRACT 

In this paper, we define Γ-transitive operators to study some further properties of Γ-supercyclic operators. In particular, we study 
Γ-supercyclic criterion which is a set of some sufficient conditions for an operator to be Γ-supercyclic. We use these conditions to 
partially answer an open problem in the literature. In particular, we show that if Γ = 𝑟𝔻  and  𝑇 satisfies Γ-criterion, then 𝑇 is 
supercyclic.  
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1. Introduction 
An operator 𝑇 is called hypercyclic if there is a vector 𝑥 ∈ 𝑋 such that 𝑂𝑟𝑏(𝑇, 𝑥) = {𝑇!𝑥: 𝑛 ∈ ℕ} is dense in 𝑋, such a 
vector 𝑥 is called hypercyclic for 𝑇 . The notion of hypercyclic operator comes from the much older notion of cyclic 
operators. The first example of hypercyclic operators in a Banach space was constructed by Rolewicz (Rolewicz, 1969). 
He proved that if 𝐵 is a backward shift on the Banach space 𝑙"(ℕ) then 𝜆𝐵 is hypercyclic for any complex number 
𝜆, |𝜆| > 1. This led the authors in (Hilden and Wallen, 1974) to consider the scaled orbit of an operator. An operator 𝑇 
is supercyclic if there is a vector 𝑥 ∈ 𝑋 such that ℂ𝑂𝑟𝑏(𝑇, 𝑥) = {𝜆𝑇!𝑥: 𝜆 ∈ ℂ, 𝑛 ∈ ℕ} is dense in 𝑋, where 𝑥 is called 
supercyclic vector. Also, an operator 𝑇 is called diskcyclic if there is a vector 𝑥 ∈ 𝑋 such that the disk orbit	𝔻𝑂𝑟𝑏(𝑇, 𝑥) =
{𝜆𝑇!𝑥: 𝜆 ∈ ℂ, |𝜆| ≤ 1, 𝑛 ∈ ℕ} is dense in 𝑋 such a vector 𝑥 is called diskcyclic for 𝑇 (Zeana, 2002). For more information 
on these concepts, one may refer to (Bayart and Matheron, 2009; Bamerni and Kilicman, 2016) 
We recall the following Lemma from the literature, which is needed in the main section.   
 
Lemma 1.1. (Bamerni and Kilicman, 2015) 
Let 𝑇 ∈ 𝐵(𝑋). Suppose that {𝑛#}#∈ℕ is an increasing sequence of positive integers,  
𝐷&, 	𝐷' ∈ 𝑋 are two dense sets and  𝑆:𝐷& → 	𝐷' a map such that 

1. ‖𝑇!!𝑥‖‖𝑆!!𝑦‖ → 0 for each 𝑥 ∈ 𝐷& and 𝑦 ∈ 𝐷', 
2. ‖𝑆!!𝑦‖ → 0 and 𝑇!!𝑆!!𝑦 → 𝑦 for each 𝑦 ∈ 𝐷'.  

Then 𝑇 is said to be satisfied diskcyclic Criterion, and 𝑇 is diskcyclic operator. 
For a non-empty subset Γ of the complex plane ℂ,  an operator 𝑇 is called Γ-supercyclic if there exists 𝑥 ∈ 𝑋 such that 
Γ𝑂𝑟𝑏(𝑇, 𝑥) = {𝜆𝑇!𝑥: 𝜆 ∈ Γ, 𝑛 ∈ ℕ} is dense in 𝑋 (Charpentier et al, 2016). It is clear from Γ-supercyclicity notion that:  

1. If  Γ = {1},  then Γ-supercyclic is hypercyclic, 
2. If  Γ = ℂ, then Γ-supercyclic is supercyclic, 
3. If  Γ = 𝔻, then Γ-supercyclic is diskcyclic, 

In 2019, the author in (Abbar, 2019) studied Γ-supercyclicity for strongly continuous semigroups. In particular, he 
characterized a set Γ in which Γ-supercyclicity for strongly continuous semigroups coincides to hypercyclicity. 
 In the main section, we give some characterizations to Γ-supercyclic operators. In particular, we define Γ-transitive 
operators. Then, we show that an operator 𝑇 is Γ-supercyclic if and only if 𝑇 is Γ-transitive. Also, we give some 
sufficient conditions for an operator to be Γ-supercyclic which is called Γ-supercyclic criterion. The authors in 
(Charpentier et al, 2016) ask for which sets Γ, Γ-supercyclicity equivalent to supercyclicity, he gives a partial answer to 
this question when 𝜎"(𝑇∗) is non-empty. Therefore, we give another partial answer to this problem. In particular, we 
show that if Γ = r𝔻 and 𝑇 satisfies Γ-criterion, then 𝑇 is supercyclic.     
it changed during time and what were the factors affecting it. 
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2. MAIN RESULTS 

In this paper, all Banach spaces are infinite dimensional separable over the field ℂ	of complex numbers. The set of all 
bounded linear operators on a Banach space is denoted by 𝐵(𝑋). Also, we denote set of all Γ-supercyclic operators on 
a Banach space by  ΓSC(X) and the set of all Γ-supercyclic vectors for an operator 𝑇 by ΓSC(T). 
 
Definition 2.1. 
A bounded linear operator  𝑇 ∈ 𝐵(𝑋)  is called Γ-transitive if for any pair 𝑈, 𝑉 of nonempty open subsets of 𝑋, there 
exist 𝛼 ∈ Γ, and 𝑛 ≥ 0 such that 𝑇!(𝛼𝑈) ∩ 𝑉 ≠ ∅ or equivalently, there exist 𝛼 ∈ Γ), and 𝑛 ≥ 0 such that 𝑇*!(𝛼𝑈) ∩ 𝑉 ≠
∅. 
 
Proposition 2.2. 
 Let 𝑇&, 𝑇' ∈ 𝐵(𝑋) such that 𝑇&𝑇' = 𝑇'𝑇& and the range of 𝑇'	(𝑅(𝑇'))  be a dense set in 𝑋. If 𝑥 ∈ ΓSC(T&), then 𝑇'𝑥 ∈
ΓSC(T&). 
Proof 
Since 𝑥 ∈ ΓSC(T&), then Γ𝑂𝑟𝑏(𝑇&, 𝑥)QQQQQQQQQQQQQQQ = {𝜆𝑇&!𝑥: 𝜆 ∈ Γ, 𝑛 ≥ 0}QQQQQQQQQQQQQQQQQQQQQQQQQQQ = 𝑋 and  

Γ𝑂𝑟𝑏(𝑇&, 𝑇'𝑥)QQQQQQQQQQQQQQQQQQ = {𝜆𝑇&!𝑇'𝑥: 𝜆 ∈ Γ, 𝑛 ≥ 0}QQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 
                                                           = {𝜆𝑇'𝑇&!𝑥: 𝜆 ∈ Γ, 𝑛 ≥ 0}QQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 
                                                           ⊇ 𝑇'S{𝜆𝑇&!𝑥: 𝜆 ∈ Γ, 𝑛 ≥ 0}QQQQQQQQQQQQQQQQQQQQQQQQQQT 
                                                           = 𝑇'(𝑋) = 𝑅(𝑇'). 
Thus,  Γ𝑂𝑟𝑏(𝑇&, 𝑇'𝑥) is dense in 𝑋 and hence 𝑇'𝑥 ∈ ΓSC(T&). 
 
Corollary 2.3 
If 𝑥 is Γ-supercyclic vector for 𝑇 then for all 𝑛 ∈ ℕ,	 𝑇!𝑥 is Γ-supercyclic vector for 𝑇. 
 
Corollary 2.4. 
The set ΓSC(T) is dense in 𝑋. 
 
Proposition 2.5.  
Every Γ-supercyclic operator on 𝑋 is Γ-transitive. 
Proof 
Let 𝑇 be a Γ-supercyclic operator, then, ΓSC(T)  is dense. Let 𝑈 and 𝑉 be two open sets, then there exist an 𝛼 ∈ Γ and a 
non-negative integer  𝑝 such that 𝛼𝑇"𝑥 ∈ 𝑈.  Now, we can choose 𝜆 ∈ Γ and 𝑛 ≥ 𝑝 such that 𝜆 𝛼⁄ ∈ Γ and 𝜆𝑇!𝑥 ∈ 𝑉. 
Thus 𝑇!*"(𝜆 𝛼⁄ )𝑈 ∩ 𝑉 ≠ ∅ and so 𝑇 is Γ-transitive. 
 
Proposition 2.6.  
Every Γ-transitive operator is Γ-supercyclic and 

ΓSC(T) =WXY𝑇*!(𝜆𝐵#)
"∈$%
&∈ℕ

Z
#

 

 is a dense 𝐺+ set, where {𝐵#}	is a countable open basis for X. 
Proof 
We have 𝑥 ∈ ΓSC(T) if and only if the set {𝜆𝑇!𝑥: 𝜆 ∈ Γ, 𝑛 ≥ 0} is dense in 𝑋 if and only if for each 𝑘 > 0, there exist 𝜆 ∈
Γ and 𝑛 ∈ ℕ such that 𝜆𝑇!𝑥 ∈ 𝐵# if and only if  

𝑥 ∈WXY𝑇*!(𝜆𝐵#)
"∈$%
&∈ℕ

Z
#

 

If and only if  
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ΓSC(T) =WXY𝑇*!(𝜆𝐵#)
"∈$%
&∈ℕ

Z
#

. 

Since ΓSC(T) can be written as a countable intersection of open sets, then ΓSC(T) is a 𝐺+ set. Moreover, it follows from 
the Baire category theorem that ΓSC(T) is dense if and only if each open set 𝐹# = ⋃ 𝑇*!(𝜆𝐵#)"∈$%

&∈ℕ
 is dense; i.e, if and 

only if for each non-empty open set 𝑈 and any 𝑘 ∈ ℕ one can find 𝑛 ∈ ℕ and 𝜆 ∈ Γ) such that 
𝑈 ∩	𝑇*!(𝜆𝐵#) ≠ ∅ 

Since {𝐵#} is a countable open basis for 𝑋 this is equivalent to the Γ-transitivity of 𝑇. 
The following theorem gives some equivalent assertions to Γ-supercyclic. 
 
Theorem 2.7.  
Let 𝑇 ∈ 𝐵(𝑋). The following statements are equivalent. 

1. T ∈ ΓSC(X), 
2. For each 𝑥, 𝑦	 ∈ 𝑋, there exist sequences {𝑥#} ∈ 𝑋, {𝑛#} ∈ ℕ and {𝜆#} ∈ Γ such that 𝑥# → 𝑥 and 𝑇!!𝜆#𝑥# → 𝑦. 
3. For each 𝑥, 𝑦	 ∈ 𝑋 and each neighborhood 𝑀 of the zero in 𝑋, there exist 𝑧 ∈ 𝑋, 𝑛 ∈ ℕ and 𝜆 ∈ Γ such that 𝑥 −

𝑧 ∈ 𝑀 and	𝑇!𝜆𝑧 − 𝑦 ∈ 𝑀.  
Proof 

1 ⇒ 2: Let 𝑥, 𝑦	 ∈ 𝑋 and let 𝐵# = 𝔹e𝑥, &
#
f , 𝐶# = 𝔹e𝑦, &

#
f for all 𝑘 ≥ 1. From (1) and Proposition there exist sequences 

{𝑥#} ∈ 𝑋, {𝑛#} ∈ ℕ and {𝜆#} ∈ Γ such that 𝑥# ∈ 𝐵# and 𝑇!!𝜆#𝑥# ∈ 𝐶# for all 𝑘 ≥ 1. Then, ‖𝑥# − 𝑥‖ < 1 𝑘⁄  and 
‖𝑇!!𝜆#𝑥# − 𝑦‖< 1 𝑘⁄  for all 𝑘 ≥ 1. 
2 ⇒ 3: From the proof of the last part, if we take 𝑧 = 𝑥#for a large enough	𝑘 ∈ ℕ. 
3 ⇒ 1: Let 𝑈 and 𝑉 be two non-empty subsets of 𝑋. Let 𝑀 be a neighborhood of zero, let 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉. Then there 
exist  𝑧 ∈ 𝑋, 𝑛 ∈ ℕ and 𝜆 ∈ Γ such that 𝑥 − 𝑧 ∈ 𝑀 and 𝑇!𝜆𝑧 − 𝑦 ∈ 𝑀. It follows that 𝑧 ∈ 𝑈 and 𝑇!𝜆𝑧 ∈ 𝑉 and so 𝑇!𝜆𝑈 ∩
𝑉 ≠ ∅. 
 
Theorem 2.8.  
Let 𝑇 ∈ 𝐵 ∈ (𝑋), and let {𝑛#}#∈ℕ	 be an increasing sequence of positive integers and j𝜆!!k#∈ℕ ∈ Γ such that there exists 

1.  A dense subset 𝐷& ∈ 𝑋 such that l𝜆!!𝑇
!!𝑥l → 0 for all 𝑥 ∈ 𝐷&. 

2. A dense subset 𝐷' ∈ 𝑋 and a mapping 𝑆:𝐷& → 𝐷' such that l𝜆!!
*&𝑆!!𝑦l → 0 and 𝑇!!𝑆!!𝑦 → 𝑦 for all 𝑦 ∈ 𝐷'. 

Then 𝑇 is said to be satisfied Γ-supercyclic Criterion with respect to the sequence j𝜆!!k#∈ℕand 𝑇 is an Γ-supercyclic 
operator. 
Proof 
 Let 𝑈 and 𝑉 be two open sets in 𝑋. Then we can find 𝑥 ∈ 𝐷& ∩ 𝑈 and 𝑦 ∈ 𝐷' ∩ 𝑉. By hypothesis, there exists a large 
positive integer 𝑘 and a small positive integer 𝜀 such that 
l𝜆!!𝑇

!!𝑥l < 𝜀 2⁄ ,  l𝜆!!
*&𝑆!!𝑦l < 𝜀 2⁄  and ‖𝑇!!𝑆!!𝑦 − 𝑦‖ < 𝜀 2⁄  

 
Let 𝑧 = 𝑥 + 𝜆!!

*&𝑆!!𝑦, then 
‖𝑧 − 𝑥‖ = l𝜆!!

*&𝑆!!𝑦l < 𝜀 2⁄  
it follows that  𝑧 ∈ 𝑈. Now, we have  

𝜆!!𝑇
!!𝑧 = 𝜆!!𝑇

!!𝑥 + 𝑇!!𝑆!!𝑦 
Then 

l𝜆!!𝑇
!!𝑧 − 𝑦l = l𝜆!!𝑇

!!𝑥 + 𝑇!!𝑆!!𝑦 − 𝑦l 
≤ l𝜆!!𝑇

!!𝑥l + ‖𝑇!!𝑆!!𝑦 − 𝑦‖ 
≤ 𝜀 2⁄ + 𝜀 2⁄ = 𝜀. 

It means that 𝜆!!𝑇
!!𝑧 ∈ 𝑉, and so 𝜆!!𝑇

!!𝑈 ∩ 𝑉 ≠ ∅.  
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By Definition 2.1. and Proposition 2.6. 𝑇 is Γ-supercyclic. 
 
The authors in (Charpentier et al, 2016) ask for which sets Γ,  Γ- supercyclicity equivalent to supercyclicity. He gives a 
partial answer to this question when 𝜎"(𝑇∗) is non-empty. Now, if  Γ = r𝔻 for some 𝑟 ∈ ℂ; 𝑟 ≠ 0 and 𝑇 satisfies r𝔻- 
criterion, then the following theorem gives another partial answer to question 3 of (Charpentier et al, 2016). 
First, we need the following definition. 
 
Definition 2.9.  
An operator 𝑇 is called r𝔻-supercyclic for some positive integer 𝑟 if there exists a vector 𝑥 such that the set 𝜆𝑇!𝑥: 𝑛 ≥ 0,
0 ≤ |𝜆| ≤ 𝑟} is dense in 𝑋. In this case the vector 𝑥 is called r𝔻-supercyclic vector for 𝑇. 
 
Theorem 2.10. 
r𝔻-supercyclic criterion is equivalent to diskcyclic-criterion. 
Proof 
Suppose that 𝑇 satisfies the hypothesis of Theorem 2.8. for Γ = r𝔻, then it is easy to show that ‖𝑇!!𝑥‖‖𝑆!!𝑦‖ → 0 and 
‖𝑆!!𝑦‖ → 0 for all 𝑥 ∈ 𝐷& and 𝑦 ∈ 𝐷'. It follows that the hypothesis of Lemma 1.1. satisfy.  
Conversely, suppose that 𝑇 satisfies the hypothesis of Lemma 1.1.  Let {𝜀#}#∈ℕ be a sequence of positive numbers 
converges to zero. Let {𝑥!}!∈ℕ ⊂ 𝐷&and {𝑦!}!∈ℕ ⊂ 𝐷' be two countable dense subsets in 𝑋. By hypothesis of Lemma 
1.1., for each 1 ≤ 𝑖, 𝑗 ≤ 𝑘 we have l𝑆!!𝑦-l < 𝜀#, 𝑇!!𝑆!!𝑦- → 𝑦- and 
                            ‖𝑇!!𝑥.‖l𝑆!!𝑦-l < 𝜀#'                                      (1) 
Suppose that for each 𝑘 ≥ 1, 

𝜆!! =
𝑟
𝜀#
max
&/-/#

jl𝑆!!𝑦-lk 

It follows that 𝜆!! ∈ r𝔻\{0} for all 𝑘, and  
&
0&!

l𝑆!!𝑦-l ≤
1!
2

 for all 𝑗 ≤ 𝑘 

By Equation (1), for all  𝑖 ≤ 𝑘, we have 

𝜆!!‖𝑇
!!𝑥.‖ =

𝑟
𝜀#
max
&/-/#

jl𝑆!!𝑦-lk ‖𝑇!!𝑥.‖ < 𝑟𝜀# 

Now, the proof follows when 𝑘 → ∞. 
 
Corollary 2.11. 
If 𝑇 satisfies Γ-supercyclic criterion for Γ = r𝔻, then 𝑇 is supercyclic operator.  
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