Molecular Approaches for the Detection of DNA Methylation

Authors

  • Harem Othman Smail Department of Biology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region-F.R. Iraq
  • Dlnya Asaad Mohamad Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq

DOI:

https://doi.org/10.25007/ajnu.v11n4a1225

Keywords:

epigenetics, DNA methylation, bisulfite sequencing, CpG island, enzymatic digestion and radiolabeled

Abstract

The main goals of this review were to understand the main molecular approaches for the detection of different types of epigenetics modification such as chromatin modifications and DNA methylation .this review provide information about the most sensitive and reliable methods for the defection of epigenetics .generally there are two approaches for detection chromatin remodeling and five approaches for DNA methylation detection widely uses   .the most of the useful techniques for chromatin remodeling was chromatin immunoprecipitation (ChIP) assay. Formaldehyde is used in this process to in vivo cross-link proteins to DNA, followed by chromatin extraction from cross-linked cells and tissues. Bisulfite conversion DNA methylation and Bisulfite sequencing methylation is used for DNA methylation. The bisulfite conversion mechanism is a key step in the identification and recognition of DNA methylation; the principles of bisulfite conversion rely on the presence or absence of unique cytosine methyl groups at the carbon-5 site. After treatment with sodium bisulfite, unmethylated cytosine residues are converted to uracil, while 5-methylcytosine (5mC) remains unchanged due to the block reaction of the methyl groups. However, the design of primers for converted and non-converted cytosine is necessary to avoid any errors.

Downloads

Download data is not yet available.

References

 Bayarsaihan, D., 2011. Epigenetic mechanisms in inflammation. Journal of dental research, 90(1), pp.9-17.

 Bilichak, A. and Kovalchuk, I., 2017. The Combined Bisulfite Restriction Analysis (COBRA) assay for the analysis of locus-specific changes in methylation patterns. In Plant Epigenetics (pp. 63-71). Humana Press, Boston, MA.

 Bock, C., Reither, S., Mikeska, T., Paulsen, M., Walter, J. and Lengauer, T., 2005. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics, 21(21), pp.4067-4068.

 Boyko, A. and Kovalchuk, I., 2010. Analysis of locus-specific changes in methylation patterns using a COBRA (combined bisulfite restriction analysis) assay. In Plant Epigenetics (pp. 23-31). Humana Press.

 Brena, R.M. and Plass, C., 2009. Bio-COBRA: absolute quantification of DNA methylation in electrofluidics chips. In DNA Methylation (pp. 257-269). Humana Press.

 Brena, R.M., Auer, H., Kornacker, K., Hackanson, B., Raval, A., Byrd, J.C. and Plass, C., 2006. Accurate quantification of DNA methylation using combined bisulfite restriction analysis coupled with the Agilent 2100 Bioanalyzer platform. Nucleic acids research, 34(3), pp.e17-e17.

 Campan, M., Weisenberger, D.J., Trinh, B. and Laird, P.W., 2009. MethyLight. In DNA Methylation (pp. 325-337). Humana Press.

 Campan, M., Weisenberger, D.J., Trinh, B. and Laird, P.W., 2018. MethyLight and digital MethyLight. In DNA Methylation Protocols (pp. 497-513). Humana Press, New York, NY.

 Candiloro, I.L., Mikeska, T. and Dobrovic, A., 2011. Assessing combined methylation–sensitive high resolution melting and pyrosequencing for the analysis of heterogeneous DNA methylation. Epigenetics, 6(4), pp.500-507.

 Carey, M.F., Peterson, C.L. and Smale, S.T., 2009. Chromatin immunoprecipitation (chip). Cold Spring Harbor Protocols, 2009(9), pp.pdb-prot5279.

 Chen, H.C., Chang, Y.S., Chen, S.J. and Chang, P.L., 2012. Determination of the heterogeneity of DNA methylation by combined bisulfite restriction analysis and capillary electrophoresis with laser-induced fluorescence. Journal of chromatography A, 1230, pp.123-129.

 Chung, R.H. and Kang, C.Y., 2020. pWGBSSimla: a profile-based whole-genome bisulfite sequencing data simulator incorporating methylation QTLs, allele-specific methylations and differentially methylated regions. Bioinformatics, 36(3), pp.660-665.

 Claus, R., Wilop, S., Hielscher, T., Sonnet, M., Dahl, E., Galm, O., Jost, E. and Plass, C., 2012. A systematic comparison of quantitative high-resolution DNA methylation analysis and methylation-specific PCR. Epigenetics, 7(7), pp.772-780.

 Collas, P., 2010. The current state of chromatin immunoprecipitation. Molecular biotechnology, 45(1), pp.87-100.

 Colyer, H.A., Armstrong, R.N., Sharpe, D.J. and Mills, K.I., 2012. Detection and analysis of DNA methylation by pyrosequencing. In Cancer Epigenetics (pp. 281-292). Humana Press, Totowa, NJ.

 Copeland, R.A., Olhava, E.J. and Scott, M.P., 2010. Targeting epigenetic enzymes for drug discovery. Current opinion in chemical biology, 14(4), pp.505-510.

 Dahl, J.A. and Collas, P., 2008. A rapid micro chromatin immunoprecipitation assay (ChIP). Nature protocols, 3(6), pp.1032-1045.

 Dallol, A., Al-Ali, W., Al-Shaibani, A. and Al-Mulla, F., 2011. Analysis of DNA methylation in FFPE tissues using the MethyLight technology. In Formalin-Fixed Paraffin-Embedded Tissues (pp. 191-204). Humana Press.

 Darst, R.P., Pardo, C.E., Ai, L., Brown, K.D. and Kladde, M.P., 2010. Bisulfite sequencing of DNA. Current protocols in molecular biology, 91(1), pp.7-9.

 Daunay, A., Baudrin, L.G., Deleuze, J.F. and How-Kit, A., 2019. Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Scientific reports, 9(1), pp.1-10.

 DeCaprio, J. and Kohl, T.O., 2020. Chromatin immunoprecipitation. Cold Spring Harbor Protocols, 2020(8), pp.pdb-prot098665.

 Delaney, C., Garg, S.K. and Yung, R., 2015. Analysis of DNA methylation by pyrosequencing. In Immunosenescence (pp. 249-264). Humana Press, New York, NY.

 Delpu, Y., Cordelier, P., Cho, W.C. and Torrisani, J., 2013. DNA methylation and cancer diagnosis. International journal of molecular sciences, 14(7), pp.15029-15058.

 Eads, C.A., Danenberg, K.D., Kawakami, K., Saltz, L.B., Blake, C., Shibata, D., Danenberg, P.V. and Laird, P.W., 2000. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic acids research, 28(8), pp.e32-00.

 Eckschlager, T., Plch, J., Stiborova, M. and Hrabeta, J., 2017. Histone deacetylase inhibitors as anticancer drugs. International journal of molecular sciences, 18(7), p.1414.

 Feng, W., Shen, L., Wen, S., Rosen, D.G., Jelinek, J., Hu, X., Huan, S., Huang, M., Liu, J., Sahin, A.A. and Hunt, K.K., 2007. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast cancer research, 9(4), p.R57.

 Flanagin, S., Nelson, J.D., Castner, D.G., Denisenko, O. and Bomsztyk, K., 2008. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic acids research, 36(3), p.e17.

 Gade, P. and Kalvakolanu, D.V., 2012. Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity. In Transcriptional Regulation (pp. 85-104). Springer, New York, NY.

 Genereux, D.P., Johnson, W.C., Burden, A.F., Stöger, R. and Laird, C.D., 2008. Errors in the bisulfite conversion of DNA: modulating inappropriate-and failed-conversion frequencies. Nucleic acids research, 36(22), pp.e150-e150.

 Goren, A., Ozsolak, F., Shoresh, N., Ku, M., Adli, M., Hart, C., Gymrek, M., Zuk, O., Regev, A., Milos, P.M. and Bernstein, B.E., 2010. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature methods, 7(1), pp.47-49.

 Hanaei, S., Sanati, G., Zoghi, S., Gharibzadeh, S., Ziaee, V. and Rezaei, N., 2020. The status of FOXP3 gene methylation in pediatric systemic lupus erythematosus. Allergologia et Immunopathologia, 48(4), pp.332-338.

 Hayatsu, H., 2008. Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis—a personal account. Proceedings of the Japan Academy, Series B, 84(8), pp.321-330.

 Herman, J.G., Graff, J.R., Myöhänen, S.B.D.N., Nelkin, B.D. and Baylin, S.B., 1996. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of the national academy of sciences, 93(18), pp.9821-9826.

 Hernández, H.G., Tse, M.Y., Pang, S.C., Arboleda, H. and Forero, D.A., 2013. Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques, 55(4), pp.181-197.

 Hill, V.K., 2011. Identification of DNA methyltion changes in sporadic breast and other cancers (Doctoral dissertation, University of Birmingham).

 Huang, Z., Bassil, C.F. and Murphy, S.K., 2013. Methylation-specific PCR. In Ovarian Cancer (pp. 75-82). Humana Press, Totowa, NJ.

 Irahara, N., Nosho, K., Baba, Y., Shima, K., Lindeman, N.I., Hazra, A., Schernhammer, E.S., Hunter, D.J., Fuchs, C.S. and Ogino, S., 2010. Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. The Journal of Molecular Diagnostics, 12(2), pp.177-183.

 Kim, J. and Lee, J.S., 2020. Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans. Journal of Microbiology, 58(1), pp.11-16.

 Ku, J.L., Jeon, Y.K. and Park, J.G., 2011. Methylation-specific PCR. In Epigenetics Protocols (pp. 23-32). Humana Press.

 Leontiou, C.A., Hadjidaniel, M.D., Mina, P., Antoniou, P., Ioannides, M. and Patsalis, P.C., 2015. Bisulfite conversion of DNA: performance comparison of different kits and methylation quantitation of epigenetic biomarkers that have the potential to be used in non-invasive prenatal testing. PloS one, 10(8), p.e0135058.

 Li, L.C. and Dahiya, R., 2002. MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11), pp.1427-1431.

 Li, Y. and Tollefsbol, T.O., 2011. DNA methylation detection: bisulfite genomic sequencing analysis. In Epigenetics Protocols (pp. 11-21). Humana Press.

 Licchesi, J.D. and Herman, J.G., 2009. Methylation-specific PCR. In DNA Methylation (pp. 305-323). Humana Press.

 Lim, J.Q., Tennakoon, C., Li, G., Wong, E., Ruan, Y., Wei, C.L. and Sung, W.K., 2012. BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation. Genome biology, 13(10), pp.1-14.

 Lutsik, P., Feuerbach, L., Arand, J., Lengauer, T., Walter, J. and Bock, C., 2011. BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic acids research, 39(suppl_2), pp.W551-W556.

 Marks, P.A., Rifkind, R.A., Richon, V.M., Breslow, R., Miller, T. and Kelly, W.K., 2001. Histone deacetylases and cancer: causes and therapies. Nature Reviews Cancer, 1(3), pp.194-202.

 Mikeska, T., Felsberg, J., Hewitt, C.A. and Dobrovic, A., 2011. Analysing DNA methylation using bisulphite pyrosequencing. In Epigenetics Protocols (pp. 33-53). Humana Press.

 Nelson, J.D., Denisenko, O. and Bomsztyk, K., 2006. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nature protocols, 1(1), p.179.

 Nelson, J.D., Denisenko, O., Sova, P. and Bomsztyk, K., 2006. Fast chromatin immunoprecipitation assay. Nucleic acids research, 34(1), pp.e2-e2.

 O’Neill, L.P. and Turner, B.M., 2003. Immunoprecipitation of native chromatin: NChIP. Methods, 31(1), pp.76-82.

 Ogino, S., Kawasaki, T., Brahmandam, M., Cantor, M., Kirkner, G.J., Spiegelman, D., Makrigiorgos, G.M., Weisenberger, D.J., Laird, P.W., Loda, M. and Fuchs, C.S., 2006. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. The Journal of molecular diagnostics, 8(2), pp.209-217.

 Olkhov-Mitsel, E., Zdravic, D., Kron, K., van der Kwast, T., Fleshner, N. and Bapat, B., 2014. Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Scientific reports, 4, p.4432.

 Olova, N., Krueger, F., Andrews, S., Oxley, D., Berrens, R.V., Branco, M.R. and Reik, W., 2018. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome biology, 19(1), pp.1-19.

 Owa, C., Poulin, M., Yan, L. and Shioda, T., 2018. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: sources and avoidance of false-positive detection. PLoS One, 13(2), p.e0192722.

 Pajares, M.J., Palanca-Ballester, C., Urtasun, R., Alemany-Cosme, E., Lahoz, A. and Sandoval, J., 2020. Methods for analysis of specific DNA methylation status. Methods.

 Perez, E. and Capper, D., 2020. Invited Review: DNA methylation‐based classification of paediatric brain tumours. Neuropathology and Applied Neurobiology, 46(1), pp.28-47.

 Pirola, C.J. and Sookoian, S., 2020. Epigenetics factors in nonalcoholic fatty liver disease. Expert Review of Gastroenterology & Hepatology, pp.1-16.

 Poulin, M., Zhou, J.Y., Yan, L. and Shioda, T., 2018. Pyrosequencing methylation analysis. In Cancer Epigenetics for Precision Medicine (pp. 283-296). Humana Press, New York, NY.

 Ramalho-Carvalho, J., Henrique, R. and Jerónimo, C., 2018. Methylation-specific PCR. In DNA Methylation Protocols (pp. 447-472). Humana Press, New York, NY.

 Sant, K.E., Nahar, M.S. and Dolinoy, D.C., 2012. DNA methylation screening and analysis. In Developmental Toxicology (pp. 385-406). Humana Press, Totowa, NJ.

 Šestáková, Š., Šálek, C. and Remešová, H., 2019. DNA methylation validation methods: A coherent review with practical comparison. Biological procedures online, 21(1), p.19.

 Shan, M., Yin, H., Li, J., Li, X., Wang, D., Su, Y., Niu, M., Zhong, Z., Wang, J., Zhang, X. and Kang, W., 2016. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer. Oncotarget, 7(14), p.18485.

 Shaw, R.J., Akufo-Tetteh, E.K., Risk, J.M., Field, J.K. and Liloglou, T., 2006. Methylation enrichment pyrosequencing: combining the specificity of MSP with validation by pyrosequencing. Nucleic acids research, 34(11), pp.e78-e78.

 Smail, H.O., 2019. The epigenetics of diabetes, obesity, overweight and cardiovascular disease. AIMS genetics, 6(3), p.36.

 Statham, A.L., Robinson, M.D., Song, J.Z., Coolen, M.W., Stirzaker, C. and Clark, S.J., 2012. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome research, 22(6), pp.1120-1127.

 Su, J., Yan, H., Wei, Y., Liu, H., Liu, H., Wang, F., Lv, J., Wu, Q. and Zhang, Y., 2013. CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic acids research, 41(1), pp.e4-e4.

 Sulewska, A., Niklinska, W., Kozlowski, M., Minarowski, L., Naumnik, W., Niklinski, J., Dabrowska, K. and Chyczewski, L., 2007. Detection of DNA methylation in eucaryotic cells. Folia histochemica et cytobiologica, 45(4), pp.315-324.

 Susan, J.C., Harrison, J., Paul, C.L. and Frommer, M., 1994. High sensitivity mapping of methylated cytosines. Nucleic acids research, 22(15), pp.2990-2997.

 Suzuki, M.M. and Bird, A., 2008. DNA methylation landscapes: provocative insights from epigenomics. Nature Reviews Genetics, 9(6), pp.465-476.

 Tabish, A.M., Baccarelli, A.A., Godderis, L., Barrow, T.M., Hoet, P. and Byun, H.M., 2015. Assessment of changes in global DNA methylation levels by pyrosequencing® of repetitive elements. In Pyrosequencing (pp. 201-207). Humana Press, New York, NY.

 Tollefsbol, T.O. ed., 2004. Epigenetics protocols (Vol. 287). Springer Science & Business Media.

 Tost, J. and Gut, I.G., 2007. Analysis of gene-specific DNA methylation patterns by Pyrosequencing® technology. In Pyrosequencing® Protocols (pp. 89-102). Humana Press.

 Tost, J. and Gut, I.G., 2007. DNA methylation analysis by pyrosequencing. Nature protocols, 2(9), p.2265.

 Tost, J., El abdalaoui, H. and Glynne Gut, I., 2006. Serial pyrosequencing for quantitative DNA methylation analysis. Biotechniques, 40(6), pp.721-726.

 Valente, A.L., Rummel, S., Shriver, C.D. and Ellsworth, R.E., 2014. Sequence-based detection of mutations in cadherin 1 to determine the prevalence of germline mutations in patients with invasive lobular carcinoma of the breast. Hereditary cancer in clinical practice, 12(1), p.17.

 Varinli, H., Statham, A.L., Clark, S.J., Molloy, P.L. and Ross, J.P., 2015. COBRA-Seq: sensitive and quantitative methylome profiling. Genes, 6(4), pp.1140-1163.

 Warnecke, P.M., Stirzaker, C., Song, J., Grunau, C., Melki, J.R. and Clark, S.J., 2002. Identification and resolution of artifacts in bisulfite sequencing. Methods, 27(2), pp.101-107.

 Watanabe, K., Emoto, N., Sunohara, M., Kawakami, M., Kage, H., Nagase, T., Ohishi, N. and Takai, D., 2010. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis. Biochemical and biophysical research communications, 399(3), pp.422-424.

 Widschwendter, M., Siegmund, K.D., Müller, H.M., Fiegl, H., Marth, C., Müller-Holzner, E., Jones, P.A. and Laird, P.W., 2004. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer research, 64(11), pp.3807-3813.

 Wong, C.C., Qian, Y. and Yu, J., 2017. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene, 36(24), pp.3359-3374.

 Wong, I.H., 2006. Qualitative and quantitative polymerase chain reaction-based methods for DNA methylation analyses. In Clinical Applications of PCR (pp. 33-43). Humana Press.

 Wu, H.C., Delgado-Cruzata, L., Flom, J.D., Perrin, M., Liao, Y., Ferris, J.S., Santella, R.M. and Terry, M.B., 2012. Repetitive element DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Carcinogenesis, 33(10), pp.1946-1952.

 Xiong, Z. and Laird, P.W., 1997. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic acids research, 25(12), pp.2532-2534.

 Yang, C.H., Chuang, L.Y., Cheng, Y.H., Gu, D.L., Chen, C.H. and Chang, H.W., 2010. Methyl-Typing: An improved and visualized COBRA software for epigenomic studies. FEBS letters, 584(4), pp.739-744.

 Zhang, F.F., Cardarelli, R., Carroll, J., Fulda, K.G., Kaur, M., Gonzalez, K., Vishwanatha, J.K., Santella, R.M. and Morabia, A., 2011. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics, 6(5), pp.623-629.

 Zhang, Y., Rohde, C., Tierling, S., Stamerjohanns, H., Reinhardt, R., Walter, J. and Jeltsch, A., 2009. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. In DNA methylation (pp. 177-187). Humana Press.

 Zhao, K., Oualkacha, K., Lakhal‐Chaieb, L., Labbe, A., Klein, K., Ciampi, A., Hudson, M., Colmegna, I., Pastinen, T., Zhang, T. and Daley, D., 2020. A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation. Biometrics.

 Zhou, J., Zhao, M., Sun, Z., Wu, F., Liu, Y., Liu, X., He, Z., He, Q. and He, Q., 2020. BCREval: a computational method to estimate the bisulfite conversion ratio in WGBS. BMC bioinformatics, 21(1), pp.1-8.

Published

2022-12-08

How to Cite

Othman Smail, H., & Asaad Mohamad, D. (2022). Molecular Approaches for the Detection of DNA Methylation. Academic Journal of Nawroz University, 11(4), 452–463. https://doi.org/10.25007/ajnu.v11n4a1225

Issue

Section

Review Articles