Detection of Abnormal electrocardiograms Based on Various Feature Extraction methods

Authors

  • Eman Ahmad Khorsheed Department of Computer Science, Nawroz University, Duhok, Kurdistan Region of Iraq

DOI:

https://doi.org/10.25007/ajnu.v12n3a1818

Keywords:

Heart disease, Cardiac arrhythmia, ECG, feature extraction, Machine learning, classification.

Abstract

Electrocardiogram (ECG) is a graphical representation of the electrical activity of the heart obtained by placing various electrodes on specific areas of the subject's body surface. Abnormalities in a patient's ECG signal may indicate cardiac diseases that require immediate medical attention. As a result, detecting an abnormal ECG is critical for the patient's benefit. This work develops a method for classifying ECG signals as normal or abnormal. In this paper, we propose a method for detecting cardiac arrhythmias in electrocardiograms (ECG). In the first stage, the proposal focuses on various feature extractor methods. The Fourier Transform (DFT), Discrete Wavelet Transform (DWT), and Improved complete ensemble empirical mode decomposition with adaptive noise were the feature extraction techniques evaluated (ICEEMDAN). The PCA method is then used to reduce the number of features. Finally, for classification, the Support Vector Machine (SVM) was used, which was trained using the features extracted in the first stage. The proposed models are tested using datasets from MIT-BIH arrhythmia and PTB Diagnostics. The experimental results show that using 3-PCs with the DWT method produces better results than the other methods, which achieve 98.7% in terms of accuracy.

Downloads

Download data is not yet available.

References

Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 415–416, 190–198. https://doi.org/10.1016/j.ins.2017.06.027

Alexakis, C., Nyongesa, H. O., Saatchi, R., Harris, N. D., Davies, C., Emery, C., Ireland, R. H., & Heller, S. R. (2003). Feature extraction and classification of electrocardiogram (ECG) signals related to hypoglycaemia. Computers in Cardiology, 2003, 537–540. https://doi.org/10.1109/CIC.2003.1291211

Andreao, R. V., Dorizzi, B., & Boudy, J. (2006a). ECG signal analysis through hidden Markov models. IEEE Transactions on Biomedical Engineering, 53(8), 1541–1549. https://doi.org/10.1109/TBME.2006.877103

Andreao, R. V., Dorizzi, B., & Boudy, J. (2006b). ECG signal analysis through hidden Markov models. IEEE Transactions on Biomedical Engineering, 53(8), 1541–1549. https://doi.org/10.1109/TBME.2006.877103

Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., de Ferranti, S. D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C. R., Jiménez, M. C., Jordan, L. C., Judd, S. E., Lackland, D., Lichtman, J. H., Lisabeth, L., Liu, S., Longenecker, C. T., … Muntner, P. (2017). Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation, 135(10). https://doi.org/10.1161/CIR.0000000000000485

B.R., M., & B., A. (2020a). Simulation Of Pathological ECG Signal Using Transform Method. Procedia Computer Science, 171, 2121–2127. https://doi.org/10.1016/j.procs.2020.04.229

B.R., M., & B., A. (2020b). Simulation Of Pathological ECG Signal Using Transform Method. Procedia Computer Science, 171, 2121–2127. https://doi.org/10.1016/j.procs.2020.04.229

Coast, D. A., Stern, R. M., Cano, G. G., & Briller, S. A. (1990). An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Transactions on Biomedical Engineering, 37(9), 826–836. https://doi.org/10.1109/10.58593

Colominas, M. A., Schlotthauer, G., & Torres, M. E. (2014a). Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomedical Signal Processing and Control, 14, 19–29. https://doi.org/10.1016/j.bspc.2014.06.009

Colominas, M. A., Schlotthauer, G., & Torres, M. E. (2014b). Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomedical Signal Processing and Control, 14, 19–29. https://doi.org/10.1016/j.bspc.2014.06.009

Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press. https://doi.org/10.1017/CBO9780511801389

Cruz, F. C., Simas Filho, E. F., Albuquerque, M. C. S., Silva, I. C., Farias, C. T. T., & Gouvêa, L. L. (2017). Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing. Ultrasonics, 73, 1–8. https://doi.org/10.1016/j.ultras.2016.08.017

deChazal, P., O’Dwyer, M., & Reilly, R. B. (2004). Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features. IEEE Transactions on Biomedical Engineering, 51(7), 1196–1206. https://doi.org/10.1109/TBME.2004.827359

Desai, U., Martis, R. J., Nayak, C. G., Sarika K., & Seshikala, G. (2015). Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques. 2015 Annual IEEE India Conference (INDICON), 1–4. https://doi.org/10.1109/INDICON.2015.7443220

Dewangan, N. K., Dewangan, N. K., & Shukla, S. P. (2015). A Survey on ECG Signal Feature Extraction and Analysis Techniques Image Processing View project Robotics View project A Survey on ECG Signal Feature Extraction and Analysis Techniques. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING, 3, 2321–5526. https://doi.org/10.17148/IJIREEICE.2015.3603

Diker, A., Comert, Z., Avci, E., & Velappan, S. (2018). Intelligent system based on Genetic Algorithm and support vector machine for detection of myocardial infarction from ECG signals. 2018 26th Signal Processing and Communications Applications Conference (SIU), 1–4. https://doi.org/10.1109/SIU.2018.8404299

Djemili, R., Bourouba, H., & Amara Korba, M. C. (2016). Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals. Biocybernetics and Biomedical Engineering, 36(1), 285–291. https://doi.org/10.1016/j.bbe.2015.10.006

Elhaj, F. A., Salim, N., Harris, A. R., Swee, T. T., & Ahmed, T. (2016). Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer Methods and Programs in Biomedicine, 127, 52–63. https://doi.org/10.1016/j.cmpb.2015.12.024

E.O. Brigham. (n.d.). The Fast Fourier Transform and its applications.

Ersoy, O. K. (1994). A comparative review of real and complex Fourier-related transforms. Proceedings of the IEEE, 82(3), 429–447. https://doi.org/10.1109/5.272147

Fernandez-Delgado, M., & Barro Ameneiro, S. (1998). MART: a multichannel ART-based neural network. IEEE Transactions on Neural Networks, 9(1), 139–150. https://doi.org/10.1109/72.655035

Framework, A., & Analysis, B. P. C. (n.d.). A comparison of PCA , KPCA and ICA for dimentionality reduction. 1–3.

George B. Moody, & R.G. Mark. (n.d.). The Impact of the MIT-BIH Arrhythmia Database History, Lessons Learned, and Its Influence on Current and Future Databases.

Gilles, J. (2013). Empirical Wavelet Transform. IEEE Transactions on Signal Processing, 61(16), 3999–4010. https://doi.org/10.1109/TSP.2013.2265222

Gonzalez. (n.d.). Digital Image Processing Using Matlab.

Güler, İ., & Übeyli, E. D. (2005). A modified mixture of experts network structure for ECG beats classification with diverse features. Engineering Applications of Artificial Intelligence, 18(7), 845–856. https://doi.org/10.1016/j.engappai.2005.03.002

Hassan, A. R., & Hassan Bhuiyan, M. I. (2016). Automatic sleep scoring using statistical features in the EMD domain and ensemble methods. Biocybernetics and Biomedical Engineering, 36(1), 248–255. https://doi.org/10.1016/j.bbe.2015.11.001

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998a). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998b). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193

Islam, M. K., Haque, A. N. M. M., Tangim, G., Ahammad, T., & Khondokar, M. R. H. (2012). Study and Analysis of ECG Signal Using MATLAB &LABVIEW as Effective Tools. International Journal of Computer and Electrical Engineering, 404–408. https://doi.org/10.7763/IJCEE.2012.V4.522

Ivanov, P. Ch., Ma, Q. D. Y., Bartsch, R. P., Hausdorff, J. M., Nunes Amaral, L. A., Schulte-Frohlinde, V., Stanley, H. E., & Yoneyama, M. (2009). Levels of complexity in scale-invariant neural signals. Physical Review E, 79(4), 041920. https://doi.org/10.1103/PhysRevE.79.041920

Jolliffe, I. T. (n.d.). Principal Component Analysis, Second Edition.

Kora, P., Kumari, C. U., K., S., & Meenakshi, K. (2019). Atrial Fibrillation detection using Discrete Wavelet Transform. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–3. https://doi.org/10.1109/ICECCT.2019.8869498

K.S., B., Hakkim, H. A., & M.G., J. (2017). Ictal EEG classification based on amplitude and frequency contours of IMFs. Biocybernetics and Biomedical Engineering, 37(1), 172–183. https://doi.org/10.1016/j.bbe.2016.12.005

Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., & Sornmo, L. (2000). Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Transactions on Biomedical Engineering, 47(7), 838–848. https://doi.org/10.1109/10.846677

Leite, J. P. R. R., & Moreno, R. L. (2018). Heartbeat classification with low computational cost using Hjorth parameters. IET Signal Processing, 12(4), 431–438. https://doi.org/10.1049/iet-spr.2017.0296

Mahajan, K., Vargantwar, M., & Rajput, S. (2011). Classification of EEG using PCA, ICA and Neural Network. Int. J. Eng Adv. Technol. (IJEAT), October, 80–83.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693. https://doi.org/10.1109/34.192463

Osowski, S., Hoai, L. T., & Markiewicz, T. (2004). Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition. IEEE Transactions on Biomedical Engineering, 51(4), 582–589. https://doi.org/10.1109/TBME.2004.824138

Pan, G., Xin, Z., Shi, S., & Jin, D. (2018). Arrhythmia classification based on wavelet transformation and random forests. Multimedia Tools and Applications, 77(17), 21905–21922. https://doi.org/10.1007/s11042-017-5225-5

Poularikas, A. D. (Ed.). (2018). Transforms and Applications Handbook. CRC Press. https://doi.org/10.1201/9781315218915

Rajesh, K. N. V. P. S., & Dhuli, R. (2018). Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomedical Signal Processing and Control, 41, 242–254. https://doi.org/10.1016/j.bspc.2017.12.004

Reddy, S. D., Murugan, R., Nandi, A., & Goel, T. (2022). Classification of arrhythmia disease through electrocardiogram signals using sampling vector random forest classifier. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-022-14304-x

Saechia, S., Koseeyaporn, J., & Wardkein, P. (2005). Human Identification System Based ECG Signal. TENCON 2005 - 2005 IEEE Region 10 Conference, 1–4. https://doi.org/10.1109/TENCON.2005.300986

Soltani, S. (2002). On the use of the wavelet decomposition for time series prediction. Neurocomputing, 48(1–4), 267–277. https://doi.org/10.1016/S0925-2312(01)00648-8

Sultan Qurraie, S., & Ghorbani Afkhami, R. (2017). ECG arrhythmia classification using time frequency distribution techniques. Biomedical Engineering Letters, 7(4), 325–332. https://doi.org/10.1007/s13534-017-0043-2

Suykens, J. A. K., & Vandewalle, J. (1999). Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 9(3), 293–300. https://doi.org/10.1023/A:1018628609742

Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011). A complete ensemble empirical mode decomposition with adaptive noise. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265

Ullah, A., Rehman, S. ur, Tu, S., Mehmood, R. M., Fawad, & Ehatisham-ul-haq, M. (2021). A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal. Sensors, 21(3), 951. https://doi.org/10.3390/s21030951

Venkatesan, C., Karthigaikumar, P., Paul, A., Satheeskumaran, S., & Kumar, R. (2018). ECG Signal Preprocessing and SVM Classifier-Based Abnormality Detection in Remote Healthcare Applications. IEEE Access, 6, 9767–9773. https://doi.org/10.1109/ACCESS.2018.2794346

Wang, J. (2020). A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network. Future Generation Computer Systems, 102, 670–679. https://doi.org/10.1016/j.future.2019.09.012

Wang, Z., Shao, C., & Zhu, L. (2019). Soft-sensing modeling and intelligent optimal control strategy for distillation yield rate of atmospheric distillation oil refining process. Chinese Journal of Chemical Engineering, 27(5), 1113–1124. https://doi.org/10.1016/j.cjche.2018.11.024

WU, Z., & HUANG, N. E. (2009). ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD. Advances in Adaptive Data Analysis, 01(01), 1–41. https://doi.org/10.1142/S1793536909000047

Yang, F., Kou, Z., Wu, J., & Li, T. (2018). Application of Mutual Information-Sample Entropy Based MED-ICEEMDAN De-Noising Scheme for Weak Fault Diagnosis of Hoist Bearing. Entropy, 20(9), 667. https://doi.org/10.3390/e20090667

Yang, W., Si, Y., Wang, D., & Zhang, G. (2019). A Novel Approach for Multi-Lead ECG Classification Using DL-CCANet and TL-CCANet. Sensors, 19(14), 3214. https://doi.org/10.3390/s19143214

Yu Hen Hu, Palreddy, S., & Tompkins, W. J. (1997). A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Transactions on Biomedical Engineering, 44(9), 891–900. https://doi.org/10.1109/10.623058

Zhang, L., Peng, H., & Yu, C. (2010). An approach for ECG classification based on wavelet feature extraction and decision tree. 2010 International Conference on Wireless Communications & Signal Processing (WCSP), 1–4. https://doi.org/10.1109/WCSP.2010.5633782

Zubair, M., Kim, J., & Yoon, C. (2016). An Automated ECG Beat Classification System Using Convolutional Neural Networks. 2016 6th International Conference on IT Convergence and Security (ICITCS), 1–5. https://doi.org/10.1109/ICITCS.2016.7740310

Published

2023-07-02

How to Cite

Ahmad Khorsheed, E. (2023). Detection of Abnormal electrocardiograms Based on Various Feature Extraction methods. Academic Journal of Nawroz University, 12(3), 111–119. https://doi.org/10.25007/ajnu.v12n3a1818

Issue

Section

Articles