Exploring the Impact of Big Bang-Big Crunch Algorithm Parameters on Welded Beam Design Problem Resolution


  • Saman M. Almufti Department of Computer Science, College of Science, Nawroz University, Duhok, KRG - Iraq




Optimization Algorithms, Big Bang–Big Crunch, Welded Beam Design problem, Constrained Optimization


A Metaheuristic Optimization is a group of algorithms that are widely studied and employed in the scientific literature. Typically, metaheuristics algorithms utilize stochastic operators that make each iteration unique, and they frequently contain controlling parameters that have an impact on the convergence process since their impacts are mostly neglected in most optimization literature, making it difficult to draw conclusions. This paper introduced the Big Bang-Big Crunch (BB-BC) metaheuristic algorithm to evaluate the performance of a metaheuristic algorithm in relation to its control parameter. It also demonstrates the effects of varying the values of BB-BC in solving. The "Welded Beam Design problem" is a well-known engineering optimization problem that is classified as a Single-Objective Constrained Optimization issue. Multiple starting parameter values for the BB-BC are evaluated as part of the experimental findings. This is done in an attempt to find the algorithm's optimal starting settings. The lowest, maximum, and mean values of the penalized objective functions are then computed. Finally, the BB-BC results are compared with various metaheuristics algorithms.


Download data is not yet available.


Akhtar, S., Tai, K., & Ray, T. (2002). A socio-behavioural simulation model for engineering design optimization. Engineering Optimization, 34(4), 341–354. https://doi.org/10.1080/03052150212723

Almufti, S. M. (2022a). Artificial Bee Colony Algorithm performances in solving Welded Beam Design problem. Computer Integrated Manufacturing Systems, 28(12). https://doi.org/10.24297/j.cims.2022.12.17

Almufti, S. M. (2022b). Vibrating Particles System Algorithm performance in solving Constrained Optimization Problem. Academic Journal of Nawroz University, 11(3), 231–242. https://doi.org/10.25007/ajnu.v11n3a1499

Almufti, S. M. (2022c). Vibrating Particles System Algorithm performance in solving Constrained Optimization Problem. Academic Journal of Nawroz University, 11(3), 231–242. https://doi.org/10.25007/ajnu.v11n3a1499

Almufti, S. M., Asaad, R. R., & Salim, B. W. (2018). Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems. Article in International Journal of Engineering and Technology, 7(4), 6109–6114. https://doi.org/10.14419/ijet.v7i4.23127

Arafa, B. N., El-Henawy, I., Houssein, E. H. , & Rizk-Allah, R. M. (2018). Machine learning model tuning using Big Bang–Big Crunch algorithm. Computational Intelligence and Informatics , 31–41.

Asaad, R., & Abdulnabi, N. (2018). Using Local Searches Algorithms with Ant Colony Optimization for the Solution of TSP Problems. Academic Journal of Nawroz University, 7(3), 1–6. https://doi.org/10.25007/ajnu.v7n3a193

ATIQULLAH, M. M., & RAO, S. S. (2000). SIMULATED ANNEALING AND PARALLEL PROCESSING: AN IMPLEMENTATION FOR CONSTRAINED GLOBAL DESIGN OPTIMIZATION. Engineering Optimization, 32(5), 659–685. https://doi.org/10.1080/03052150008941317

Bernardino, H. S., Barbosa, H. J. C., & Lemonge, A. C. C. (2007). A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. 2007 IEEE Congress on Evolutionary Computation, 646–653. https://doi.org/10.1109/CEC.2007.4424532

Betania Hernández-Ocaña, & Efrén Mezura-Montes. (2009). Modified Bacterial Foraging Optimization for Engineering Design. In Intelligent Engineering Systems through Artificial Neural Networks (pp. 357–364). ASME Press. https://doi.org/10.1115/1.802953.paper45

Camp, C. V. (2007). Design of Space Trusses Using Big Bang–Big Crunch Optimization. Journal of Structural Engineering, 133(7), 999–1008. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)


Coello Coello, C. A. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

Dalirinia, E., Jalali, M., Yaghoobi, M., & Tabatabaee, H. (2023). Lotus effect optimization algorithm (LEA): a lotus nature-inspired algorithm for engineering design optimization. The Journal of Supercomputing. https://doi.org/10.1007/s11227-023-05513-8

Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11), 2013–2015. https://doi.org/10.2514/3.10834

Ebrahimzadeh, A., & Nezamabadi-pour, M. (2011). A new global optimization algorithm: Big Bang–Big Crunch. Advances in Engineering Software, 42(10), 967-973.

Eesa, A. S., Hassan, M. M., & Arabo, W. K. (2023). Letter: Application of optimization algorithms to engineering design problems and discrepancies in mathematical formulas. Applied Soft Computing, 140, 110252. https://doi.org/10.1016/j.asoc.2023.110252

Elsoud, M. A., & Abualrish, M. A. H. (2021). Multi-objective big bang-big crunch algorithm for energy management in smart grid. Electrical Engineering.

Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang–Big Crunch. Advances in Engineering Software, 37(2), 106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005

Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 3080–3091. https://doi.org/10.1016/j.cma.2008.02.006

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Mixed variable structural optimization using Firefly Algorithm. Computers & Structures, 89(23–24), 2325–2336. https://doi.org/10.1016/j.compstruc.2011.08.002

Ghasemi, A. , & Alimohammadi, A. R. (2019). High-level synthesis and optimization of VLSI circuits using Big Bang–Big Crunch algorithm. Integration, the VLSI Journal, , 65, 234–244.

Ghasemi, A., & Mirzavand, M. (2014). Robot path planning using Big Bang–Big Crunch algorithm. Robotics and Autonomous Systems, 62(3), 390–399.

Goel, L., Kanhar, J., Patel, V. S., & Vardhan, A. (2023). Hybrid Elephant Herding Optimization–Big Bang Big Crunch for pattern recognition from natural images. Soft Computing. https://doi.org/10.1007/s00500-023-08667-y

Hatamlou, A., Abdullah, S., & Hatamlou, M. (2011). Data Clustering Using Big Bang–Big Crunch Algorithm. In Springer-Verlag Berlin Heidelberg (pp. 383–388). https://doi.org/10.1007/978-3-642-27337-7_36

Hedar, A.-R., & Fukushima, M. (2006). Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization. Journal of Global Optimization, 35(4), 521–549. https://doi.org/10.1007/s10898-005-3693-z

Hwang, S.-F., & He, R.-S. (2006). A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics, 20(1), 7–21. https://doi.org/10.1016/j.aei.2005.09.001

Ihsan, R. R., Almufti, S. M., Ormani, B. M. S., Asaad, R. R., & Marqas, R. B. (2021). A Survey on Cat Swarm Optimization Algorithm. Asian Journal of Research in Computer Science, 22–32. https://doi.org/10.9734/ajrcos/2021/v10i230237

Jahwar, A. F., Mohsin Abdulazeez, A., Zeebaree, D. Q., Asaad Zebari, D., & Ahmed, F. Y. H. (2021). An Integrated Gapso Approach for Solving Problem of an Examination Timetabiking System. 2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA), 1–6. https://doi.org/10.1109/ISIEA51897.2021.9509984

Kamel, S., & Hassanien, A. E. (2013). Image segmentation using Big Bang–Big Crunch optimization algorithm. Applied Soft Computing, 13(1), 91–100.

Kamil, A. T., Saleh, H. M., & Abd-Alla, I. H. (2021). A Multi-Swarm Structure for Particle Swarm Optimization: Solving the Welded Beam Design Problem. Journal of Physics: Conference Series, 1804(1), 012012. https://doi.org/10.1088/1742-6596/1804/1/012012

Kaveh, A., & Bakhshpoori, T. (2019). Metaheuristics: Outlines, MATLAB Codes and Examples. Springer International Publishing. https://doi.org/10.1007/978-3-030-04067-3

Kaveh, A., & Mahdavi, V. R. (2016). Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis. Structural Engineering and Mechanics, 60(6), 1093–1117. https://doi.org/10.12989/sem.2016.60.6.1093

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902–3933. https://doi.org/10.1016/j.cma.2004.09.007

Leite, J. P. B., & Topping, B. H. V. (1998). Improved genetic operators for structural engineering optimization. Advances in Engineering Software, 29(7–9), 529–562. https://doi.org/10.1016/S0965-9978(98)00021-0

Lemonge, A. C. C., & Barbosa, H. J. C. (2004). An adaptive penalty scheme for genetic algorithms in structural optimization. International Journal for Numerical Methods in Engineering, 59(5), 703–736. https://doi.org/10.1002/nme.899

Liu, J. (2005). Novel orthogonal simulated annealing with fractional factorial analysis to solve global optimization problems. Engineering Optimization, 37(5), 499–519. https://doi.org/10.1080/03052150500066646

M. Almufti, S. (2019). Historical survey on metaheuristics algorithms. International Journal of Scientific World, 7(1), 1. https://doi.org/10.14419/ijsw.v7i1.29497

M. Almufti, S., Ahmad Shaban, A., Ismael Ali, R., & A. Dela Fuente, J. (2023). Overview of Metaheuristic Algorithms. Polaris Global Journal of Scholarly Research and Trends, 2(2), 10–32. https://doi.org/10.58429/pgjsrt.v2n2a144

M. Almufti, S., Yahya Zebari, A., & Khalid Omer, H. (2019). A comparative study of particle swarm optimization and genetic algorithm. Journal of Advanced Computer Science & Technology, 8(2), 40. https://doi.org/10.14419/jacst.v8i2.29401

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2), 1567–1579. https://doi.org/10.1016/j.amc.2006.11.033

Mbuli, N., & Ngaha, W. S. (2022). A survey of big bang big crunch optimisation in power systems. Renewable and Sustainable Energy Reviews, 155, 111848. https://doi.org/10.1016/j.rser.2021.111848

O. K. Erol, O. Hasançebi, & S. Kazemzadeh Azad. (2011). Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems. INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING, 3, 495–505.

Öztürk, H. T., & Kahraman, H. T. (2023). Meta-heuristic search algorithms in truss optimization: Research on stability and complexity analyses. Applied Soft Computing, 145, 110573. https://doi.org/10.1016/j.asoc.2023.110573

Parsopoulos, K. E., & Vrahatis, M. N. (2005). Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems (pp. 582–591). https://doi.org/10.1007/11539902_71

Prayogo, D., Cheng, M.-Y., Wu, Y.-W., Herdany, A. A., & Prayogo, H. (2018). Differential Big Bang - Big Crunch algorithm for construction-engineering design optimization. Automation in Construction, 85, 290–304. https://doi.org/10.1016/j.autcon.2017.10.019

Rathore, V. S., & Khandelwal, N. P. (2020). Portfolio optimization using Big Bang-Big Crunch algorithm. 2020 International Conference on Emerging Trends in Information Technology and Engineering (Ic-ETITE).

Ray, T., & Liew, K. M. (2003). Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7(4), 386–396. https://doi.org/10.1109/TEVC.2003.814902

Sadeeq, H. T., Abdulazeez, A. M., Kako, N. A., Zebari, D. A., & Zeebaree, D. Q. (2021a). A New Hybrid Method for Global Optimization Based on the Bird Mating Optimizer and the Differential Evolution. 2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic" (IEC), 54–60. https://doi.org/10.1109/IEC52205.2021.9476147

Sadeeq, H. T., Abdulazeez, A. M., Kako, N. A., Zebari, D. A., & Zeebaree, D. Q. (2021b). A New Hybrid Method for Global Optimization Based on the Bird Mating Optimizer and the Differential Evolution. 2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic" (IEC), 54–60. https://doi.org/10.1109/IEC52205.2021.9476147

Sharma, R., & Singh, A. (2022). Big bang–big crunch-CNN: an optimized approach towards rice crop protection and disease detection. Archives of Phytopathology and Plant Protection, 55(2), 143–161. https://doi.org/10.1080/03235408.2021.2003054

Tang, H., Zhou, J., Xue, S., & Xie, L. (2010). Big Bang-Big Crunch optimization for parameter estimation in structural systems. Mechanical Systems and Signal Processing, 24(8), 2888–2897. https://doi.org/10.1016/j.ymssp.2010.03.012

Yokota, T., Taguchi, T., & Gen, M. (1999). A solution method for optimal cost problem of welded beam by using genetic algorithms. Computers & Industrial Engineering, 37(1–2), 379–382. https://doi.org/10.1016/S0360-8352(99)00098-4

Zhang, J., Liang, C., Huang, Y., Wu, J., & Yang, S. (2009). An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Applied Mathematics and Computation, 211(2), 392–416. https://doi.org/10.1016/j.amc.2009.01.048

Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074. https://doi.org/10.1016/j.ins.2008.02.014



How to Cite

Almufti, S. M. (2023). Exploring the Impact of Big Bang-Big Crunch Algorithm Parameters on Welded Beam Design Problem Resolution. Academic Journal of Nawroz University, 12(4), 1–16. https://doi.org/10.25007/ajnu.v12n4a1903