Enhancing Brain Tumor Classification with Data Augmentation and DenseNet121


  • Nechirvan Asaad Zebari Department of Information Technology, Lebanese French University, Erbil, Kurdistan Region, Iraq
  • Ridwan B. Marqas Department of Computer Science, College of Science, Nawroz University, Duhok, Kurdistan Region, Iraq.
  • Merdin Shamal Salih Dept of Information Technology, Technical College of Informatics Akre, Duhok Polytechnic University, Duhok, Iraq
  • Ahmed A. H. Alkurdi Department of Computer Science, College of Science, Nawroz University, Duhok, Kurdistan Region, Iraq.




This research paper presents a comprehensive study on the development and evaluation of a brain tumor classification model using advanced image processing and deep learning techniques. The primary objective of this study was to create an accurate and robust system for distinguishing between brain tumors and normal brain images, utilizing both an original dataset and an augmented dataset. With a focus on improving medical diagnosis, the research aimed to enhance the performance of brain tumor detection by leveraging state-of-the-art machine learning methods. The model pipeline comprised various image preprocessing steps, including cropping, resizing, denoising, and normalization, followed by feature extraction using the DenseNet121 architecture and classification using sigmoid activation. The dataset was meticulously divided into training, validation, and testing sets, with an emphasis on achieving high recall, precision, F1-score, and accuracy as key research objectives. The results demonstrate that the model achieved impressive performance, with a training recall of 92.87%, precision of 93.82%, F1-score of 93.15%, and an accuracy of 94.83%. These findings underscore the potential of deep learning and data augmentation in enhancing brain tumor detection systems, supporting the research's core objective of advancing medical image analysis for clinical applications.


Download data is not yet available.


Rahman, A. U., Saeed, M., Saeed, M. H., Zebari, D. A., Albahar, M., Abdulkareem, K. H., ... & Mohammed, M. A. (2023). A framework for susceptibility analysis of brain tumours based on uncertain analytical cum algorithmic modeling. Bioengineering, 10(2), 147.

Bhattacharyya, D.; Kim, T.-H. Brain tumor detection using MRI image analysis. In Proceedings of the International Conference on Ubiquitous Computing and Multimedia Applications, Daejeon, Korea, 13–15 April 2011; pp. 307–314.

Iqbal, S.; Ghani Khan, M.U.; Saba, T.; Mehmood, Z.; Javaid, N.; Rehman, A.; Abbasi, R. Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation. Microsc. Res. Tech. 2019, 82, 1302–1315.

Pradhan, A.; Mishra, D.; Das, K.; Panda, G.; Kumar, S.; Zymbler, M. On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model. Mathematics 2021, 9, 2095.

Reddy, A.V.N.; Krishna, C.P.; Mallick, P.K.; Satapathy, S.K.; Tiwari, P.; Zymbler, M.; Kumar, S. Analyzing MRI scans to detect glioblastoma tu-mor using hybrid deep belief networks. J. Big Data 2020, 7, 35.

Ibrahim, D. A., Zebari, D. A., Mohammed, H. J., & Mohammed, M. A. (2022). Effective hybrid deep learning model for COVID‐19 patterns identification using CT images. Expert Systems, 39(10), e13010.

Rukhsar, S., Awan, M. J., Naseem, U., Zebari, D. A., Mohammed, M. A., Albahar, M. A., ... & Mahmoud, A. (2023). Artificial Intelligence Based Sentence Level Sentiment Analysis of COVID-19. Computer Systems Science & Engineering, 47(1).

Areej, A.M.; Fahd NAl-Wesabi Marwa, O.; Mimouna, A.A.; Manar, A.H.; Abdelwahed, M.; Ishfaq, Y.; Abu Sarwar, Z. Arithmetic optimization with retinanet model for motor imagery classification on brain computer interface. J. Healthc. Eng. 2022, 2022, 3987494.

Mohammed, H. J., Al-Fahdawi, S., Al-Waisy, A. S., Zebari, D. A., Ibrahim, D. A., Mohammed, M. A., ... & Kim, J. (2022). ReID-DeePNet: A hybrid deep learning system for person re-identification. Mathematics, 10(19), 3530.

Hardas, B.M.; Pokle, S.B. Optimization of peak to average power reduction in OFDM. J. Commun. Technol. Electron. 2017, 62, 1388–1395.

Zebari, D. A., Haron, H., Sulaiman, D. M., Yusoff, Y., & Othman, M. N. M. (2022, December). CNN-based Deep Transfer Learning Approach for Detecting Breast Cancer in Mammogram Images. In 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC) (pp. 256-261). IEEE.

Gumaei, A.; Hassan, M.M.; Hassan, M.R.; Alelaiwi, A.; Fortino, G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 2019, 7, 36266–36273.

Ayadi, W.; Elhamzi, W.; Charfi, I.; Atri, M. Deep CNN for brain tumor classification. Neural Process. Lett. 2021, 53, 671–700.

Preethi, S.; Aishwarya, P. Combining Wavelet Texture Features and Deep Neural Network for Tumor Detection and Segmentation Over MRI. J. Intell. Syst. 2019, 28, 571–588.

Khan, A.H.; Abbas, S.; Khan, M.A.; Farooq, U.; Khan, W.A.; Siddiqui, S.Y.; Ahmad, A. Intelligent model for brain tumor identification using deep learning. Appl. Comput. Intell. Soft Comput. 2022, 2022, 1–10.

Khan, M.A.; Ashraf, I.; Alhaisoni, M.; Damaševicˇius, R.; Scherer, R.; Rehman, A.; Bukhari, S.A.C. Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists. Diagnostics 2020, 10, 565.

Maqsood, S.; Damasevicius, R.; Shah, F.M. An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification. In Computational Science and Its Applications—ICCSA; Springer International Publish: Cham, Switzerland, 2021; pp. 105–118.

Wahlang, I., Maji, A. K., Saha, G., Chakrabarti, P., Jasinski, M., Leonowicz, Z., & Jasinska, E. (2022). Brain magnetic resonance imaging classification using deep learning architectures with gender and age. Sensors, 22(5), 1766.

Younis, A., Qiang, L., Nyatega, C. O., Adamu, M. J., & Kawuwa, H. B. (2022). Brain tumor analysis using deep learning and VGG-16 ensembling learning approaches. Applied Sciences, 12(14), 7282.

Kaggle. Available online: https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection (accessed on 19 September 2020).

Al‐Waisy, A. S., Ibrahim, D. A., Zebari, D. A., Hammadi, S., Mohammed, H., Mohammed, M. A., & Damaševičius, R. (2022). Identifying defective solar cells in electroluminescence images using deep feature representations. PeerJ Computer Science, 8, e992.

Singh, V., Gourisaria, M. K., GM, H., Rautaray, S. S., Pandey, M., Sahni, M., ... & Espinoza-Audelo, L. F. (2022). Diagnosis of intracranial tumors via the selective CNN data modeling technique. Applied Sciences, 12(6), 2900.

Zebari, D. A., Sulaiman, D. M., Sadiq, S. S., Zebari, N. A., & Salih, M. S. (2022, September). Automated Detection of Covid-19 from X-ray Using SVM. In 2022 4th International Conference on Advanced Science and Engineering (ICOASE)(pp. 130-135). IEEE.

Zebari, D. A., Sadiq, S. S., & Sulaiman, D. M. (2022, March). Knee Osteoarthritis Detection Using Deep Feature Based on Convolutional Neural Network. In 2022 International Conference on Computer Science and Software Engineering (CSASE) (pp. 259-264). IEEE.

Zhang, K.; Guo, Y.; Wang, X.; Yuan, J.; Ding, Q. Multiple Feature Reweight DenseNet for Image Classification. IEEE Access 2019, 7, 9872–9880.

Kapoor, N. R., Kumar, A., Kumar, A., Zebari, D. A., Kumar, K., Mohammed, M. A., ... & Albahar, M. A. (2022). Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN. International Journal of Environmental Research and Public Health, 19(24), 16862.

Aighuraibawi, A. H. B., Manickam, S., Abdullah, R., Alyasseri, Z. A. A., Khallel, A., Zebari, D. A., ... & Arif, Z. H. (2023). Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm. Computer Systems Science & Engineering, 47(1).



How to Cite

Asaad Zebari , N. ., B. Marqas, R., Shamal Salih, M. ., & A. H. Alkurdi, A. (2023). Enhancing Brain Tumor Classification with Data Augmentation and DenseNet121. Academic Journal of Nawroz University, 12(4), 323–334. https://doi.org/10.25007/ajnu.v12n4a1985