A Systematic Review on Evaluation of Driver Fatigue Monitoring Systems Based on Existing Face / Eyes Detection Algorithms


  • Maryam Ameen Sulaiman Department of Information Management, Duhok Polytechnic University, Duhok , Iraq
  • Idress Sarhan Kocher Department of Energy Engineering Technical College of Engineering Duhok Polytechnic University




Among the many issues facing the world, the issue of traffic accidents, many security facilities have developed research on fingerprints, palmistry biometrics and other biometrics. In modern technologies, facial and eye detection algorithms have been developed and identified. This paper includes comparisons of face and eye tracking methods, which are extremely useful for identifying individuals in a variety of situations. Facial biometrics are more stable due to their distinct features, which gives them an advantage over other biometrics such as palmistry and fingerprint. This work dealt with 74 studies of face and eye detection and a comparison of algorithms that were used in previous researches, where the Viola-jones algorithm was identified as the best facial algorithm in terms of accuracy up to 98% for different types of face databases because this algorithm depends on geometry of face and also able to detect all faces in the same image, Furthermore, it has been determined that SVM is the best eye detection algorithm due to the accuracy of its characteristics and the speed of execution in real time so, the highest accuracy achieved was 98% accurate .


Download data is not yet available.


V. Chirra, S. ReddyUyyala, and V. KishoreKolli, “Deep CNN: A Machine Learning Approach for Driver Drowsiness Detection Based on Eye State,” Rev. Intell. Artif., vol. 33, no. 6, pp. 461–466, Dec. 2019, doi: 10.18280/ria.330609.

K. Vikram and S. Padmavathi, “Facial parts detection using Viola Jones algorithm,” in 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, Jan. 2017, pp. 1–4. doi: 10.1109/ICACCS.2017.8014636.

A. M. J. Hossen, R. A. S. Ogla, and M. M. Ali, “Face Detection by Using OpenCV’s Viola-Jones Algorithm based on coding eyes,” Iraqi J. Sci., vol. 58, p. 11, 2017.

B. Reddy, Y.-H. Kim, S. Yun, C. Seo, and J. Jang, “Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, Jul. 2017, pp. 438–445. doi: 10.1109/CVPRW.2017.59.

A. P. Mena, M. Bachiller Mayoral, and E. Díaz-Lópe, “Comparative Study of the Features Used by Algorithms Based on Viola and Jones Face Detection Algorithm,” in Bioinspired Computation in Artificial Systems, vol. 9108, J. M. Ferrández Vicente, J. R. Álvarez-Sánchez, F. de la Paz López, Fco. J. Toledo-Moreo, and H. Adeli, Eds. Cham: Springer International Publishing, 2015, pp. 175–183. doi: 10.1007/978-3-319-18833-1_19.

I. G. N. Made Kris Raya, A. N. Jati, and R. E. Saputra, “Analysis realization of Viola-Jones method for face detection on CCTV camera based on embedded system,” in 2017 International Conference on Robotics, Biomimetics, and Intelligent Computational Systems (Robionetics), Bali, Aug. 2017, pp. 1–5. doi: 10.1109/ROBIONETICS.2017.8203427.

B. Fatima, A. R. Shahid, S. Ziauddin, A. A. Safi, and H. Ramzan, “Driver Fatigue Detection Using Viola Jones and Principal Component Analysis,” Appl. Artif. Intell., vol. 34, no. 6, pp. 456–483, May 2020, doi: 10.1080/08839514.2020.1723875.

S. Kumar, S. Singh, and J. Kumar, “AUTOMATIC FACE DETECTION USING GENETIC ALGORITHM FOR VARIOUS CHALLENGES,” 2017, doi: 10.13140/RG.2.2.22864.81924.

R. Wallace, M. McLaren, C. McCool, and S. Marcel, “Inter-session variability modelling and joint factor analysis for face authentication,” in 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, Oct. 2011, pp. 1–8. doi: 10.1109/IJCB.2011.6117599.

A. R. Nair and A. D. Potgantwar, “Masked Face Detection using the Viola Jones Algorithm: A Progressive Approach for less Time Consumption,” Int. J. Recent Contrib. Eng. Sci. IT IJES, vol. 6, no. 4, p. 4, Dec. 2018, doi: 10.3991/ijes.v6i4.9317.

K. Srikrishnaswetha, S. Kumar, and P. Johri, “Comparision Study on Various Face Detection Techniques,” in 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, Dec. 2018, pp. 1–5. doi: 10.1109/CCAA.2018.8777656.

Ma. C. D. Fernandez, K. J. E. Gob, A. R. M. Leonidas, R. J. J. Ravara, A. A. Bandala, and E. P. Dadios, “Simultaneous face detection and recognition using Viola-Jones Algorithm and Artificial Neural Networks for identity verification,” in 2014 IEEE REGION 10 SYMPOSIUM, Kuala Lumpur, Malaysia, Apr. 2014, pp. 672–676. doi: 10.1109/TENCONSpring.2014.6863118.

L. William, A. Winda, D. Satrio, T. Sofyan, and M. Iwan Solihin, “Automotive Start-Stop Engine Based on Face Recognition System,” E3S Web Conf., vol. 130, p. 01020, 2019, doi: 10.1051/e3sconf/201913001020.

E. Alionte and C. Lazar, “A practical implementation of face detection by using Matlab cascade object detector,” in 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, Romania, Oct. 2015, pp. 785–790. doi: 10.1109/ICSTCC.2015.7321390.

B. Vijayalaxmi, C. Anuradha, K. Sekaran, M. N. Meqdad, and S. Kadry, “Image processing based eye detection methods a theoretical review,” Bull. Electr. Eng. Inform., vol. 9, no. 3, pp. 1189–1197, Feb. 2020, doi: 10.11591/eei.v9i3.1783.

Soukupova, T., & Cech, J. (2016, February). Eye blink detection using facial landmarks. In 21st computer vision winter workshop, Rimske Toplice, Slovenia.‏

R. Prathipa, P. Premkannan, K. Ragunathan, and R. Venkatakrishnan, “HUMAN EYE PUPIL DETECTION TECHNIQUE USING CENTER OF GRAVITY METHOD,” vol. 07, no. 03, p. 4, 2020.

L. Sun and Z. Zheng, “Thermal-to-Visible Face Alignment on Edge Map,” IEEE Access, vol. 5, pp. 11215–11227, 2017, doi: 10.1109/ACCESS.2017.2712159.

O. Wathiq and B. D. Ambudkar, “Driver Safety Approach Using Efficient Image Processing Algorithms for Driver Distraction Detection and Alerting,” in Intelligent Engineering Informatics, vol. 695, V. Bhateja, C. A. Coello Coello, S. C. Satapathy, and P. K. Pattnaik, Eds. Singapore: Springer Singapore, 2018, pp. 461–469. doi: 10.1007/978-981-10-7566-7_45.

A. Emami, M. Sarvi, and S. Asadi Bagloee, “Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment,” J. Mod. Transp., vol. 27, no. 3, pp. 222–232, Sep. 2019, doi: 10.1007/s40534-019-0193-2.

Lopar, M., & Ribarić, S. (2013). An overview and evaluation of various face and eyes detection algorithms for driver fatigue monitoring systems. arXiv preprint arXiv:1310.0317.‏

Mercuur, R., Dignum, V., & Jonker, C. (2017). The use of values for modeling social agents. In Proceedings of the 3nd International Workshop on Smart Simulation and Modelling for Complex Systems.‏

M. Yaman, A. Subasi, and F. Rattay, “Comparison of Random Subspace and Voting Ensemble Machine Learning Methods for Face Recognition,” Symmetry, vol. 10, no. 11, p. 651, Nov. 2018, doi: 10.3390/sym10110651.

L. Yao, G. Xu, and F. Zhao, “Pooling Method On PCNN in Convolutional Neural Network,” J. Phys. Conf. Ser., vol. 1486, p. 022026, Apr. 2020, doi: 10.1088/1742-6596/1486/2/022026.

Pauer, G. (2017). Development potentials and strategic objectives of intelligent transport systems improving road safety. Transport and Telecommunication, 18(1), 15.‏

I. Gupta, N. Garg, A. Aggarwal, N. Nepalia, and B. Verma, “Real-Time Driver’s Drowsiness Monitoring Based on Dynamically Varying Threshold,” in 2018 Eleventh International Conference on Contemporary Computing (IC3), Noida, Aug. 2018, pp. 1–6. doi: 10.1109/IC3.2018.8530651.

Chakraborty, P., Yousuf, M. A., Rahman, M. Z., & Faruqui, N. (2020). How can a robot calculate the level of visual focus of human’s attention. In Proceedings of International Joint Conference on Computational Intelligence (pp. 329-342). Springer, Singapore.‏

Z. Orman, A. Battal, and Erdem Kemer, “A Study On Face, Eye Detection And Gaze Estimation,” Int. J. Comput. Sci. Eng. Surv., vol. 2, no. 3, pp. 29–46, Aug. 2011, doi: 10.5121/ijcses.2011.2303.

C. Nandakumar, G. Muralidaran, and N. Tharani, “Real Time Vehicle Security System through Face Recognition,” p. 8.

S. Panda and M. Kolhekar, “Feature Selection for Driver Drowsiness Detection,” in Proceedings of International Conference on Computational Intelligence and Data Engineering, vol. 28, N. Chaki, N. Devarakonda, A. Sarkar, and N. C. Debnath, Eds. Singapore: Springer Singapore, 2019, pp. 127–140. doi: 10.1007/978-981-13-6459-4_14.

A. Punitha and M. Kalaiselvi Geetha, “Driver Eye State Detection using Minimum Intensity Projection - An Application to Driver Fatigue Alertness,” Indian J. Sci. Technol., vol. 8, no. 17, Aug. 2015, doi: 10.17485/ijst/2015/v8i17/69918.

W. Tipprasert, T. Charoenpong, C. Chianrabutra, and C. Sukjamsri, “A Method of Driver’s Eyes Closure and Yawning Detection for Drowsiness Analysis by Infrared Camera,” in 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, Jan. 2019, pp. 61–64. doi: 10.1109/ICA-SYMP.2019.8646001.

H.-T. Choi, M.-K. Back, and K.-C. Lee, “Driver Drowsiness Detection based on Multimodal using Fusion of Visual-feature and Bio-signal,” in 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Oct. 2018, pp. 1249–1251. doi: 10.1109/ICTC.2018.8539478.

M. Ramzan, H. U. Khan, S. M. Awan, A. Ismail, M. Ilyas, and A. Mahmood, “A Survey on State-of-the-Art Drowsiness Detection Techniques,” IEEE Access, vol. 7, pp. 61904–61919, 2019, doi: 10.1109/ACCESS.2019.2914373.

X. Zhang and Y. Gao, “Face recognition across pose: A review,” Pattern Recognit., vol. 42, no. 11, pp. 2876–2896, Nov. 2009, doi: 10.1016/j.patcog.2009.04.017.

B. Richhariya and D. Gupta, “Facial expression recognition using iterative universum twin support vector machine,” Appl. Soft Comput., vol. 76, pp. 53–67, Mar. 2019, doi: 10.1016/j.asoc.2018.11.046.

R. Wehrens and J. Kruisselbrink, “Flexible Self-Organizing Maps in kohonen 3.0,” J. Stat. Softw., vol. 87, no. 7, 2018, doi: 10.18637/jss.v087.i07.

M. K. Dabhi and B. K. Pancholi, “Face Detection System Based on Viola - Jones Algorithm,” vol. 5, no. 4, p. 3, 2013.

Q. M. Rizvi, A. Professor, B. G. Agarwal, and D. R. Beg, “A Review on Face Detection Methods,” p. 12.

Miraftabzadeh, S. A., Rad, P., Choo, K. K. R., & Jamshidi, M. (2017). A privacy-aware architecture at the edge for autonomous real-time identity reidentification in crowds. IEEE Internet of Things Journal, 5(4), 2936-2946.‏

Bahajathul Fathema, Alamuri Dedeepya Lakshmi, Bandlamudi Ravali, Raja Rajeswari Dokku, and VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY, “Real Time Face Detection Using Matlab,” Int. J. Eng. Res., vol. V7, no. 02, p. IJERTV7IS020120, Feb. 2018, doi: 10.17577/IJERTV7IS020120.

D. Swain, P. K. Pattnaik, and P. K. Gupta, Eds., Machine Learning and Information Processing: Proceedings of ICMLIP 2019, vol. 1101. Singapore: Springer Singapore, 2020. doi: 10.1007/978-981-15-1884-3.

K. Yuen, S. Martin, and M. M. Trivedi, “On looking at faces in an automobile: Issues, algorithms and evaluation on naturalistic driving dataset,” in 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Dec. 2016, pp. 2777–2782. doi: 10.1109/ICPR.2016.7900056.

S. Ribaric, J. Lovrencic, and N. Pavesic, “A neural-network-based system for monitoring driver fatigue,” in Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta, Apr. 2010, pp. 1356–1361. doi: 10.1109/MELCON.2010.5475993.

J. Steil, M. X. Huang, and A. Bulling, “Fixation detection for head-mounted eye tracking based on visual similarity of gaze targets,” in Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw Poland, Jun. 2018, pp. 1–9. doi: 10.1145/3204493.3204538.

I. Justina, “Fingerprint-Based Authentication System for Time and Attendance Management,” Br. J. Math. Comput. Sci., vol. 5, no. 6, pp. 735–747, Jan. 2015, doi: 10.9734/BJMCS/2015/8731.

R. S. Soundariya and R. Renuga, “Eye movement based emotion recognition using electrooculography,” in 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, Apr. 2017, pp. 1–5. doi: 10.1109/IPACT.2017.8245212.

K. Harezlak and P. Kasprowski, “Application of Time-Scale Decomposition of Entropy for Eye Movement Analysis,” Entropy, vol. 22, no. 2, p. 168, Feb. 2020, doi: 10.3390/e22020168.

E. Aidman et al., “Synchronized drowsiness monitoring and simulated driving performance data under 50-hr sleep deprivation: A double-blind placebo-controlled caffeine intervention,” Data Brief, vol. 19, pp. 1335–1340, Aug. 2018, doi: 10.1016/j.dib.2018.06.006.

P. Santos, J. A. Martínez-Roda, J. C. Ondategui, F. Díaz-Doutón, J. A. O. Cazal, and M. Vilaseca, “System based on the contrast of Purkinje images to measure corneal and lens scattering,” Biomed. Opt. Express, vol. 9, no. 10, p. 4907, Oct. 2018, doi: 10.1364/BOE.9.004907.

“ACCURATE EYE CENTRE LOCALISATION BY MEANS OF GRADIENTS:,” in Proceedings of the International Conference on Computer Vision Theory and Applications, Vilamoura, Algarve, Portugal, 2011, pp. 125–130. doi: 10.5220/0003326101250130.

Eto, T., Teikari, P., Najjar, R. P., Nishimura, Y., Motomura, Y., Kuze, M., & Higuchi, S. (2020). A Purkinje image-based system for an assessment of the density and transmittance spectra of the human crystalline lens in vivo. Scientific reports, 10(1), 1-12.‏

A. Zarin and J. Uddin, “A Hybrid Fake Banknote Detection Model using OCR, Face Recognition and Hough Features,” in 2019 Cybersecurity and Cyberforensics Conference (CCC), Melbourne, Australia, May 2019, pp. 91–95. doi: 10.1109/CCC.2019.000-3.

M. Paul, R. K. Karsh, and F. Ahmed Talukdar, “Image Hashing based on Shape Context and Speeded Up Robust Features (SURF),” in 2019 International Conference on Automation, Computational and Technology Management (ICACTM), London, United Kingdom, Apr. 2019, pp. 464–468. doi: 10.1109/ICACTM.2019.8776713.

Poursadeghiyan, M., Mazloumi, A., Saraji, G. N., Baneshi, M. M., Khammar, A., & Ebrahimi, M. H. (2018). Using image processing in the proposed drowsiness detection system design. Iranian journal of public health, 47(9), 1371.‏


Poursadeghiyan, M., Mazloumi, A., Saraji, G. N., Baneshi, M. M., Khammar, A., & Ebrahimi, M. H. (2018). Using image processing in the proposed drowsiness detection system design. Iranian journal of public health, 47(9), 1371.‏

M. Nandal, N. Mor, and H. Sood, “An Overview of Use of Artificial Neural Network in Sustainable Transport System,” in Computational Methods and Data Engineering, vol. 1227, V. Singh, V. K. Asari, S. Kumar, and R. B. Patel, Eds. Singapore: Springer Singapore, 2021, pp. 83–91. doi: 10.1007/978-981-15-6876-3_7.

J.-W. Lin, “Artificial neural network related to biological neuron network: a review,” Adv. Stud. Med. Sci., vol. 5, pp. 55–62, 2017, doi: 10.12988/asms.2017.753.

A. A. Bamidele et al., “Non-intrusive Driver Drowsiness Detection based on Face and Eye Tracking,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 7, 2019, doi: 10.14569/IJACSA.2019.0100775.


Nandyal, S., Sultana, S., & Anjum, S. (2017). Smart car parking system using arduino uno. International Journal of Computer Applications, 169(1), 13-18.‏

P. Kowsalya, J. Pavithra, G. Sowmiya, and C. K. Shankar, “ATTENDANCE MONITORING SYSTEM USING FACE DETECTION &FACE RECOGNITION,” vol. 06, no. 03, p. 5, 2019.

A. A. Yusuf, F. S. Mohamad, and Z. Sufyanu, “Human Face Detection Using Skin Color Segmentation and Watershed Algorithm,” p. 8.

B. Zhang, W. Wang, and B. Cheng, “Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients,” Adv. Mech. Eng., vol. 7, no. 2, p. 707106, Jan. 2015, doi: 10.1155/2014/707106.

B. N. Manu, “Facial features monitoring for real time drowsiness detection,” in 2016 12th International Conference on Innovations in Information Technology (IIT), Al-Ain, United Arab Emirates, Nov. 2016, pp. 1–4. doi: 10.1109/INNOVATIONS.2016.7880030.

L. Pauly and D. Sankar, “Detection of drowsiness based on HOG features and SVM classifiers,” in 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, Nov. 2015, pp. 181–186. doi: 10.1109/ICRCICN.2015.7434232.

W. S. -, H. S. -, E. C. -, Q. Z. -, Q. L. -, and W. S. -, “Effective Driver Fatigue Monitoring through Pupil Detection and Yawing Analysis in Low Light Level Environments,” Int. J. Digit. Content Technol. Its Appl., vol. 6, no. 17, pp. 372–383, Sep. 2012, doi: 10.4156/jdcta.vol6.issue17.41.

M. Knapik and B. Cyganek, “Driver’s fatigue recognition based on yawn detection in thermal images,” Neurocomputing, vol. 338, pp. 274–292, Apr. 2019, doi: 10.1016/j.neucom.2019.02.014.

E. Vural, M. Cetin, A. Ercil, G. Littlewort, M. Bartlett, and J. Movellan, “Drowsy Driver Detection Through Facial Movement Analysis,” in Human–Computer Interaction, vol. 4796, M. Lew, N. Sebe, T. S. Huang, and E. M. Bakker, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 6–18. doi: 10.1007/978-3-540-75773-3_2.

T. D’Orazio, M. Leo, C. Guaragnella, and A. Distante, “A visual approach for driver inattention detection,” Pattern Recognit., vol. 40, no. 8, pp. 2341–2355, Aug. 2007, doi: 10.1016/j.patcog.2007.01.018.

M. Flores, J. Armingol, and A. de la Escalera, “Driver Drowsiness Warning System Using Visual Information for Both Diurnal and Nocturnal Illumination Conditions,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1, p. 438205, Dec. 2010, doi: 10.1155/2010/438205.

Ursulescu, O., Ilie, B., & Simion, G. (2018, November). Driver drowsiness detection based on eye analysis. In 2018 International Symposium on Electronics and Telecommunications (ISETC) (pp. 1-4). IEEE.‏

Z. Zhang and J. Zhang, “A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue,” J. Control Theory Appl., vol. 8, no. 2, pp. 181–188, May 2010, doi: 10.1007/s11768-010-8043-0.



How to Cite

Ameen Sulaiman, M., & Sarhan Kocher, I. (2022). A Systematic Review on Evaluation of Driver Fatigue Monitoring Systems Based on Existing Face / Eyes Detection Algorithms. Academic Journal of Nawroz University, 11(1), 57–72. https://doi.org/10.25007/ajnu.v11n1a1234