Hybridizing Ant Colony Optimization Algorithm for Optimizing Edge-Detector Techniques


  • Saman M. Almufti Department of Computer Science, Nawroz University, Duhok Kurdistan Region of Iraq




swarm, swarm intelligent, edge detection, ant colony optimization, ACO, Canny edge detection


Ant colony optimization is a swarm intelligent algorithm that mimics the ant behaviors to optimize solutions for hard optimization problems. Over years Ant-based algorithms have been used in solving different problems including: Traveling Salesman Problem (TSP), Wireless Sensors Network (WSN), Benchmark Problem, and it has been used in various image processing applications. In the image processing fields various techniques have been used to detect edges in a digital image such as Canny and Sobel edge detectors.  This Study, proposed a hybridized Ant Colony Optimization algorithm for optimizing the edge detector quality. The proposed method initializes its attribute matrix and the information at each pixel routed by ants on the input image.  Experimental results show the results of the proposed algorithm and compare the results with the original built-in MATLAB edge detection method called Canny and the results of basic Aco edge detector. All three algorithms tested in different images and the MSE and PNSR are calculated before and after applying Gaussian noise. Based on the Experimental results obtained by the three used methods (Canny Edge Detector, Ant Colony Optimization, and Hybrid Aco-Canny), the proposed Hybrid ACO-CANNY methods was the best method for detecting edges.


Download data is not yet available.


Acharjya, P. P., Das, R., & ρ, D. G. (2012). Study and Comparison of Different Edge Detectors for Image Segmentation. Global Journal of Computer Science and Technology Graphics & Vision, 12(13), 29-32.

Almufti, S. M. (2017). Using Swarm Intelligence for solving NP-Hard Problems. Academic Journal of Nawroz University, 6(3), 46-50. doi:https://doi.org/10.25007/ajnu.v6n3a78

Almufti, S. M. (2019). Historical survey on metaheuristics algorithms. International Journal of Scientific World, 1-12. doi:10.14419/ijsw.v7i1.29497

Almufti, S. M. (2021). The novel social spider optimization algorithm: overview, modifications, and applications. ICONTECH international journal of surveys, engineering, technology, 5(2), 35-51. doi:10.46291/ICONTECHvol5iss2pp32-51

Bahrami, M., Haddad, O. B., & Chu, X. (2017). Cat Swarm Optimization (CSO) Algorithm. In Advanced Optimization by Nature-Inspired Algorithms (pp. 9-18). Springer, Singapore. doi:https://doi.org/10.1007/978-981-10-5221-7_2

Boyat, A. K., & Joshi, K. (2015). A REVIEW PAPER: NOISE MODELS IN DIGITAL IMAGE PROCESSING. Signal & Image Processing : An International Journal (SIPIJ), 63-75. doi:10.5121/sipij.2015.6206

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 8(9).

Ding, L., & Goshtasby, A. (2001). On the Canny edge detector. Pattern Recognition, 721}725.

Dorigo, M. (2004). Ant Colony Optimization. doi:ISBN 0-262-04219-3

Eberhart, R., & Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory. Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). IEEE.

Gonzalez, R. C., & Woods, R. E. (1992). Digital Image Processing.

Ihsan, R. R., Almufti, S. M., & Marqas, R. B. (2020). A Median Filter With Evaluating of Temporal Ultrasound Image for Impulse Noise Removal for Kidney Diagnosis. Journal of Applied Science and Technology Trends, 71-77. doi:10.38094/jastt1217

Kanugo, S., & Mekala, A. M. (2016). Particle Swarm Optimization based Edge Detection Algorithms for Computer Tomography Images. Indian Journal of Science and Technology, 9(37), 1-8. doi:10.17485/ijst/2016/v9i37/102133


Krishnanand, K., & Ghose, D. (2009). Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell, 87–124. doi:10.1007/s11721-008-0021-5

Li, Y. (2010). Solving TSP by an ACO-and-BOA-based hybrid algorithm. 22-24. doi:10.1109/ICCASM.2010.5622108

Lu, D. S., & Chen, C. C. (2008). Edge detection improvement by ant colony optimization. Pattern Recognition Letters, 416-425.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 46-61. doi:https://doi.org/10.1016/j.advengsoft.2013.12.007

Rafsanjani, M. K., & Varzaneh, Z. A. (2015). Edge detection in digital images using Ant Colony Optimization. Computer Science Journal of Moldova, 33(3(69)), 343-359.

Rana, D., & Dalai, S. (2014). Review on Traditional Methods of Edge Detection to Morphological based Techniques. International Journal of Computer Science and Information Technologies, 5915-5920.

Saeed, V. A., Almufti, S. M., & Marqas, R. B. (2019). Taxonomy of bio-inspired optimization algorithms. Journal of Advanced Computer Science & Technology, 23-31. doi:DOI: 10.14419/jacst.v8i2.29402

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), (pp. 1-10). Retrieved from https://arxiv.org/abs/1004.4170

Yazdani, M., & Jolai, F. (2016). Lion Optimization Algorithm (LOA): A nature-inspiredmetaheuristic algorithm. Journal of Computational Design and Engineering, 3, 24-36. doi:10.1016/j.jcde.2015.06.003



How to Cite

M. Almufti, S. (2022). Hybridizing Ant Colony Optimization Algorithm for Optimizing Edge-Detector Techniques. Academic Journal of Nawroz University, 11(2), 135–145. https://doi.org/10.25007/ajnu.v11n2a1320